深度学习——线性神经网络一

深度学习——线性神经网络一

文章目录

  • 前言
  • 一、线性回归
    • 1.1. 线性回归的基本元素
      • 1.1.1. 线性模型
      • 1.1.2. 损失函数
      • 1.1.3. 解析解
      • 1.1.4. 随机梯度下降
      • 1.1.5. 用模型进行预测
    • 1.2. 向量化加速
    • 1.3. 正态分布与平方损失
    • 1.4. 从线性回归到深度网络
  • 二、线性回归的从零开始实现
    • 2.1. 生成数据集
    • 2.2. 读取数据集
    • 2.3. 初始化模型参数
    • 2.4. 定义模型
    • 2.5. 定义损失函数
    • 2.6. 定义优化算法
    • 2.7. 训练
  • 三、线性回归的简洁实现
    • 3.1. 生成数据集
    • 3.2. 读取数据集
    • 3.3. 定义模型
    • 3.4. 初始化模型参数
    • 3.5. 定义损失函数
    • 3.6. 定义优化算法
    • 3.7. 训练
  • 总结


前言

书接上章,当预备知识有一定了解后,接下来将进入神经网络的学习,而本章主要介绍一下最简单的人工神经网络——线性神经网络。
参考书:
《动手学深度学习》


一、线性回归

回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。在机器学习领域中的大多数任务通常都与预测有关。 当我们想预测一个数值时,就会涉及到回归问题。

我们把试图预测的目标称为标签(label)或目标(target)。 预测所依据的自变量称为特征(feature)或协变量。

1.1. 线性回归的基本元素

1.1.1. 线性模型

在机器学习领域,我们通常使用的是高维数据集,建模时采用线性代数表示法会比较方便。 当我们的输入包含d个特征时,我们将预测结果 y ^ \hat{y} y^(通常使用“尖角”符号表示y的估计值)表示为:

y ^ = w 1 x 1 + . . . + w d x d + b . \hat{y} = w_1 x_1 + ... + w_d x_d + b. y^=w1x1+...+wdxd+b.

将所有特征放到向量 x \mathbf{x} x中,并将所有权重放到向量 w \mathbf{w} w中,我们可以用点积形式来简洁地表达模型:

y ^ = w ⊤ x + b . \hat{y} = \mathbf{w}^\top \mathbf{x} + b. y^=wx+b.

上式向量 x \mathbf{x} x对应于单个数据样本的特征。
用符号表示的矩阵 X \mathbf{X} X ,可以很方便地引用我们整个数据集的 n n n个样本。其中, X \mathbf{X} X的每一行是一个样本,每一列是一种特征。

对于特征集合 X \mathbf{X} X,预测值 y ^ \hat{\mathbf{y}} y^,可以通过矩阵-向量乘法表示为:

y ^ = X w + b {\hat{\mathbf{y}}} = \mathbf{X} \mathbf{w} + b y^=Xw+b

线性回归的目标是找到一组权重向量 w \mathbf{w} w和偏置 b b b
这组权重向量和偏置能够使得新样本预测标签的误差尽可能小。

1.1.2. 损失函数

损失函数(loss function)能够量化目标的实际值与预测值之间的差距。 通常我们会选择非负数作为损失,且数值越小表示损失越小,完美预测时的损失为0。

回归问题中最常用的损失函数是平方误差函数。当样本 i i i的预测值为 y ^ ( i ) \hat{y}^{(i)} y^(i),其相应的真实标签为 y ( i ) y^{(i)} y(i)时,
平方误差可以定义为以下公式:

l ( i ) ( w , b ) = 1 2 ( y ^ ( i ) − y ( i ) ) 2 . l^{(i)}(\mathbf{w}, b) = \frac{1}{2} \left(\hat{y}^{(i)} - y^{(i)}\right)^2. l(i)(w,b)=21(y^(i)y(i))2.

