支持向量机模型pytorch

通过5个条件判定一件事情是否会发生,5个条件对这件事情是否发生的影响力不同,计算每个条件对这件事情发生的影响力多大,写一个支持向量机模型pytorch程序,最后打印5个条件分别的影响力。

示例一

支持向量机(SVM)是一种监督学习模型,主要用于分类和回归分析问题。在SVM中,影响力或者重要性的概念并不像决策树中的特征重要性那样直接。SVM通过找到能够将不同类别的数据点分隔开的超平面来进行分类,而数据点距离这个超平面的远近(即间隔)决定了分类的置信度。

在SVM中,特征的影响力通常是通过模型的权重来间接体现的,这些权重在训练过程中被优化以最大化间隔。然而,需要注意的是,SVM的权重并不能直接解释为每个特征对最终决策的影响力,因为它们是在高维空间中同时优化得到的。

虽然PyTorch主要用于实现和训练神经网络,但我们仍然可以使用它来构建SVM模型。不过,通常情况下,SVM更倾向于使用像scikit-learn这样的库来实现,因为这些库为SVM提供了专门的优化算法和接口。

不过,如果坚持要使用PyTorch来实现SVM,并尝试从中提取特征的影响力,下面是一个简化的线性SVM实现示例,其中包含了训练完成后打印权重(作为影响力的一种近似)的步骤:

import torch  
import torch.nn as nn  
import torch.optim as optim  
from sklearn.datasets import make_classification  
from sklearn.model_selection import train_test_split  
from sklearn.metrics import accuracy_score  # 假设我们有5个条件(特征)  
num_features = 5  
# 生成一些模拟数据  
X, y = make_classification(n_samples=100, n_features=num_features, n_informative=num_features, n_redundant=0, random_state=42)  
# 将数据转换为PyTorch张量  
X_tensor = torch.tensor(X, dtype=torch.float32)  
y_tensor = torch.tensor(y * 2 - 1, dtype=torch.float32)  # 将标签转换为+1和-1  # 划分训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X_tensor, y_tensor, test_size=0.2, random_state=42)  # 定义线性SVM模型  
class LinearSVM(nn.Module):  def __init__(self, input_dim):  super(LinearSVM, self).__init__()  self.linear = nn.Linear(input_dim, 1)  def forward(self, x):  return self.linear(x)  # 实例化模型  
model = LinearSVM(num_features)  # 定义损失函数和优化器  
criterion = nn.HingeEmbeddingLoss()  # 使用合页损失作为SVM的损失函数  
optimizer = optim.SGD(model.parameters(), lr=0.01)  # 训练模型  
num_epochs = 1000  
for epoch in range(num_epochs):  # 前向传播  outputs = model(X_train)  loss = criterion(outputs.squeeze() * y_train, torch.ones_like(y_train))  # 反向传播和优化  optimizer.zero_grad()  loss.backward()  optimizer.step()  if (epoch+1) % 100 == 0:  print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}')  # 使用训练好的模型进行预测  
with torch.no_grad():  y_pred = model(X_test).squeeze()  y_pred_class = (y_pred > 0).float()  accuracy = accuracy_score(y_test.numpy(), y_pred_class.numpy())  print(f'Test Accuracy: {accuracy * 100:.2f}%')  # 打印权重作为条件影响力的近似  
for i, weight in enumerate(model.linear.weight.data.squeeze().numpy()):  print(f"Condition {i+1} influence: {weight}")

在这个例子中,我们使用了HingeEmbeddingLoss作为损失函数,它是SVM中常用的合页损失的一种变体。模型的权重在训练过程中被调整以最小化这个损失。在训练完成后,我们打印了线性层的权重,这些权重可以被解释为每个条件对最终决策的影响力的一种近似。然而,请注意,这种解释是基于线性模型的,且实际影响力可能更加复杂。

