即插即用模块详解SCConv:用于特征冗余的空间和通道重构卷积

目录

一、摘要

二、创新点说明

2.1 Methodology

 2.2SRU for Spatial Redundancy​编辑

2.3CRU for Channel Redundancy

三、实验

3.1基于CIFAR的图像分类

3.2基于ImageNet的图像分类

3.3对象检测

四、代码详解

五、总结


论文:https://openaccess.thecvf.com/content/CVPR2023/papers/Li_SCConv_Spatial_and_Channel_Reconstruction_Convolution_for_Feature_Redundancy_CVPR_2023_paper.pdf

代码:GitHub - cheng-haha/ScConv: SCConv: Spatial and Channel Reconstruction Convolution for Feature Redundancy

一、摘要

卷积神经网络(cnn)在各种计算机视觉任务中取得了显著的性能,但这是以巨大的计算资源为代价的,部分原因是卷积层提取冗余特征。最近的作品要么压缩训练有素的大型模型,要么探索设计良好的轻量级模型。在本文中,我们尝试利用特征之间的空间和通道冗余来进行CNN压缩,并提出了一种高效的卷积模块,称为SCConv (spatial and channel reconstruction convolution),以减少冗余计算并促进代表性特征的学习。提出的SCConv由空间重构单元(SRU)和信道重构单元(CRU)两个单元组成。SRU采用分离重构的方法来抑制空间冗余,CRU采用分离变换融合的策略来减少信道冗余。此外,SCConv是一种即插即用的架构单元,可直接用于替代各种卷积神经网络中的标准卷积。实验结果表明,SCConv嵌入模型能够通过减少冗余特征来获得更好的性能,并且显著降低了复杂度和计算成本。

论文贡献总结:

       1. 提出了一种空间重构单元SRU,该单元根据权重分离冗余特征并进行重构,以抑制空间维度上的冗余,增强特征的表征能力。
       2. 我们提出了一种信道重构单元,称为CRU,它利用分裂变换和融合策略来减少信道维度的冗余以及计算成本和存储。
        3.我们设计了一种名为SCConv的即插即用操作,将SRU和CRU以顺序的方式组合在一起,以取代标准卷积,用于在各种骨干cnn上操作。结果表明,SCConv可以大大节省计算负荷,同时提高模型在挑战性任务上的性能。

二、创新点说明

2.1 Methodology

SCConv,它由两个单元组成,空间重建单元(SRU)和通道重建单元(CRU),以顺序的方式放置。具体而言,对于瓶颈残差块中的中间输入特征X,我们首先通过SRU运算获得空间细化特征Xw,然后利用CRU运算获得信道细化特征Y。我们在SCConv模块中利用了特征之间的空间冗余和通道冗余,可以无缝集成到任何CNN架构中,以减少中间特征映射之间的冗余并增强CNN的特征表示。

 2.2SRU for Spatial Redundancy

为了利用特征的空间冗余,我们引入了空间重构单元(SRU),如图2所示,它利用了分离和重构操作。分离操作的目的是将信息丰富的特征图与空间内容对应的信息较少的特征图分离开来。