为了度量模型在整个数据集上的质量,我们需计算在训练集 n n n个样本上的损失均值(也等价于求和)。

L ( w , b ) = 1 n ∑ i = 1 n l ( i ) ( w , b ) = 1 n ∑ i = 1 n 1 2 ( w ⊤ x ( i ) + b − y ( i ) ) 2 . L(\mathbf{w}, b) =\frac{1}{n}\sum_{i=1}^n l^{(i)}(\mathbf{w}, b) =\frac{1}{n} \sum_{i=1}^n \frac{1}{2}\left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right)^2. L(w,b)=n1i=1nl(i)(w,b)=n1i=1n21(wx(i)+by(i))2.

在训练模型时,我们希望寻找一组参数( w ∗ , b ∗ \mathbf{w}^*, b^* w,b),
这组参数能最小化在所有训练样本上的总损失。如下式:

w ∗ , b ∗ = argmin ⁡ w , b L ( w , b ) . \mathbf{w}^*, b^* = \operatorname*{argmin}_{\mathbf{w}, b}\ L(\mathbf{w}, b). w,b=w,bargmin L(w,b).

1.1.3. 解析解

线性回归的解可以用一个公式简单地表达出来, 这类解叫作解析解(analytical solution)。但并不是所有的问题都存在解析解。

首先,我们将偏置 b b b合并到参数 w \mathbf{w} w中,合并方法是在包含所有参数的矩阵中附加一列。
我们的预测问题是最小化 ∥ y − X w ∥ 2 \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2 yXw2
这在损失平面上只有一个临界点,这个临界点对应于整个区域的损失极小值点。
将损失关于 w \mathbf{w} w的导数设为0,得到解析解:

w ∗ = ( X ⊤ X ) − 1 X ⊤ y . \mathbf{w}^* = (\mathbf X^\top \mathbf X)^{-1}\mathbf X^\top \mathbf{y}. w=(XX)1Xy.

1.1.4. 随机梯度下降

即使在我们无法得到解析解的情况下,我们仍然可以有效地训练模型。
在许多任务上,那些难以优化的模型效果要更好。
因此,弄清楚如何训练这些难以优化的模型是非常重要的。

梯度下降(gradient descent)的方法,几乎可以优化所有深度学习模型。(它通过不断地在损失函数递减的方向上更新参数来降低误差)

因为梯度下降在每次更新参数之前,我们必须遍历整个数据集。执行极慢。所以通常采用小批量随机梯度下降

  1. 在每次迭代中,我们首先随机抽样一个固定数量样本的小批量 B \mathcal{B} B

  2. 然后,我们计算小批量的平均损失关于模型参数的导数(也可以称为梯度)。

  3. 最后,我们将梯度乘以一个预先确定的正数 η \eta η,并从当前参数的值中减掉。

我们用下面的数学公式来表示这一更新过程( ∂ \partial 表示偏导数):

( w , b ) ← ( w , b ) − η ∣ B ∣ ∑ i ∈ B ∂ ( w , b ) l ( i ) ( w , b ) . (\mathbf{w},b) \leftarrow (\mathbf{w},b) - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_{(\mathbf{w},b)} l^{(i)}(\mathbf{w},b). (w,b)(w,b)BηiB(w,b)l(i)(w,b).

对于平方损失和仿射变换,我们可以明确地写成如下形式:

w ← w − η ∣ B ∣ ∑ i ∈ B ∂ w l ( i ) ( w , b ) = w − η ∣ B ∣ ∑ i ∈ B x ( i ) ( w ⊤ x ( i ) + b − y ( i ) ) , b ← b − η ∣ B ∣ ∑ i ∈ B ∂ b l ( i ) ( w , b ) = b − η ∣ B ∣ ∑ i ∈ B ( w ⊤ x ( i ) + b − y ( i ) ) . \begin{aligned} \mathbf{w} &\leftarrow \mathbf{w} - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_{\mathbf{w}} l^{(i)}(\mathbf{w}, b) = \mathbf{w} - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \mathbf{x}^{(i)} \left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right),\\ b &\leftarrow b - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_b l^{(i)}(\mathbf{w}, b) = b - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right). \end{aligned} wbwBηiBwl(i)(w,b)=wBηiBx(i)(wx(i)+by(i)),bBηiBbl(i)(w,b)=bBηiB(wx(i)+by(i)).

