数据结构初阶:二叉树(一)

树概念及结构

树的概念

树是一种 非线性 的数据结构,它是由 n n>=0 )个有限结点组成一个具有层次关系的集合。 把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的
有一个特殊的结点,称为根结点 ,根节点没有前驱结点。
除根节点外, 其余结点被分成 M(M>0) 个互不相交的集合 T1 T2 …… Tm ,其中每一个集合 Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有 0 个或多个后继。
因此, 树是递归定义 的。

注意:树形结构中,子树之间不能有交集,否则就不是树形结构

 树的相关概念

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6

叶节点或终端节点:度为0的节点称为叶节点; 如上图:BCHI...等节点为叶节点

非终端节点或分支节点 :度不为 0 的节点; 如上图: D E F G... 等节点为分支节点
双亲节点或父节点 :若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图: A B 的父节点
孩子节点或子节点 :一个节点含有的子树的根节点称为该节点的子节点; 如上图: B A 的孩子节点
兄弟节点 :具有相同父节点的节点互称为兄弟节点; 如上图: B C 是兄弟节点
树的度 :一棵树中,最大的节点的度称为树的度; 如上图:树的度为 6
节点的层次 :从根开始定义起,根为第 1 层,根的子节点为第 2 层,以此类推;
树的高度或深度 :树中节点的最大层次; 如上图:树的高度为 4
堂兄弟节点 :双亲在同一层的节点互为堂兄弟;如上图: H I 互为堂兄弟节点
节点的祖先 :从根到该节点所经分支上的所有节点;如上图: A 是所有节点的祖先
子孙 :以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是 A 的子孙
森林 :由 m m>0 )棵互不相交的树的集合称为森林;(并查集就是森林)

树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了, 既然保存值域,也要保存结点和结点之间 的关系 ,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法
typedef int DataType ;
struct Node
{
struct Node * _firstChild1 ; // 第一个孩子结点
struct Node * _pNextBrother ; // 指向其下一个兄弟结点
DataType _data ; // 结点中的数据域
};

 树在实际中的运用(表示文件系统的目录树结构)

 二叉树概念及结构

概念

一棵二叉树是结点的一个有限集合,该集合 :
1. 或者为空
2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

从上图可以看出:

1. 二叉树不存在度大于 2 的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:

 现实中的二叉树:

特殊的二叉树:

1. 满二叉树 :一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K ,且结点总数是2^K-1,则它就是满二叉树。 (每一层都是满的)
2. 完全二叉树 :完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为 K的,有n 个结点的二叉树,当且仅当其每一个结点都与深度为 K 的满二叉树中编号从 1 n 的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。 (前n-1层是满的,最后一层不一定满,但是从左到右必须连续)

 

二叉树的性质

性质练习题:

1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
A 不存在这样的二叉树
B 200
C 198
D 199
2. 下列数据结构中,不适合采用顺序存储结构的是( )
A 非完全二叉树
B
C 队列
D
3. 在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A n
B n+1
C n-1
D n/2
4. 一棵完全二叉树的节点数位为 531 个,那么这棵树的高度为( )
A 11
B 10
C 8
D 12
5. 一个具有 767 个节点的完全二叉树,其叶子节点个数为()
A 383
B 384
C 385
D 386
答案:
1.B
2.A
3.A
4.B
5.B

二叉树的存储结构 

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
1. 顺序存储
顺序结构存储就是使用 数组来存储 ,一般使用数组 只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

2. 链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面到高阶数据结构如红黑树等会用到三叉链。

typedef int BTDataType ;
// 二叉链
struct BinaryTreeNode
{
struct BinTreeNode * _pLeft ; // 指向当前节点左孩子
struct BinTreeNode * _pRight ; // 指向当前节点右孩子
BTDataType _data ; // 当前节点值域
}
// 三叉链
struct BinaryTreeNode
{
struct BinTreeNode * _pParent ; // 指向当前节点的双亲
struct BinTreeNode * _pLeft ; // 指向当前节点左孩子
struct BinTreeNode * _pRight ; // 指向当前节点右孩子
BTDataType _data ; // 当前节点值域
}

二叉树的顺序结构及实现

二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆 ( 一种二叉树 ) 使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统 虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

堆的概念及结构

 

堆的实现

堆向下调整算法
现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。
int array [] = { 27 , 15 , 19 , 18 , 28 , 34 , 65 , 49 , 25 , 37 };

堆的创建
下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。
建堆时间复杂度
向下调整建堆的时间复杂度:O(N)
因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明 ( 时间复杂度本来看的就是近似值,多几个节点不影响最终结果)

 因此:建堆的时间复杂度为O(N)故实际中我们选用向下调整建堆

向上调整建堆的时间复杂度:O(N*logN)

简单理解:

// O(N*logN)
for (int i = 0; i < n; i++)  //插入N个数据,每个数据挪动logN次(因为h=log(N+1)),合计N*logN
{AdjustUp(a, i); //logN
}

其实光看最后一层(占了一半的结点)就知道N/2个数据挪动logN次,即时间复杂度:O(N*logN)

堆的插入
先插入一个 10 到数组的尾上,再进行向上调整算法,直到满足堆。
堆的删除
删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。

堆的代码实现(小堆)

Heap.h
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>typedef int HPDataType;typedef struct Heap
{HPDataType* a;int size;int capacity;
}HP;void HeapInit(HP* php);
void HeapDestroy(HP* php);
void HeapPush(HP* php, HPDataType x);
// 规定删除堆顶(根节点)
void HeapPop(HP* php);
HPDataType HeapTop(HP* php);
int HeapSize(HP* php);
bool HeapEmpty(HP* php);void Swap(HPDataType* p1, HPDataType* p2);
void AdjustUp(HPDataType* a, int child);
void AdjustDown(HPDataType* a, int size, int parent);
Heap.c
#include"Heap.h"// 小堆
void HeapInit(HP* php)
{assert(php);php->a = NULL;php->size = 0;php->capacity = 0;
}void HeapDestroy(HP* php)
{assert(php);free(php->a);php->a = NULL;php->size = php->capacity = 0;
}void Swap(HPDataType* p1, HPDataType* p2)
{HPDataType tmp = *p1;*p1 = *p2;*p2 = tmp;
}void AdjustUp(HPDataType* a, int child)
{int parent = (child - 1) / 2;while (child > 0){if (a[child] < a[parent]){Swap(&a[child], &a[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}// O(logN)
void HeapPush(HP* php, HPDataType x)
{assert(php);if (php->size == php->capacity){int newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;HPDataType* tmp = (HPDataType*)realloc(php->a, newCapacity * sizeof(HPDataType));if (tmp == NULL){perror("realloc fail");exit(-1);}php->a = tmp;php->capacity = newCapacity;}php->a[php->size] = x;php->size++;AdjustUp(php->a, php->size - 1);
}void AdjustDown(int* a, int size, int parent)
{int child = parent * 2 + 1;while (child < size){// 假设左孩子小,如果解设错了,更新一下// child+1 < size 即没有右孩子,左孩子是最后一个if (child+1 < size && a[child + 1] < a[child]){++child;}if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}void HeapPop(HP* php)
{assert(php);assert(php->size > 0);Swap(&php->a[0], &php->a[php->size - 1]);php->size--;AdjustDown(php->a, php->size, 0);
}HPDataType HeapTop(HP* php)
{assert(php);assert(php->size > 0);return php->a[0];
}int HeapSize(HP* php)
{assert(php);return php->size;
}bool HeapEmpty(HP* php)
{assert(php);return php->size == 0;
}
Test.c
#include"Heap.h"int main()
{int a[] = { 4,6,2,1,5,8,2,9};HP hp;HeapInit(&hp);for (int i = 0; i < sizeof(a) / sizeof(int); ++i){HeapPush(&hp, a[i]);}/*int k = 3;while (k--){printf("%d\n", HeapTop(&hp));HeapPop(&hp);}*/while (!HeapEmpty(&hp)){printf("%d ", HeapTop(&hp));HeapPop(&hp);}printf("\n");return 0;
}

堆的应用

堆排序(选择排序)

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

1. 建堆
升序:建大堆
降序:建小堆
2. 利用堆删除思想来进行排序
建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。
例如:如果排升序,则建大堆,然后交换完进行向下调整
代码:

// 升序:建大堆
void HeapSort(int* a, int n)
{// 建大堆// O(N*logN)/*for (int i = 0; i < n; i++){AdjustUp(a, i);}*/// O(N)for (int i = (n-1-1)/2; i >= 0; --i){AdjustDown(a, n, i);}//O(N*logN),每次都从根节点开始向下调整高度次int end = n - 1;while (end > 0)    {Swap(&a[0], &a[end]);AdjustDown(a, end, 0); --end;}
}