示例二

支持向量机(SVM)是一种用于分类、回归和异常值检测的非概率二元线性分类器。在SVM中,模型尝试在高维空间中找到一个超平面,以最大化地将不同类别的样本分隔开。然而,标准的SVM模型并不直接提供特征重要性或影响力的度量。

尽管如此,我们可以通过观察训练后的SVM模型中特征的权重来大致估计每个特征对分类决策的影响力。在线性SVM中,每个特征都有一个对应的权重,这个权重可以被认为是该特征对分类决策的影响力的一种表示。对于非线性SVM(如使用核技巧的SVM),特征的影响力则不那么直接,因为输入空间被映射到了一个更高维的特征空间。

PyTorch没有内置的SVM实现,但我们可以使用其他库,如scikit-learn,来训练一个SVM模型并检查特征的权重。不过,如果坚持要使用PyTorch来构建类似SVM的模型,我们可以实现一个简单的线性SVM,并检查权重以估计特征的影响力。

下面是一个使用PyTorch构建线性SVM并打印特征影响力的示例代码:

import torch  
import torch.nn as nn  
import torch.optim as optim  
from sklearn.datasets import make_classification  
from sklearn.model_selection import train_test_split  
from sklearn.metrics import accuracy_score  # 假设我们有5个条件(特征)  
num_features = 5  # 生成一些模拟数据  
X, y = make_classification(n_samples=100, n_features=num_features, n_informative=num_features, n_redundant=0, random_state=42)  
X = torch.tensor(X.astype(float))  
y = torch.tensor(y.astype(float).reshape(-1, 1))  # Reshape to match PyTorch expectations  # 划分训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  # 定义线性SVM模型  
class LinearSVM(nn.Module):  def __init__(self, input_dim):  super(LinearSVM, self).__init__()  self.fc = nn.Linear(input_dim, 1)  def forward(self, x):  return self.fc(x)  # 实例化模型  
model = LinearSVM(num_features)  # 定义损失函数和优化器  
criterion = nn.HingeEmbeddingLoss()  # SVM通常使用合页损失  
optimizer = optim.SGD(model.parameters(), lr=0.01)  # 训练模型  
num_epochs = 1000  
for epoch in range(num_epochs):  # 前向传播  outputs = model(X_train)  loss = criterion(outputs.squeeze(), y_train.squeeze())  # 反向传播和优化  optimizer.zero_grad()  loss.backward()  optimizer.step()  if (epoch+1) % 100 == 0:  print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}')  # 评估模型  
with torch.no_grad():  predictions = (model(X_test).squeeze() > 0).float()  accuracy = accuracy_score(y_test.numpy(), predictions.numpy())  print(f'Test Accuracy: {accuracy}')  # 打印特征的影响力(权重的绝对值)  
for i, weight in enumerate(model.fc.weight.data.numpy().flatten()):  print(f"Condition {i+1} influence: {abs(weight)}")

在这个例子中,我们定义了一个简单的线性模型,它只有一个全连接层,没有激活函数。我们使用合页损失(HingeEmbeddingLoss),它是SVM中常用的损失函数。训练完成后,我们打印出全连接层的权重,作为每个条件对最终决策影响力的估计。

请注意,这个例子中的“影响力”是通过打印权重的绝对值来计算的。权重的符号表示特征对分类决策的方向(正或负),而绝对值可以大致表示特征的重要性。然而,这只是一个简单的估计,并不考虑特征之间的相互作用或模型的非线性(在这个例子中是线性的)。

对于非线性SVM或更复杂的模型,可能需要使用其他方法来估计特征的重要性,例如排列特征重要性或基于模型解释的库,如SHAP(SHapley Additive exPlanations)。