2.3CRU for Channel Redundancy

为了利用特征的信道冗余,我们引入了信道重构单元(CRU),如图3所示,它利用了分裂-转换-融合策略。

三、实验

3.1基于CIFAR的图像分类

3.2基于ImageNet的图像分类

3.3对象检测

四、代码详解

import torch  # 导入 PyTorch 库
import torch.nn.functional as F  # 导入 PyTorch 的函数库
import torch.nn as nn  # 导入 PyTorch 的神经网络模块# 自定义 GroupBatchnorm2d 类,实现分组批量归一化
class GroupBatchnorm2d(nn.Module):def __init__(self, c_num:int, group_num:int = 16, eps:float = 1e-10):super(GroupBatchnorm2d,self).__init__()  # 调用父类构造函数assert c_num >= group_num  # 断言 c_num 大于等于 group_numself.group_num  = group_num  # 设置分组数量self.gamma      = nn.Parameter(torch.randn(c_num, 1, 1))  # 创建可训练参数 gammaself.beta       = nn.Parameter(torch.zeros(c_num, 1, 1))  # 创建可训练参数 betaself.eps        = eps  # 设置小的常数 eps 用于稳定计算def forward(self, x):N, C, H, W  = x.size()  # 获取输入张量的尺寸x           = x.view(N, self.group_num, -1)  # 将输入张量重新排列为指定的形状mean        = x.mean(dim=2, keepdim=True)  # 计算每个组的均值std         = x.std(dim=2, keepdim=True)  # 计算每个组的标准差x           = (x - mean) / (std + self.eps)  # 应用批量归一化x           = x.view(N, C, H, W)  # 恢复原始形状return x * self.gamma + self.beta  # 返回归一化后的张量# 自定义 SRU(Spatial and Reconstruct Unit)类
class SRU(nn.Module):def __init__(self,oup_channels:int,  # 输出通道数group_num:int = 16,  # 分组数,默认为16gate_treshold:float = 0.5,  # 门控阈值,默认为0.5torch_gn:bool = False  # 是否使用PyTorch内置的GroupNorm,默认为False):super().__init__()  # 调用父类构造函数# 初始化 GroupNorm 层或自定义 GroupBatchnorm2d 层self.gn = nn.GroupNorm(num_channels=oup_channels, num_groups=group_num) if torch_gn else GroupBatchnorm2d(c_num=oup_channels, group_num=group_num)self.gate_treshold  = gate_treshold  # 设置门控阈值self.sigomid        = nn.Sigmoid()  # 创建 sigmoid 激活函数def forward(self, x):gn_x        = self.gn(x)  # 应用分组批量归一化w_gamma     = self.gn.gamma / sum(self.gn.gamma)  # 计算 gamma 权重reweights   = self.sigomid(gn_x * w_gamma)  # 计算重要性权重# 门控机制info_mask    = reweights >= self.gate_treshold  # 计算信息门控掩码noninfo_mask = reweights < self.gate_treshold  # 计算非信息门控掩码x_1          = info_mask * x  # 使用信息门控掩码x_2          = noninfo_mask * x  # 使用非信息门控掩码x            = self.reconstruct(x_1, x_2)  # 重构特征return xdef reconstruct(self, x_1, x_2):x_11, x_12 = torch.split(x_1, x_1.size(1) // 2, dim=1)  # 拆分特征为两部分x_21, x_22 = torch.split(x_2, x_2.size(1) // 2, dim=1)  # 拆分特征为两部分return torch.cat([x_11 + x_22, x_12 + x_21], dim=1)  # 重构特征并连接# 自定义 CRU(Channel Reduction Unit)类
class CRU(nn.Module):def __init__(self, op_channel:int, alpha:float = 1/2, squeeze_radio:int = 2, group_size:int = 2, group_kernel_size:int = 3):super().__init__()  # 调用父类构造函数self.up_channel     = up_channel = int(alpha * op_channel)  # 计算上层通道数self.low_channel    = low_channel = op_channel - up_channel  # 计算下层通道数self.squeeze1       = nn.Conv2d(up_channel, up_channel // squeeze_radio, kernel_size=1, bias=False)  # 创建卷积层self.squeeze2       = nn.Conv2d(low_channel, low_channel // squeeze_radio, kernel_size=1, bias=False)  # 创建卷积层# 上层特征转换self.GWC            = nn.Conv2d(up_channel // squeeze_radio, op_channel, kernel_size=group_kernel_size, stride=1, padding=group_kernel_size // 2, groups=group_size)  # 创建卷积层self.PWC1           = nn.Conv2d(up_channel // squeeze_radio, op_channel, kernel_size=1, bias=False)  # 创建卷积层# 下层特征转换self.PWC2           = nn.Conv2d(low_channel // squeeze_radio, op_channel - low_channel // squeeze_radio, kernel_size=1, bias=False)  # 创建卷积层self.advavg         = nn.AdaptiveAvgPool2d(1)  # 创建自适应平均池化层def forward(self, x):# 分割输入特征up, low = torch.split(x, [self.up_channel, self.low_channel], dim=1)up, low = self.squeeze1(up), self.squeeze2(low)# 上层特征转换Y1 = self.GWC(up) + self.PWC1(up)# 下层特征转换Y2 = torch.cat([self.PWC2(low), low], dim=1)# 特征融合out = torch.cat([Y1, Y2], dim=1)out = F.softmax(self.advavg(out), dim=1) * outout1, out2 = torch.split(out, out.size(1) // 2, dim=1)return out1 + out2# 自定义 ScConv(Squeeze and Channel Reduction Convolution)模型
class ScConv(nn.Module):def __init__(self, op_channel:int, group_num:int = 16, gate_treshold:float = 0.5, alpha:float = 1/2, squeeze_radio:int = 2, group_size:int = 2, group_kernel_size:int = 3):super().__init__()  # 调用父类构造函数self.SRU = SRU(op_channel, group_num=group_num, gate_treshold=gate_treshold)  # 创建 SRU 层self.CRU = CRU(op_channel, alpha=alpha, squeeze_radio=squeeze_radio, group_size=group_size, group_kernel_size=group_kernel_size)  # 创建 CRU 层def forward(self, x):x = self.SRU(x)  # 应用 SRU 层x = self.CRU(x)  # 应用 CRU 层return xif __name__ == '__main__':x       = torch.randn(1, 32, 16, 16)  # 创建随机输入张量model   = ScConv(32)  # 创建 ScConv 模型print(model(x).shape)  # 打印模型输出的形状

