GAN:对抗生成网络【通俗易懂】

一、概述

对抗生成网络(GAN)是一种深度学习模型,由两个神经网络组成:生成器G和判别器D。这两个网络被训练来协同工作,以生成接近真实数据的新样本。

生成器的任务是接收一个随机噪声向量,并将其转换为与真实数据相似的假样本。而判别器则尝试区分生成器生成的假样本和真实数据之间的区别。通过训练,生成器不断优化以生成更逼真的假样本,而判别器也不断优化以更好地区分真假样本。

在训练过程中,生成器和判别器之间形成了一种对抗关系:生成器努力欺骗判别器,而判别器努力识别生成器生成的假样本。这种对抗性的竞争推动了两个网络的同时学习和提升,最终使得生成器能够生成高质量的假样本。

GAN 在许多领域都有广泛的应用,包括图像生成、图像修复、图像超分辨率、语音合成等。GAN 的成功在于其能够学习数据的分布,并生成与真实数据相似的样本,而不需要显式地建模数据的概率分布。

二、基本原理

在这里插入图片描述

1.生成器:

输入n维向量,通过生成器神经网络生成所需要的结果。

2.判别器:

二分类网络,判别数据的真假,,将真实的判断为真,生成的判断为假。

3.训练:

  • 初始化判别器D的参数 θ d θ_d θd 和生成器G的参数 θ g θ_g θg
  • 从真实样本中采用m个样本 { x 1 , x 2 , … x m } \{x^1,x^2,\ldots x^m\} {x1,x2,xm},从先验分布噪声中采样m个噪声样本 { z 1 , z 2 , … z m } \{z^1,z^2,\ldots z^m\} {z1,z2,zm},并通过生成器获取m个生成样本 { t i l d e x 1 , x ~ 2 , … , x ~ m } \{tilde{x}^1,\tilde{x}^2,\ldots,\tilde{x}^m\text{ }\} {tildex1,x~2,,x~m }。固定生成器G,训练判别器D尽可能好地准确判别真实样本和生成样本。
  • 循环k次更新判别器之后,使用较小的学习率来更新一次生成器的参数,训练生成器使其尽可能能够减小生成样本与真实样本之间的差距,也相当于尽可能使判别器判别错误。
  • 多次更新迭代之后,最终理想情况是使得判别器判别不出样本是来自于生成器的输出还是真实的输出。即最终样本判别概率均为0.5。

在这里插入图片描述

  • 黑色点线为训练集数据分布曲线
  • 蓝色点线为判别器输出的分布曲线
  • 绿色实线为生成器输出的分布曲线

三、损失函数

l o s s ( o , t ) = − 1 / n ∑ ( t [ i ] ∗ l o g ( o [ i ] ) + ( 1 − t [ i ] ) ∗ l o g ( 1 − o [ i ] ) ) loss(o,t)=-1/n\sum(t[i]*log(o[i])+(1-t[i])*log(1-o[i])) loss(o,t)=1/n(t[i]log(o[i])+(1t[i])log(1o[i]))

  • t[i] :概率值
  • log(o[i]) :对数值

四、应用实例

1.数据增强:

GAN网络通过学习训练集样本的分布,然后进行采样生成新的样本。

2.风格迁移:

将一张图片的style迁移到另一张图片上。

3.图像生成和合成:

GAN 可以生成逼真的图像,这在艺术、设计和娱乐行业中具有广泛的应用。例如,可以使用 GAN 生成艺术作品、虚拟场景、虚拟人物等。

4.图像编辑和修复:

GAN 可以用于图像编辑和修复,例如图像超分辨率、去雨滴、去水印、填充缺失区域等。

5.图像风格转换:

GAN 可以将图像从一种风格转换为另一种风格,例如将素描转换为彩色图像,将照片转换为油画效果等。

6.视频生成和编辑:

GAN 可以生成逼真的视频序列,也可以用于视频编辑和合成,例如视频修复、视频插帧等。

7.语音合成和转换:

GAN 可以用于语音合成和转换,例如从文本生成语音、改变语音的说话风格等。

8.医学影像处理:

GAN 可以用于医学影像的分割、重建和增强,帮助医生进行诊断和治疗。

9.虚拟现实和增强现实:

GAN 可以用于创建逼真的虚拟场景和角色,用于虚拟现实和增强现实应用中。

10.数据增强和样本生成:

GAN 可以用于数据增强,帮助训练深度学习模型,也可以用于生成合成数据,用于模型测试和评估。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/822842.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何入行产品经理?

转产品经理第一点要先学基础理论知识,学了理论再去实践,转行,跳槽! 学理论比较好的就是去报NPDP的系统班,考后也会有面试指导课,跟职场晋升课程,对小白来说非常合适了~(可以去哔站找…

氟化氢冷凝回流反应瓶耐高温聚四氟烧瓶可灵活加工PTFE反应釜

四氟烧瓶又叫反应瓶、PTFE反应釜,常用于有HF或者冷凝回流反应等实验中,可作为接收瓶使用,可放入水浴器或油浴器里进行加热,平底稳定性好。相对于圆底烧瓶可直接放置,不需要铁架台等固定。 1.外观纯白不透明&#xff1b…

Jenkins打包app并通过openssh上传到服务器

1、下载安装openssh 网上很多教程,包括开端口的,可以搜下 2、配置openssh根目录 进入C:\ProgramData\ssh打开文件sshd_config,添加配置ChrootDirectory D:\wxs\soft,想改端口的也在这个文件 3、安装Jenkins 参考上一篇 4、新…

UE5 C++ 射线检测

一.声明四个变量 FVector StartLocation;FVector ForwardVector;FVector EndLocation;FHitResult HitResult;二.起点从摄像机,重点为摄像机前9999m。射线检测 使用LineTraceSingleByChannel 射线直线通道检测,所以 void AMyCharacter::Tick(float Delt…

18-Echarts 配置系列之:数据集 dataset

简介: 数据集(dataset)是专门用来管理数据的组件。简化在每一个系列中设置数据,这一个配置是在Echarts4 中开始支持。 通过数据集配置,避免为每一个系列创建一个数据,避免格式转化的痛苦。 简单举例&…

HarmonyOS开发实例:【分布式数据管理】

介绍 本示例展示了在eTS中分布式数据管理的使用,包括KVManager对象实例的创建和KVStore数据流转的使用。 通过设备管理接口[ohos.distributedDeviceManager],实现设备之间的kvStore对象的数据传输交互,该对象拥有以下能力 ; 1、注册和解除注…

其它IO合集

其它IO合集 1. 缓冲流1.1 概述1.2 字节缓冲流构造方法效率测试 1.3 字符缓冲流构造方法特有方法 2. 转换流2.1 字符编码和字符集字符编码字符集 2.2 编码引出的问题2.3 InputStreamReader类构造方法指定编码读取 2.4 OutputStreamWriter类构造方法指定编码写出转换流理解图解 3…

Ubuntu 22.04 安装 zabbix

Ubuntu 22.04 安装 zabbix 1,Install Zabbix repository2,安装Zabbix server,Web前端,agent3,安装mysql数据库3.1 创建初始数据库3.2 导入初始架构和数据,系统将提示您输入新创建的密码。3.3 在导入数据库架…

Learn something about front end——颜色

​ 好装的标题啊哈哈哈哈哈哈 最近get了一个学习前端的网站叫FreeCodeCamp 原色:rgb三个值的其中一个值拉满,比如说rgb(255,0,0)是红色这样,三个主色: 红色 rgb(255, 0, 0) #FF0000绿色 rgb(0, 255, 0) #00FF00蓝色 rgb(0, 0, …