该程序在尝试使用 PyTorch 实现一个简单的线性支持向量机(SVM),并在模拟数据上训练它。PyTorch通常要求所有的计算都在同一种数据类型上执行,通常是Float类型,而这里遇到的错误提示表明是在尝试将Double类型的张量输入到期望Float类型的模型中。
要解决此问题,我们应当确保输入到模型中的所有张量都是Float类型。在代码中,可以通过调用`.float()`方法来实现。具体地,可以在创建`X`和`y`的张量时,将它们转换为Float类型。
以下是修正后的代码:

import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 假设我们有5个条件(特征)
num_features = 5# 生成一些模拟数据
X, y = make_classification(n_samples=100, n_features=num_features, n_informative=num_features, n_redundant=0, random_state=42)# 确保X和y是float类型,以兼容PyTorch
X = torch.tensor(X).float() # cast to float
y = torch.tensor(y).float().view(-1, 1) # cast to float and reshape to match PyTorch expectations# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 定义线性SVM模型
class LinearSVM(nn.Module):def __init__(self, input_dim):super(LinearSVM, self).__init__()self.fc = nn.Linear(input_dim, 1)def forward(self, x):return self.fc(x)# 实例化模型
model = LinearSVM(num_features)# 定义损失函数和优化器
criterion = nn.HingeEmbeddingLoss()  # SVM通常使用合页损失
optimizer = optim.SGD(model.parameters(), lr=0.01)# 训练模型
num_epochs = 1000
for epoch in range(num_epochs):# 前向传播outputs = model(X_train)loss = criterion(outputs, y_train)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()if (epoch+1) % 100 == 0:print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}')# 评估模型
with torch.no_grad():predictions = (model(X_test).squeeze() > 0).float()accuracy = accuracy_score(y_test.numpy(), predictions.numpy())print(f'Test Accuracy: {accuracy}')
# 打印特征的影响力(权重的绝对值)
for i, weight in enumerate(model.fc.weight.data.numpy().flatten()):print(f"Condition {i+1} influence: {abs(weight)}")

注意:在`X = torch.tensor(X).float()`和`y = torch.tensor(y).float().view(-1, 1)`中,移除了对`astype(float)`的调用,因为`.float()`已经确保了张量的类型为float,并且`view()`方法被用于将`y`的形状重新塑造为PyTorch期望的形状,即一个列向量。
这段代码应该能够在不会产生任何类型错误的情况下运行。还可以根据需要调整损失函数(例如在SVM中通常使用合页损失,但可能需要合适的输出转换)和其他超参数。

示例三

支持向量机(SVM)是一种监督学习模型,通常用于分类和回归分析。在SVM中,每个输入特征(本例中的5个条件)对分类边界的位置有影响,但这种影响不是直接通过权重来表示的,而是通过支持向量和核函数来定义的。因此,与神经网络不同,SVM没有直接的“权重”来表示特征的重要性。

然而,线性SVM有一个权重向量,它与输入特征相乘以做出决策。这些权重可以解释为特征对分类决策的影响力。对于非线性SVM,特征的影响力不那么直接,因为它们被映射到一个高维空间,其中非线性决策边界被构造。

在PyTorch中,我们可以使用TorchSVM这样的第三方库来实现SVM,或者使用标准库来实现线性SVM的简化版本。但是,请注意,PyTorch本身并没有提供官方的SVM实现。

为了简化问题,我们可以实现一个线性SVM,并解释其权重作为特征的影响力。这里是一个简单的例子,演示如何使用PyTorch构建一个线性SVM模型,并打印出5个条件的影响力(权重):