∣ B ∣ |\mathcal{B}| B表示每个小批量中的样本数, η \eta η表示学习率
批量大小和学习率的值通常是手动预先指定,而不是通过模型训练得到的。
这些可以调整但不在训练过程中更新的参数称为超参数调参是选择超参数的过程

1.1.5. 用模型进行预测

给定“已学习”的线性回归模型 w ^ ⊤ x + b ^ \hat{\mathbf{w}}^\top \mathbf{x} + \hat{b} w^x+b^,现在我们可以通过给定特征来估计目标(这个过程通常称为预测)

1.2. 向量化加速

在训练我们的模型时,我们经常希望能够同时处理整个小批量的样本。
为了实现这一点,需要我们对计算进行向量化,从而利用线性代数库,而不是在Python中编写开销高昂的for循环。

import time
import numpy as np
import torch
from d2l import torch as d2l
n = 10000
a = torch.ones([n])
b = torch.ones([n])
# print(a.numel())#我们定义一个计时器
class Timer:  #@save"""记录多次运行时间"""def __init__(self):self.times = []self.start()def start(self):"""启动计时器"""self.tik = time.time()def stop(self):"""停止计时器并将时间记录在列表中"""self.times.append(time.time() - self.tik)return self.times[-1]def avg(self):"""返回平均时间"""return sum(self.times) / len(self.times)def sum(self):"""返回时间总和"""return sum(self.times)def cumsum(self):"""返回累计时间"""return np.array(self.times).cumsum().tolist()c = torch.zeros(n)
timer = Timer()
#我们使用for循环,每次执行一位的加法
for i in range(n):c[i] = a[i] + b[i]
print(f'{timer.stop():.5f} sec')#使用重载的+运算符来计算按元素的和
timer.start()
d = a + b
print(f"{timer.stop():.5f} sec")#结果:
0.10190 sec
0.00000 sec

结果很明显,第二种方法比第一种方法快得多。向量化代码通常会带来数量级的加速。

1.3. 正态分布与平方损失

接下来,我们通过对噪声分布的假设来解读平方损失目标函数。正态分布和线性回归之间的关系很密切。

简单的说,若随机变量 x x x具有均值 μ \mu μ和方差 σ 2 \sigma^2 σ2(标准差 σ \sigma σ),其正态分布概率密度函数如下:

p ( x ) = 1 2 π σ 2 exp ⁡ ( − 1 2 σ 2 ( x − μ ) 2 ) . p(x) = \frac{1}{\sqrt{2 \pi \sigma^2}} \exp\left(-\frac{1}{2 \sigma^2} (x - \mu)^2\right). p(x)=2πσ2 1exp(2σ21(xμ)2).

#正态分布与平方损失
def normal(x,mu,sigma):p = 1/np.sqrt(2*math.pi*sigma**2)return p * np.exp(-0.5 /sigma**2 * (x-mu)**2)
# 再次使用numpy进行可视化
x = np.arange(-7, 7, 0.01)# 均值和标准差对
params = [(0, 1), (0, 2), (3, 1)]
d2l.plot(x, [normal(x, mu, sigma) for mu, sigma in params], xlabel='x',ylabel='p(x)', figsize=(6.5, 4.5),legend=[f'mean {mu}, std {sigma}' for mu, sigma in params])
d2l.plt.show()

如图,改变均值会产生沿 x x x轴的偏移,增加方差将会分散分布、降低其峰值。

在这里插入图片描述

均方误差损失函数(简称均方损失)可以用于线性回归的一个原因是:
我们假设了观测中包含噪声,其中噪声服从正态分布。
噪声正态分布如下式:

y = w ⊤ x + b + ϵ , y = \mathbf{w}^\top \mathbf{x} + b + \epsilon, y=wx+b+ϵ,

其中, ϵ ∼ N ( 0 , σ 2 ) \epsilon \sim \mathcal{N}(0, \sigma^2) ϵN(0,σ2)

因此,我们现在可以写出通过给定的 x \mathbf{x} x观测到特定 y y y似然

P ( y ∣ x ) = 1 2 π σ 2 exp ⁡ ( − 1 2 σ 2 ( y − w ⊤ x − b ) 2 ) . P(y \mid \mathbf{x}) = \frac{1}{\sqrt{2 \pi \sigma^2}} \exp\left(-\frac{1}{2 \sigma^2} (y - \mathbf{w}^\top \mathbf{x} - b)^2\right). P(yx)=2πσ2 1exp(2σ21(ywxb)2).