五、总结

在本文中,我们提出了一种新的空间和信道重构模块(SCConv),这是一种有效的架构单元,可以降低计算成本和模型存储,同时通过减少标准卷积中广泛存在的空间和信道冗余来提高CNN模型的性能。我们使用两个不同的模块SRU和CRU来减少特征映射中的冗余,在减少大量计算负载的同时实现了相当大的性能改进。此外,SCConv是一个即插即用的模块,可以替代标准的卷积,不需要任何模型架构的调整。此外,各种SOTA方法在图像分类和目标检测方面的大量实验表明,scconvn嵌入模型在性能和模型效率之间取得了更好的平衡。最后,我们希望所提出的方法可以启发研究更有效的建筑设计。

参考:大佬

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/821892.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在Qt中如何简单设计一个文件和图像浏览器

文本浏览器 设计一个文本浏览器程序&#xff0c;可以打开、显示 txt、html等文件。 1.在Qt Designer中设计一个菜单其中包含打开和退出选项&#xff1a; 2. 在 QMainWindow 构造函数中把 textBrower 设为主窗口的中心部件&#xff0c;这样整个窗口就成了包含 textBrower 的单文…

你的RPCvs佬的RPC

一、课程目标 了解常见系统库的hook了解frida_rpc 二、工具 教程Demo(更新)jadx-guiVS CodejebIDLE 三、课程内容 1.Hook_Libart libart.so: 在 Android 5.0&#xff08;Lollipop&#xff09;及更高版本中&#xff0c;libart.so 是 Android 运行时&#xff08;ART&#x…

细说postgresql之pg_rman备份恢复 —— 筑梦之路

pg_rman是一款开源的备份恢复软件&#xff0c;支持在线和基于PITR的备份恢复方式。 pg_rman类似于oracle的rman&#xff0c;可以进行全量、增量、归档日志的备份。 运行模式&#xff1a; 安装部署 Releases ossc-db/pg_rman GitHub 1、需要根据PG Server的版本&#xff0c;下…

ThreadLocal和ThreadLocalHashMap

请直接百度详细介绍 -------------------------------------------------------------------------------------------------------------------------------- 1.ThreadLocalMap是Thread类里的一个局部变量 2.ThreadLocalMap是ThreadLocal类里的一个静态内部类, 3.ThreadL…

10. Spring MVC 程序开发

本文源码位置: Spring-MVC 1. Spring MVC 概要 摘自Spring官方&#xff1a; Spring Web MVC is the original web framework built on the Servlet API and has been included in the Spring Framework from the very beginning. The formal name, “Spring Web MVC,” comes …

Adobe AE(After Effects)2015下载地址及安装教程

Adobe After Effects是一款专业级别的视觉效果和动态图形处理软件&#xff0c;由Adobe Systems开发。它被广泛用于电影、电视节目、广告和其他多媒体项目的制作。 After Effects提供了强大的合成和特效功能&#xff0c;可以让用户创建出令人惊艳的动态图形和视觉效果。用户可以…

大创项目推荐 深度学习YOLOv5车辆颜色识别检测 - python opencv

文章目录 1 前言2 实现效果3 CNN卷积神经网络4 Yolov56 数据集处理及模型训练5 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **基于深度学习YOLOv5车辆颜色识别检测 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0…

嵌入式学习55-ARM4(ADC和I²C)

1、什么是ADC,模拟量和数字量有什么特点&#xff1f; ADC&#xff1a; …

Ubuntu Vs code配置ROS开发环境

文章目录 1.开发环境2.集成开发环境搭建2.1 安装Ros2.2 安装 Vs code2.3 安装vs code 插件 3.Vs code 配置ROS3.1 创建ROS工作空间3.2 从文件夹启动Vs code3.3 使用Vscode 编译ROS 空间3.4 使用Vs code 创建功能包 4.编写简单Demo实例4.1编写代码4.2编译与执行 1.开发环境 系统…