import torch  
from torch import nn  
import numpy as np  
from sklearn.model_selection import train_test_split  
from sklearn.datasets import make_classification  
from sklearn.metrics import accuracy_score  # 生成模拟数据  
np.random.seed(42)  
X, y = make_classification(n_samples=100, n_features=5, n_informative=5, n_redundant=0, random_state=42)  
X_tensor = torch.tensor(X.astype(np.float32))  
y_tensor = torch.tensor(y.astype(np.float32)).view(-1, 1)  # 划分训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X_tensor, y_tensor, test_size=0.2, random_state=42)  # 将标签转换为±1(SVM标准形式)  
y_train = y_train * 2 - 1  
y_test = y_test * 2 - 1  # 定义线性SVM模型  
class LinearSVM(nn.Module):  def __init__(self, input_dim):  super(LinearSVM, self).__init__()  self.linear = nn.Linear(input_dim, 1)  def forward(self, x):  return self.linear(x)  # 实例化模型  
model = LinearSVM(5)  # 定义损失函数和优化器  
criterion = nn.HingeEmbeddingLoss()  # SVM通常使用合页损失  
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)  # 训练模型  
num_epochs = 1000  
for epoch in range(num_epochs):  # 前向传播  outputs = model(X_train)  loss = criterion(outputs.squeeze() * y_train.squeeze(), torch.ones_like(y_train))  # 反向传播和优化  optimizer.zero_grad()  loss.backward()  optimizer.step()  if (epoch+1) % 100 == 0:  print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}')  # 测试模型  
y_pred = model(X_test).squeeze()  
y_pred_class = (y_pred > 0).float() * 2 - 1  # 将预测值转换为±1  
accuracy = accuracy_score(y_test.numpy(), y_pred_class.detach().numpy())  
print(f'Test Accuracy: {accuracy}')  # 打印特征的影响力(权重)  
for i, weight in enumerate(model.linear.weight.data.squeeze().numpy()):  print(f"Condition {i+1} influence: {weight}")

在这个例子中,我们创建了一个简单的线性SVM模型,使用了HingeEmbeddingLoss作为损失函数,它试图将正例和负例分隔开,并最大化间隔。模型训练完成后,我们打印出线性层的权重,这些权重可以被解释为每个条件对最终分类决策的影响力。

请注意,这个例子是一个简化的线性SVM实现,并不适用于所有情况,特别是当数据不是线性可分的时候。对于非线性问题,可能需要使用核方法或其他非线性SVM的实现。但是,这些实现通常不会直接提供特征的“影响力”度量,因为决策边界在高维空间中变得更加复杂。

示例四

支持向量机(SVM)是一种监督学习模型,通常用于分类和回归分析。在SVM中,每个输入特征对模型决策边界的影响是通过特征在训练过程中的权重来体现的。然而,标准的SVM模型并不直接提供每个特征对最终预测结果的直接影响力度量。尽管如此,我们可以通过查看训练后的SVM模型中特征的系数来近似估计它们的重要性。

请注意,PyTorch本身并没有提供SVM模型的直接实现,因为SVM通常不是通过梯度下降和反向传播来训练的,而是使用二次规划来解决的。不过,我们可以使用scikit-learn中的SVC(支持向量分类)来实现SVM,并分析特征的重要性。

但是,如果坚持要使用PyTorch风格的代码,我们可以使用PyTorch的自动梯度功能和优化器来近似实现一个线性SVM。以下是一个简化的线性SVM实现,用于二分类问题,并在训练后打印出每个条件(特征)的影响力:

import torch  
import torch.nn as nn  
import torch.optim as optim  
from sklearn.datasets import make_classification  
from sklearn.model_selection import train_test_split  
from sklearn.metrics import accuracy_score  # 确保结果可复现  
torch.manual_seed(42)  # 生成模拟数据  
num_conditions = 5  
X, y = make_classification(n_samples=100, n_features=num_conditions, n_informative=num_conditions, n_redundant=0, random_state=42)  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  # 转换为PyTorch张量  
X_train_tensor = torch.tensor(X_train, dtype=torch.float32)  
y_train_tensor = torch.tensor(y_train, dtype=torch.float32).view(-1, 1)  
X_test_tensor = torch.tensor(X_test, dtype=torch.float32)  
y_test_tensor = torch.tensor(y_test, dtype=torch.float32).view(-1, 1)  # 线性SVM模型(没有偏置项)  
class LinearSVM(nn.Module):  def __init__(self, input_dim):  super(LinearSVM, self).__init__()  self.linear = nn.Linear(input_dim, 1, bias=False)  # 偏置项设置为False  def forward(self, x):  return self.linear(x)  # 实例化模型  
model = LinearSVM(num_conditions)  # 定义优化器和损失函数  
optimizer = optim.SGD(model.parameters(), lr=0.01)  
criterion = nn.HingeEmbeddingLoss()  # 使用合页损失作为SVM的损失函数  # 训练模型  
num_epochs = 1000  
for epoch in range(num_epochs):  optimizer.zero_grad()  outputs = model(X_train_tensor)  loss = criterion(outputs.squeeze(), y_train_tensor.squeeze())  loss.backward()  optimizer.step()  if (epoch + 1) % 100 == 0:  print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item()}')  # 测试模型  
with torch.no_grad():  y_pred = model(X_test_tensor).squeeze()  y_pred_class = (y_pred > 0).float()  # 根据输出的正负性判断类别  accuracy = accuracy_score(y_test, y_pred_class.numpy())  print(f'Test Accuracy: {accuracy}')  # 打印每个条件的影响力(基于训练后的权重)  
for i, weight in enumerate(model.linear.weight.data.squeeze().numpy()):  print(f"Condition {i + 1} influence: {weight}")

在这个例子中,我们实现了一个简单的线性SVM模型,使用合页损失(Hinge Loss)作为损失函数,并通过随机梯度下降(SGD)进行优化。训练完成后,我们打印出线性层中的权重,这些权重可以被解释为每个条件对最终决策的影响力。请注意,这个实现是为了教学目的而简化的,并没有包括所有SVM可能的功能和优化。

此外,由于PyTorch本身不是为SVM设计的,这个实现可能不是最高效或最准确的。在实际应用中,推荐使用专门为SVM设计的库,如scikit-learn中的SVC。

示例五

在支持向量机(Support Vector Machine, SVM)模型中,特征的影响力通常不是直接通过模型的参数来衡量的,因为SVM的决策边界仅由支持向量决定,而这些支持向量是数据集中的一部分样本,不一定是每个特征都具有代表性的。然而,我们可以通过查看训练好的SVM模型中每个特征在决策函数中的权重来近似估计每个条件的影响力。

不过,值得注意的是,PyTorch本身并没有提供SVM的原生实现,因为SVM通常通过求解二次规划问题来训练,而这与神经网络的前向传播和反向传播机制不同。尽管如此,我们可以使用第三方库(如scikit-learn)来训练SVM,并获取特征权重。如果坚持要在PyTorch环境中实现,我们可以自己编写SVM的训练逻辑,但这通常比较复杂且不是PyTorch的典型用法。

由于想要用PyTorch实现SVM,我会给出一个简化的SVM实现示例,但这主要是为了教学目的,实际应用中建议使用成熟的库(如scikit-learn)。

下面是一个简化的线性SVM的PyTorch实现,它计算了每个特征对决策边界的影响力:

import torch  
import torch.nn as nn  
import torch.optim as optim  # 假设数据维度和标签  
num_samples = 100  
num_conditions = 5  # 随机生成数据  
X = torch.randn(num_samples, num_conditions)  
y = torch.randint(low=0, high=2, size=(num_samples, 1)) * 2 - 1  # 生成+1和-1的标签  # 线性SVM模型  
class LinearSVM(nn.Module):  def __init__(self, input_dim):  super(LinearSVM, self).__init__()  self.linear = nn.Linear(input_dim, 1)  def forward(self, x):  return self.linear(x)  # 初始化模型  
model = LinearSVM(num_conditions)  # 定义损失函数和优化器  
def hinge_loss(output, target):  return torch.mean(torch.max(torch.zeros_like(output), 1 - target * output))  optimizer = optim.SGD(model.parameters(), lr=0.01)  # 训练模型  
num_epochs = 1000  
for epoch in range(num_epochs):  optimizer.zero_grad()  output = model(X)  loss = hinge_loss(output, y)  loss.backward()  optimizer.step()  if (epoch + 1) % 100 == 0:  print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item()}')  # 打印权重作为影响力  
for i, weight in enumerate(model.linear.weight.data.squeeze()):  print(f"Condition {i + 1} influence: {weight.item()}")