现在,根据极大似然估计法,参数 w \mathbf{w} w b b b的最优值是使整个数据集的似然最大的值:

P ( y ∣ X ) = ∏ i = 1 n p ( y ( i ) ∣ x ( i ) ) . P(\mathbf y \mid \mathbf X) = \prod_{i=1}^{n} p(y^{(i)}|\mathbf{x}^{(i)}). P(yX)=i=1np(y(i)x(i)).

根据极大似然估计法选择的估计量称为极大似然估计量

由于历史原因,优化通常是说最小化而不是最大化。我们可以改为最小化负对数似然 − log ⁡ P ( y ∣ X ) -\log P(\mathbf y \mid \mathbf X) logP(yX)

− log ⁡ P ( y ∣ X ) = ∑ i = 1 n 1 2 log ⁡ ( 2 π σ 2 ) + 1 2 σ 2 ( y ( i ) − w ⊤ x ( i ) − b ) 2 . -\log P(\mathbf y \mid \mathbf X) = \sum_{i=1}^n \frac{1}{2} \log(2 \pi \sigma^2) + \frac{1}{2 \sigma^2} \left(y^{(i)} - \mathbf{w}^\top \mathbf{x}^{(i)} - b\right)^2. logP(yX)=i=1n21log(2πσ2)+2σ21(y(i)wx(i)b)2.

现在我们只需要假设 σ \sigma σ是某个固定常数就可以忽略第一项,
因为第一项不依赖于 w \mathbf{w} w b b b
现在第二项除了常数 1 σ 2 \frac{1}{\sigma^2} σ21外,其余部分和前面介绍的均方误差是一样的。
幸运的是,上面式子的解并不依赖于 σ \sigma σ
因此,在高斯噪声的假设下,最小化均方误差等价于对线性模型的极大似然估计。

1.4. 从线性回归到深度网络

尽管神经网络涵盖了更多更为丰富的模型,我们依然可以用描述神经网络的方式来描述线性模型,从而把线性模型看作一个神经网络。

二、线性回归的从零开始实现

2.1. 生成数据集

我们使用线性模型参数w=[2,−3.4]⊤、b=4.2 和噪声项ϵ生成数据集及其标签: y=Xw+b+ϵ.

ϵ可以视为模型预测和标签时的潜在观测误差。 在这里我们认为标准假设成立,即ϵ服从均值为0的正态分布。 为了简化问题,我们将标准差设为0.01。 下面的代码生成合成数据集:

import random
import torch
from d2l import torch as d2l#生成数据集:
def synthetic_data(w, b, num_examples):  #@save"""生成y=Xw+b+噪声"""X = torch.normal(0, 1, (num_examples, len(w)))y = torch.matmul(X, w) + by += torch.normal(0, 0.01, y.shape)return X, y.reshape((-1, 1))true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
#features中的每一行都包含一个二维数据样本, labels中的每一行都包含一维标签值(一个标量)
print('features:', features[0],'\nlabel:', labels[0])
#可视化线性关系(第二个特征和标签值的散点图)
# d2l.set_figsize()
d2l.plt.scatter(features[:, 1].detach().numpy(), labels.detach().numpy(), 1)
d2l.plt.show()#结果:
features: tensor([-0.5307,  1.2137]) 
label: tensor([-0.9951])

在这里插入图片描述

2.2. 读取数据集

定义一个data_iter函数, 该函数随机接收批量大小、特征矩阵和标签向量作为输入,生成大小为batch_size的小批量。 每个小批量包含一组特征和标签

#读取数据集:
def data_iter(bath_size,features,labels):num_examples = len(features) #获取数据集的总样本数量indices = list(range(num_examples))random.shuffle(indices) #将样本索引列表打乱#这些样本是随机读取的,没有特定的顺序for i in range(0,num_examples,bath_size):bath_indices = torch.tensor(indices[i:min(i+bath_size,num_examples)])yield features[bath_indices],labels[bath_indices]#查看
bath_size = 10
for X ,y in data_iter(bath_size,features,labels):print(X,"\n",y)break