【行为型模式】观察者模式

一、观察者模式概述​ 软件系统其实有点类似观察者模式&#xff0c;目的&#xff1a;一个对象的状态或行为的变化将导致其他对象的状态或行为也发生改变&#xff0c;他们之间将产生联动。 观察者模式属于对象行为型&#xff1a; 1.定义了对象之间一种一对多的依赖关系&#xff…

MyBatisPlus自定义SQL

✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人😉😉🍎个人主页:Leo的博客💞当前专栏: 循序渐进学SpringBoot ✨特色专栏: MySQL学习 🥭本文内容:MyBatisPlus自定义SQL 📚个人知识库: Leo知识库,欢迎大家访问 目录 1.前言☕…

Kafka、RabbitMQ、Pulsar、RocketMQ基本原理和选型

Kafka、RabbitMQ、Pulsar、RocketMQ基本原理和选型 1. 消息队列1.1 消息队列使用场景1.2. 消息队列模式1.2.1 点对点模式&#xff0c;不可重复消费1.2.2 发布/订阅模式 2. 选型参考2.1. Kafka2.1.1 基本术语2.1.2. 系统框架2.1.3. Consumer Group2.1.4. 存储结构2.1.5. Rebalan…

Langchain入门到实战-第三弹

Langchain入门到实战 Langchain中RAG入门官网地址Langchain概述代码演示调用RAG功能更新计划 Langchain中RAG入门 Retrieval Augmented Generation 翻译成中文是“检索增强生成” 官网地址 声明: 由于操作系统, 版本更新等原因, 文章所列内容不一定100%复现, 还要以官方信息…

AB5 点击消除

原题链接&#xff1a;点击消除_牛客题霸_牛客网 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 栈。 遍历字符串。如果栈为空或者当前字符与栈顶元素不等&#xff0c;就压栈。否则如果当前字符与堆顶元素相同&#xff0c;就出栈。 遍历完字符串…

SiLM5350系列带米勒钳位的单通道隔离驱动器 助力汽车与工业应用实现稳定与高效的解决方案

带米勒钳位的隔离驱动SiLM5350系列 单通道 30V&#xff0c;10A 带米勒钳位的隔离驱动 具有驱动电流更大、传输延时更低、抗干扰能力更强、封装体积更小等优势, 为提高电源转换效率、安全性和可靠性提供理想之选。 SiLM5350系列产品描述&#xff1a; SiLM5350系列是单通道隔离驱…

大数据平台搭建2024(三)

三&#xff1a;HBase安装 提前上传hbase安装包至虚拟机 1 上传、解压 tar -zxvf hbase-2.0.0-alpha2-bin.tar.gz -C /hadoop2 修改配置文件 在/hadoop/hbase-2.0.0-alpha2-bin/conf文件夹里 vi /hadoop/hbase-2.0.0-alpha2/conf/hbase-env.sh修改hbase-env.sh文件 export…

如何用JAVA如何实现Word、Excel、PPT在线前端预览编辑的功能?

背景 随着信息化的发展&#xff0c;在线办公也日益成为了企业办公和个人学习不可或缺的一部分&#xff0c;作为微软Office的三大组成部分&#xff1a;Word、Excel和PPT也广泛应用于各种在线办公场景&#xff0c;但是由于浏览器限制及微软Office的不开源等特性&#xff0c;导致…

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之十二 简单人脸识别

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之十二 简单人脸识别 目录 Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之十二 简单人脸识别 一、简单介绍 二、简单人脸识别实现原理 三、简单人脸识别案例实现简…

数据密集型应用系统设计 PDF 电子书(Martin Kleppmann 著)

简介 《数据密集型应用系统设计》全书分为三大部分&#xff1a; 第一部分&#xff0c;主要讨论有关增强数据密集型应用系统所需的若干基本原则。首先开篇第 1 章即瞄准目标&#xff1a;可靠性、可扩展性与可维护性&#xff0c;如何认识这些问题以及如何达成目标。第 2 章我们比…

MongoDB的安装配置及使用

文章目录 前言一、MongoDB的下载、安装、配置二、检验MongoDB是否安装成功三、Navicat 操作MongoDB四、创建一个集合&#xff0c;存放三个文档总结 前言 本文内容&#xff1a; &#x1f4ab; MongoDB的下载、安装、配置 &#x1f4ab; 检验MongoDB是否安装成功 ❤️ Navicat 操…