在这个例子中,我们定义了一个简单的线性SVM模型,它只有一个线性层。我们使用随机生成的数据进行训练,并使用hinge loss作为损失函数。训练完成后,我们打印出线性层的权重,这些权重可以被解释为每个条件对决策边界的影响力。

请注意,这个例子是为了教学目的而简化的,并且可能无法在实际问题中达到最佳性能。在实际应用中,建议使用成熟的机器学习库(如scikit-learn)来训练SVM模型,并获取特征的重要性。在scikit-learn中,可以使用coef_属性来获取线性SVM的特征权重。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/822512.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【原创】springboot+mysql理发会员管理系统设计与实现

个人主页:程序猿小小杨 个人简介:从事开发多年,Java、Php、Python、前端开发均有涉猎 博客内容:Java项目实战、项目演示、技术分享 文末有作者名片,希望和大家一起共同进步,你只管努力,剩下的交…

c++中虚函数、纯虚函数以及虚函数的实现原理

c中虚函数、纯虚函数以及虚函数的实现原理 什么是虚函数和纯虚函数 虚函数(Virtual Functions)和纯虚函数(Pure Virtual Functions)是 C 中用于实现多态性的重要概念。 虚函数(Virtual Functions) 虚函…

算法课程笔记——常用库函数

memset初始化 设置成0是可以每个设置为0 而1时会特别大 -1的补码是11111111 要先排序 unique得到的是地址 地址减去得到下标 结果会放到后面 如果这样非相邻 会出错 要先用sort排序 O(n)被O(nlogn)覆盖

服务器数据恢复—xfs文件系统节点、目录项丢失的数据恢复案例

服务器数据恢复环境: EMC某型号存储,该存储内有一组由12块磁盘组建的raid5阵列,划分了两个lun。 服务器故障: 管理员为服务器重装操作系统后,发现服务器的磁盘分区发生改变,原来的sdc3分区丢失。由于该分区…

photoshop基础学习笔记

学习 Photoshop 的基础知识是掌握图像处理和设计的关键。以下是一份基础学习笔记,帮助你开始学习 Photoshop: 1. Photoshop 界面导览 工具栏(Tool Bar):包含了各种工具,如选择工具、画笔工具、橡皮擦工具…

Linux命令学习—DHCP 服务器

1.1、DHCP 服务器 ①、DHCP(dynamic host configure protocol)动态主机配置协议 最大的功能就是向客户端提供 TCP/IP 信息,使用的是 UDP:67 端口 ②、手动设定适合:适用小型网络 ③、手动输入 IP 地址和自动获取比较优缺点 ④…

攻防演练,作为红方的步骤应该是那些

在执行合法的攻防演练中,对目标服务器如 http://XXXXX/ 进行漏洞扫描和评估需要遵循严格的步骤来确保所有活动都是安全、合法且有效的。以下是一些基本步骤和技术指南,以及使用 nmap 进行初始扫描的示例。 1. 获取授权 确保你有明确的书面授权来进行漏…

问,由于java存在性能上,以及部分功能上的缺点,请问如何正确使用C,C++,Go,这三个语言,提升Java Web项目的性能?