2.3. 初始化模型参数

在我们开始用小批量随机梯度下降优化我们的模型参数之前,我们需要先有一些参数

#初始化参数
w = torch.normal(0,0.01,size=(2,1),requires_grad= True)
b  =torch.zeros(1,requires_grad=True)

2.4. 定义模型

#定义模型
def linreg(X,w,b):#线性回归模型return torch.matmul(X,w) +b  #或用torch.mv()

2.5. 定义损失函数

#定义损失函数
def squared_loss(y_hat,y):#均方损失return (y_hat - y.reshape(y_hat.shape))**2 / 2

2.6. 定义优化算法

#定义优化算法:
def sgd(params,lr,bath_size):#小批量随机梯度下降with torch.no_grad():for param in params:param -= lr *param.grad /bath_size #梯度反方向传播param.grad.zero_()

2.7. 训练

#训练
"""
执行以下循环:
初始化参数
重复以下训练,直到完成
计算梯度
更新参数
"""lr = 0.03 #学习率
num_epochs = 3 #迭代轮数
net = linreg #线性模型
loss = squared_loss  #损失函数for epoch in range(num_epochs):for X,y in data_iter(bath_size,features,labels):l = loss(net(X, w, b), y) # X和y的小批量损失# 因为l形状是(batch_size,1),而不是一个标量,l中的所有元素被加到一起,# 并以此计算关于[w,b]的梯度l.sum().backward()sgd([w,b],lr,bath_size) # 使用参数的梯度更新参数with torch.no_grad():train_l = loss(net(features,w,b),labels)print(f"epoch{epoch+ 1},loss {float(train_l.mean()):f}")#比较真实参数和通过训练学到的参数来评估训练的成功程度
print(f'w的估计误差: {true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差: {true_b - b}')#结果:
epoch1,loss 0.033319
epoch2,loss 0.000119
epoch3,loss 0.000048
w的估计误差: tensor([ 0.0004, -0.0006], grad_fn=<SubBackward0>)
b的估计误差: tensor([0.0005], grad_fn=<RsubBackward1>)

三、线性回归的简洁实现

3.1. 生成数据集

与前面类似

import torch
from torch.utils import data
from d2l import torch as d2l#生成数据集
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

3.2. 读取数据集

features和labels作为API的参数传递,并通过数据迭代器指定batch_size。 此外,布尔值is_train表示是否希望数据迭代器对象在每个迭代周期内打乱数据。

取数据集
def load_array(data_arrays,batch_size,is_train = True): #@save#构造一个pytorch数据迭代器dataset = data.TensorDataset(*data_arrays)return data.DataLoader(dataset,batch_size,shuffle=is_train)batch_size = 10
data_iter = load_array((features, labels), batch_size)#print(next(iter(data_iter)))  #从迭代器中获取第一项。

3.3. 定义模型

定义一个模型变量net,它是一个Sequential类的实例。
Sequential类将多个层串联在一起。
当给定输入数据时,Sequential实例将数据传入到第一层,
然后将第一层的输出作为第二层的输入,以此类推。
在下面的例子中,我们的模型只包含一个层,因此实际上不需要Sequential

# nn是神经网络的缩写
from torch import nn
net = nn.Sequential(nn.Linear(2, 1))  #2表示输入特征的维度,1表示输出特征的维度

3.4. 初始化模型参数

我们通过net[0]选择网络中的第一个图层,
然后使用weight.databias.data方法访问参数。
我们还可以使用替换方法normal_fill_来重写参数值。

print(net[0].weight.data.normal_(0,0.01))
print(net[0].bias.data.fill_(0))
print(net[0])
print(net)#结果:
tensor([[-8.8769e-03, -2.7674e-05]])
tensor([0.])
Linear(in_features=2, out_features=1, bias=True)
Sequential((0): Linear(in_features=2, out_features=1, bias=True)
)

3.5. 定义损失函数

计算均方误差使用的是MSELoss类,也称为平方L2范数。 默认情况下,它返回所有样本损失的平均值。

loss = nn.MSELoss()