TOP-K问题 

TOP-K问题:即求数据集合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大

比如:专业前 10 名、世界 500 强、富豪榜、游戏中前 100 的活跃玩家等。
对于 Top-K 问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了 ( 可能数据都不能一下子全部加载到内存中) 。最佳的方式就是用堆来解决,基本思路如下:
1. 用数据集合中前K个元素来建堆
k 个最大的元素,则建小堆
k 个最小的元素,则建大堆
2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
将剩余 N-K 个元素依次与堆顶元素比完之后,堆中剩余的 K 个元素就是所求的前 K 个最小或者最大的元素。
例如:求数据集合中前 K 个最大的元素
void CreateNDate()
{// 造数据int n = 10000000;srand(time(0));const char* file = "data.txt";FILE* fin = fopen(file, "w");if (fin == NULL){perror("fopen error");return;}for (int i = 0; i < n; ++i){int x = (rand()+i) % 10000000;fprintf(fin, "%d\n", x);}fclose(fin);
}void PrintTopK(const char* file, int k)
{FILE* fout = fopen(file, "r");if (fout == NULL){perror("fopen error");return;}// 建一个k个数小堆int* minheap = (int*)malloc(sizeof(int) * k);if (minheap == NULL){perror("malloc error");return;}// 读取前k个,建小堆for (int i = 0; i < k; i++){fscanf(fout, "%d", &minheap[i]);AdjustUp(minheap, i);}int x = 0;while (fscanf(fout, "%d", &x) != EOF){if (x > minheap[0]){minheap[0] = x;AdjustDown(minheap, k, 0);}}for (int i = 0; i < k; i++){printf("%d ", minheap[i]);}printf("\n");free(minheap);fclose(fout);
}int main()
{CreateNDate();PrintTopK("data.txt", 5);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/823403.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微前端 qiankun 框架接入问题记录

背景&#xff1a;需要搭建一个平台&#xff0c;这个平台的主要功能是集成各个子系统&#xff0c;方面对系统之间的统一管理。在搭建这样一个平台时&#xff0c;前端考虑使用微前端架构方式实现&#xff0c;使用的框架是 qiankun&#xff0c;本文主要记录在 qiankun 框架使用过程…

【Leetcode每日一题】 分治 - 颜色分类(难度⭐⭐)(57)

1. 题目解析 题目链接&#xff1a;75. 颜色分类 这个问题的理解其实相当简单&#xff0c;只需看一下示例&#xff0c;基本就能明白其含义了。 2.算法原理 算法思路解析 本算法采用三指针法&#xff0c;将数组划分为三个区域&#xff0c;分别用于存放值为0、1和2的元素。通过…

Ubuntu修改DNS

【永久修改DNS】 临时修改DNS的方法是在 /etc/resolv.conf 添加&#xff1a;nameserver 8.8.8.8 nameserver 8.8.8.8 注意到/etc/resolv.conf最上面有这么一行&#xff1a; DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTEN 说明重启之后这个文件会被自动…

CTFHUB-技能树-Web前置技能-文件上传(无验证,JS前端验证,前端验证)

CTFHUB-技能树-Web前置技能-文件上传&#xff08;无验证&#xff0c;JS前端验证&#xff0c;前端验证—.htaccess&#xff09; 文章目录 CTFHUB-技能树-Web前置技能-文件上传&#xff08;无验证&#xff0c;JS前端验证&#xff0c;前端验证—.htaccess&#xff09;文件上传无验…

【在线OJ系统】自定义注解实现自增ID的无感插入

实现思路 首先自定义参数注解&#xff0c;然后根据AOP思想&#xff0c;找到该注解作用的切点&#xff0c;也就是mapper层对于mapper层的接口在执行前都会执行该aop操作&#xff1a;获取到对于的方法对象&#xff0c;根据方法对象获取参数列表&#xff0c;根据参数列表判断某个…

电商数据采集的网页抓取数据、淘宝、天猫、京东等平台的电商数据抓取|电商数据API接口网页爬虫、采集网站数据

电商数据采集的网页抓取数据、淘宝、天猫、京东等平台的电商数据抓取&#xff0c;网页爬虫、采集网站数据、网页数据采集软件、python爬虫、HTM网页提取、APP数据抓包、APP数据采集、一站式网站采集技术、BI数据的数据分析、数据标注等成为大数据发展中的热门技术关键词。那么电…

深入理解同步与异步编程及协程管理在Python中的应用

文章目录 1. 同步与异步函数的对比1.1 同步函数1.2 异步函数1.3 对比 2. 管理多个协程与异常处理2.1 并发执行多个协程2.2 错误处理2.3 任务取消 本文将探索Python中同步与异步编程的基本概念及其区别。还会详细介绍如何使用asyncio库来有效管理协程&#xff0c;包括任务的创建…

最新的网易星球GEC挖矿系统修复版 章鱼星球挖矿系统源码 区块链虚拟币交易源码 基于ThinkPHP5开发

区块链系统介绍 2018.12.10更新增加聚合数据短信接口 2018.11.19更新增加短信宝接口 2018.08.17修复Linux系统搭建验证码不显示问题 2018.08.09修复后台某处溢出数据库账号密码BUG 2018.08.06修复票卷BUG 源码介绍&#xff1a; 区块链系统中用户共九个等级&#xff0c;依…

旧衣服回收小程序,旧衣回收行业的必然发展趋势

近年来&#xff0c;旧衣回收行业成为了一个新型的创业项目&#xff0c;因其投资成本低、回报高的优势&#xff0c;也成为了当下年轻人的创业新选择。 一、旧衣服回收市场发展趋势 当下人们对衣物淘汰的速度逐渐加快&#xff0c;每年产生的废旧衣物高达百万吨&#xff0c;加之…