1688官方API商品数据采集接口|阿里巴巴中国站获得1688商品详情 API 返回值说明

随着全球经济一体化和电子商务的快速发展,网络购物的需求日益增加。不断涌现的电商企业使得行业的竞争情况愈演愈烈。在这种情况下,企业不仅要加大经营力度,还要在自己的基础设施和技术上持续投入,才能更好的适应市场和消费习惯。…

飞桨Ai(一)基于训练后的模型进行信息提取

基准 本博客基于如下视频: 发票抬头信息抽取之环境搭建 - 基于飞浆开源项目发票抬头信息抽取之数据标准模型训练 - 基于飞浆开源项目 步骤 1、准备工作 下载python:【Python】Windows:Python 3.9.2 下载和安装(建议3.9&#…

数通HCIE考试分享:考前心态很重要,心情放松好过一次练习

誉天数通HCIE晚班火热预约中!真机实验考前辅导备考资料,名师保驾护航,助你稳定通关!识别二维码,即可获取免费试听名额! 备考阶段 我是去年10月底完成了笔试考试,在笔试之前就将PY的课程过了一遍…

力扣算法-回溯

递归 104.二叉树的最大深度 回溯 17.电话号码的字母组合 ①子集型回溯 78.子集 (1)选不选 (2)选哪个 131.分割回文串 (1593.拆分字符串使唯一子字符串的数目最大 也可以用这个思路解:从结果角度,分割字符串) ②组合型回溯…

[leetcode] 55. 跳跃游戏

文章目录 题目描述解题方法模拟java代码复杂度分析 相似题目 题目描述 给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。 判断你是否能够到达最后一个下标,如果可以,返回 tr…

杀死那个名为360安全的软件

背景 2023年底,闲来没事想起了xjun师傅2021年发的procexp驱动利用帖子时在群里讨论的,通过procexp驱动突破PPL后注入到csrss进程中,再通过csrss来结束那些个安全防护软件。于是在当时就有了如下成果: 这些弄完之后,觉…

冯诺依曼与进程【Linux】

文章目录 冯诺依曼体系结构(从硬件的角度描述)冯诺依曼体系结构(从软件的角度描述)操作系统(软件)理解管理系统调用和库函数进程查看进程的两种方式 通过系统调用获取进程的PID和PPID通过系统调用创建进程-…

C++ Primer是每位C++ coder心中的圣经吗?

首先,C Primer的作者是Stanley B. Lippman、Jos Lajoie和Barbara E. Moo。Stanley B. Lippman是C领域的知名专家,他在C标准委员会中担任过要职,对C语言的发展有深刻的理解。Jos Lajoie和Barbara E. Moo也都是C领域的资深专家,他们…

回归预测 | Matlab实现WOA-BP鲸鱼算法优化BP神经网络多变量回归预测

回归预测 | Matlab实现WOA-BP鲸鱼算法优化BP神经网络多变量回归预测 目录 回归预测 | Matlab实现WOA-BP鲸鱼算法优化BP神经网络多变量回归预测预测效果基本描述程序设计参考资料 预测效果 基本描述 1.Matlab实现WOA-BP鲸鱼算法优化BP神经网络多变量回归预测(完整源码…

各大厂都推出鸿蒙APP了,你就一定要学习一下鸿蒙APP测试了!

2023年8月,华为推出鸿蒙4.0,由于其广泛的用户基础和品牌传播力,在短短几个月的时间,使用鸿蒙4.0系统的设备就达到千万级别,并且在9月份发售Mate 6之后,还在装机量的增长更加迅猛。 基于此,11月…

AMD新一代AI PC芯片惊艳登场!颠覆商业计算领域!

AMD发布新一代AI PC芯片 前言 就在北京时间4月17日,AMD正式面向商业计算领域推出新一代AI PC创新产品!他们宣布推出锐龙Pro 8040系列和AMD锐龙Pro 8000系列,扩展其商用移动和桌面AI个人电脑(PC)产品组合。 了解PRO 804…