3.6. 定义优化算法

小批量随机梯度下降算法是一种优化神经网络的标准工具,
PyTorch在optim模块中实现了该算法的许多变种。
当我们(实例化一个SGD实例)时,我们要指定优化的参数
(可通过net.parameters()从我们的模型中获得)以及优化算法所需的超参数字典。

#定义优化算法:
trainer = torch.optim.SGD(net.parameters(),lr= 0.03)

3.7. 训练

在每个迭代周期里,我们将完整遍历一次数据集(train_data),
不停地从中获取一个小批量的输入和相应的标签。
对于每一个小批量,我们会进行以下步骤:

  • 通过调用net(X)生成预测并计算损失l(前向传播)。
  • 通过进行反向传播来计算梯度。
  • 通过调用优化器来更新模型参数。
#训练:
num_epochs = 3
for epoch in range(num_epochs):for X, y in data_iter:l = loss(net(X) ,y)trainer.zero_grad()  #将模型参数的梯度清零,以便进行反向传播。l.backward()  #根据损失值进行反向传播,计算模型参数的梯度。trainer.step()  #根据梯度更新模型参数l = loss(net(features), labels) #计算整个训练集的损失值print(f'epoch {epoch + 1}, loss {l:f}')w = net[0].weight.data
print('w的估计误差:', true_w - w.reshape(true_w.shape))
b = net[0].bias.data
print('b的估计误差:', true_b - b)#结果:
epoch 1, loss 0.000213
epoch 2, loss 0.000100
epoch 3, loss 0.000099
w的估计误差: tensor([3.5274e-04, 3.2663e-05])
b的估计误差: tensor([9.5367e-07])

总结

本章根据书本知识,详细介绍了线性神经网络中的线性回归原理,并从零开始展示了线性回归的代码实现,以及在pytorch深度学习框架下更简洁的线性回归代码实现。接下来将进入softmax回归的讲解。

靖康耻,犹未雪;臣子恨,何时灭?驾长车,踏破贺兰山缺…

–2023-9-18 进阶篇

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/82183.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java面试题整理(带答案)

目录 TCP和UDP的区别 get和post的区别 Cookie和session的区别 Java的基本类型有哪些&#xff1f; 抽象类和接口区别&#xff1f; 对于堆栈的理解 和equals区别 如何理解Java多态&#xff1f; 创建线程都有哪些方式 脏读、不可重复度、幻读都是什么&#xff1f; Jav…

多线程详解(上)

文章目录 一、线程的概念1&#xff09;线程是什么2&#xff09;为甚要有线程&#xff08;1&#xff09;“并发编程”成为“刚需”&#xff08;2&#xff09;在并发编程中, 线程比进程更轻量. 3&#xff09;线程和进程的区别 二、Thread的使用1&#xff09;线程的创建继承Thread…

算法通关村-----链表中环的问题

环形链表 问题描述 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统内部使用整数 pos 来表示链表尾连接到链表中…

使用Scrapy构建高效的网络爬虫

&#x1f482; 个人网站:【工具大全】【游戏大全】【神级源码资源网】&#x1f91f; 前端学习课程&#xff1a;&#x1f449;【28个案例趣学前端】【400个JS面试题】&#x1f485; 寻找学习交流、摸鱼划水的小伙伴&#xff0c;请点击【摸鱼学习交流群】 Scrapy是一个强大的Pyth…

python虚拟环境(venv)

一、什么是python环境 首先要知道什么是python环境&#xff1f; Python环境主要包括以下内容&#xff1a; 解释器 python.exe (python interpreter&#xff0c;使用的哪个解释看环境配置) Lib目录 标准库 第三方库&#xff1a;site-pakages目录&#xff0c;默认安装第三方…

基于DSPACE功率平衡理论的并联有源电力滤波器模型(Simulink)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

webpack配置alias后eslint和ts无法识别

背景 我们在 webpack 配置 alias 后&#xff0c;发现项目中引入的时候&#xff0c;还是会报错&#xff0c;如下&#xff1a; 可以看到&#xff0c;有一个是 ts报错&#xff0c;还有一个是 eslint 报错。 解决 ts 报错 tsconfig.json {"compilerOptions": {...&q…