拓展阅读:版本任你发,我用java8 我明白Java虽然在许多方面表现出色,但在某些特定场景下可能会遇到性能瓶颈或功能限制。为了提升Java Web项目的性能,可以考虑将C、C和Go这三种语言用于特定的组件或服务。以下是如何正确使用这些语…

葡萄书--深度学习基础

卷积神经网络 卷积神经网络具有的特性: 平移不变性(translation invariance):不管检测对象出现在图像中的哪个位置,神经网络的前面几层应该对相同的图像区域具有相似的反应,即为“平移不变性”。图像的平移…

设置Linux命令行tab补全不区分大小写

root权限编辑文件 sudo vim /etc/inputrc加入新配置 [按下i键开始输入] 文件末尾加入新配置 set completion-ignore-case on保存 [按下esc键,再输入:wq确定保存] 重启 reboot

web自动化系列-selenium 的鼠标操作(十)

对于鼠标操作 ,我们可以通过click()方法进行点击操作 ,但是有些特殊场景下的操作 ,click()是无法完成的 ,比如 :我想进行鼠标悬停 、想进行鼠标拖拽 ,怎么办 ? 这个时候你用click()是无法完成的…

渲染技术如何改变影视制作的面貌

随着科技的飞速发展,影视制作领域也迎来了翻天覆地的变化。其中,渲染技术的不断革新,更是对影视制作产生了深远的影响。渲染作为影视制作中的关键环节,渲染技术的提升,不仅提升了画面的质量,还为创作者提供…

计算机网络 Cisco远程Telnet访问交换机和Console终端连接交换机

一、实验要求和内容 1、配置交换机进入特权模式密文密码为“abcd两位班内学号”,远程登陆密码为“123456” 2、验证PC0通过远程登陆到交换机上,看是否可以进去特权模式 二、实验步骤 1、将一台还没配置的新交换机,利用console线连接设备的…

Github 2024-04-17 C开源项目日报Top10

根据Github Trendings的统计,今日(2024-04-17统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量C项目10C++项目2Whisper.cpp: 高性能自动语音识别模型的C/C++移植 创建周期:569 天开发语言:C, C++协议类型:MIT LicenseStar数量:30141 个…

Spark大数据常见错误及解决方案-HDFS-费元星

为什么一直鼓励大家做好错误记录,因为人脑的遗忘性是固定的,知识密集型的点,随着时间流逝,都会逐步遗忘掉。 另外鼓励大家对每个知识点都先去源码里搜一下。有几个点非常重要: 1.源码中的错误提示是非常系统的&#x…

OpenCV基本图像处理操作(六)——直方图与模版匹配

直方图 cv2.calcHist(images,channels,mask,histSize,ranges) images: 原图像图像格式为 uint8 或 float32。当传入函数时应 用中括号 [] 括来例如[img]channels: 同样用中括号括来它会告函数我们统幅图 像的直方图。如果入图像是灰度图它的值就是 [0]如果是彩色图像 的传入的…

在Visual Studio配置C++的netCDF库的方法

本文介绍在Windows电脑的Visual Studio软件中,配置C 语言最新版netCDF库的方法。 netCDF(Network Common Data Form)是一种用于存储、访问和共享科学数据的文件格式和库,其提供了一种灵活的方式来组织、描述和存储多维数据&#…

第二证券|存储芯片概念爆发,佰维存储“20cm”涨停,恒烁股份等大涨

存储芯片概念17日盘中强势拉升,截至发稿,佰维存储“20cm”涨停,商络电子、同有科技、恒烁股份、朗科科技等涨超10%,德明利、雅克科技等亦涨停。 值得注意的是,佰维存储强势涨停,公司昨日晚间披露的成绩预告…

基于java+springboot+vue实现的健身俱乐部系统(文末源码+Lw+ppt)23-49

摘 要 随着社会的发展,健身俱乐部的管理形势越来越严峻。越来越多的用户利用互联网获得信息,健身信息鱼龙混杂,信息真假难以辨别。为了方便用户更好的获得本健身俱乐部管理信息,因此,设计一种安全高效的健身俱乐部网…

Kafka 架构深入探索

目录 一、Kafka 工作流程及文件存储机制 二、数据可靠性保证 三 、数据一致性问题 3.1follower 故障 3.2leader 故障 四、ack 应答机制 五、部署FilebeatKafkaELK 5.1环境准备 5.2部署ELK 5.2.1部署 Elasticsearch 软件 5.2.1.1修改elasticsearch主配置文件 5.2…