.cur 鼠标光标编辑器

详解透明贴图和三元光栅操作 - CodeBus 鼠标指针文件格式解析——Windows&#xff08;二&#xff09; (qq.com) [C/C] RGBA数组生成Windows下的ico文件_c ico格式-CSDN博客 色环设计 - CodeBus 左键绘制 右键选颜色 ctrl右键设置鼠标热点 F1导出.cur文件 //代码来源&…

【考研高数】学习笔记分享

派大星说数学&#xff08;导学部分&#xff09; 关于做题 测试 答疑阶段 直播 群内 高中基础知识导学 一、数与式 述了课程学习和因式分解、分式拆解等知识点。学生应了解课程内容&#xff0c;带着疑问听课&#xff0c;不要抄笔记&#xff0c;导学课和基础课都有测验&…

Zabbix监控Windows

1.在虚拟机中安装zabbix 安装系统一直托不进虚拟机中&#xff1b;因为没安装Tools组件 点击虚拟机&#xff0c;选择安装VMware Tools 2.配置zabbix

荣誉 | 人大金仓获评轨交行业“智慧运维优秀应用案例”

4月12日至13日&#xff0c;2024&#xff08;第八届&#xff09;中国城市轨道交通智慧运维大会在成都顺利举行。会上&#xff0c;人大金仓以其在轨交行业的卓越贡献和创新实践&#xff0c;获评“智慧运维优秀应用案例”。公司副总裁梁红凤出席大会并发表了题为“打造世界一流的数…

顺序表(增删减改)+通讯录项目(数据结构)+顺序表专用题型

什么是顺序表 顺序表和数组的区别 顺序表本质就是数组 结构体初阶进阶 系统化的学习-CSDN博客 简单解释一下&#xff0c;就像大家去吃饭&#xff0c;然后左边是苍蝇馆子&#xff0c;右边是修饰过的苍蝇馆子&#xff0c;但是那个好看的苍蝇馆子一看&#xff0c;这不行啊&a…

EcoVadis评估是什么?EcoVadis评估的步骤有哪些

EcoVadis评估是一种针对供应链中各个环节的环境和社会责任进行评估的工具。其评估范围广泛&#xff0c;涵盖了环境、劳工与人权、商业道德和可持续采购等多个领域。通过收集企业的公开信息、企业提供的数据和自我评估问卷等方式&#xff0c;EcoVadis能够为企业提供一个全面的可…

【智能排班系统】Quartz结合Cron-Utils自定义时间发送上班、休息提醒

文章目录 Quartz&#xff1a;强大的Java作业调度引擎Quartz概述核心概念与架构配置文件主配置&#xff08;配置主要调度器设置、事务&#xff09;线程池配置&#xff08;调整作业执行资源&#xff09;SimpleThreadPool特定属性自定义线程池 RAMJobStore配置&#xff08;在内存中…

域名网络、

http://www.localhost:8080/hello http://127.0.0.1:8080/hello 一般在本机的C:\Windows\System32\drivers\etc的host文件里都有 在这个hosts配置文件中有一个127.0.0.1和默认的用户名locahost&#xff0c;在tomcat启动后输入的地址就是localhost端口号&#xff0c;默认的…

【文献分享】PCCP:机器学习 + 分子动力学 + 第一性原理 + 热学性质 + 微观结构

分享一篇关于机器学习 分子动力学 第一性原理 热学性质&#xff08;密度、粘度、扩散系数&#xff09; 微观结构的文章。 感谢论文的原作者&#xff01; 关键词&#xff1a; 1. Machine learning, 2. Deep potential, 3. Molecular dynamics 4. Molten salt, 5. Thermo…

【系统分析师】系统安全分析与设计

文章目录 1、安全基础技术1.1 密码相关1.1.1对称加密1.1.2非对称加密1.1.3信息摘要1.1.4数字签名1.1.5数字信封 1.2 PKI公钥体系 2、信息系统安全2.1 保障层次2.2 网络安全2.2.1WIFI2.2.2 网络威胁与攻击2.2.3 安全保护等级 2.3计算机病毒与木马2.4安全防范体系 1、安全基础技术…

游戏生成式 AI:编织梦想,避开阴影

想象一下&#xff0c;一个沉浸式的游戏世界中玩家遇到的每个 NPC 都由 AI 驱动&#xff0c;他们能与玩家进行互动&#xff0c;从改变游戏体验。据 Inword 一项研究显示&#xff0c;绝大多数游戏玩家渴望这种互动&#xff0c;愿意投入更多的时间和金钱来玩这种由 AI 驱动的游戏。…