【力扣每日一题】2023.9.18 打家劫舍Ⅲ

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 今天是打家劫舍3&#xff0c;明天估计就是打家劫舍4了。 今天的打家劫舍不太一样&#xff0c;改成二叉树了&#xff0c;不过规则没有变&…

狗dog 数据集VOC-5912张

狗&#xff0c;是食肉目犬科犬属 哺乳动物 &#xff0c;别称犬&#xff0c;与马、牛、羊、猪、鸡并称“六畜” 。狗的体型大小、毛色因品种不同而不同&#xff0c;体格匀称&#xff1b;鼻吻部较长&#xff1b;眼呈卵圆形&#xff1b;两耳或竖或垂&#xff1b;四肢矫健&#xff…

网站降权的康复办法(详解百度SEO数据分析)

随着搜索引擎算法的不断升级&#xff0c;很多网站在SEO优化过程中遭遇到降权的情况。如果您的网站也遭遇到了类似的问题&#xff0c;不必惊慌失措。本文将为您详细介绍网站降权恢复的方法&#xff0c;包括百度SEO数据分析、网站收录少的5个原因、网站被降权的6个因素以及百度SE…

IP风险查询:抵御DDoS攻击和CC攻击的关键一步

随着互联网的普及&#xff0c;网络攻击变得越来越普遍和复杂&#xff0c;对企业和个人的网络安全构成了重大威胁。其中&#xff0c;DDoS&#xff08;分布式拒绝服务&#xff09;攻击和CC&#xff08;网络连接&#xff09;攻击是两种常见且具有破坏性的攻击类型&#xff0c;它们…

js写一个判断字符串是否能够转为JSON 的函数

其实非常简单 这里我们需要涉及到 捕获异常 因为如果你直接在if里面转 我已经试过了 直接就报错了 一点面子不给 我们写一个这样的函数 function isJsonString(str) {try {JSON.parse(str);return true;} catch (e) {return false;} }编写如下代码 console.log(isJsonString(…

企业架构LNMP学习笔记58

开始学习Tomcat&#xff1a; 学习目标和内容&#xff1a; 1&#xff09;能够描述Tomcat的使用场景&#xff1b; 2&#xff09;能够简单描述Tomcat的工作原理&#xff1b; 3&#xff09;能够实现部署安装Tomcat&#xff1b; 4&#xff09;能够实现和配置Tomcat的Server服务…

VMware虚拟机如何设置网络

一直没弄明白怎么能让虚拟机正常上网和访问&#xff0c;最近总结一个小经验 要在宿主机访问虚拟机电脑服务器&#xff0c;要设置成nat格式&#xff0c;虚拟机可以上网&#xff0c;宿主机访问虚拟机上的ip即可访问虚拟机里的服务器&#xff0c;也就是这样设置就行。 这时候ip不…

blender怎么设置中文界面

你们知道Blender软件是什么吗&#xff1f;你知道blender怎么设置中文界面吗&#xff1f;Blender是个GNU的3D绘图软件&#xff0c;建模、算图、动画等功能都相当的完整&#xff0c;可以说已经具有了一般商业软件的规模。Blender大部分的功能都有热键&#xff0c;操作起来相当地轻…

实现安全的服务通信:探索如何使用服务网格来确保服务间的安全通信

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

22.2 JavaScript 常用操作

1. BOM操作 浏览器对象模型(BOM): 是JavaScript与浏览器交互的接口集合. 它提供了一组对象, 用于操作浏览器窗口, 历史记录, 文档等. BOM可以通过Javascript代码来访问和控制浏览器的功能和行为.BOM的核心对象是window对象, 它表示浏览器的窗口或框架. 通过window对象, 可以访…

Matlab图像处理-强度分层法

强度分层法 强度分层技术是最简单的伪彩色图像处理方法之一。 如果将一幅图像被描述为空间坐标(x,y) 的强度函数f(x,y) &#xff0c;则分层的方法可以看作是将一些平面平行于图像坐标平面(x,y) &#xff0c;然后将每个平面在相交区域切割图像函数。下图展示了使用平面将图像函…

【基础篇】六、基于SpringBoot来整合SSM的案例(下)

文章目录 1、前后端调用&#xff1a;axios发送异步请求2、添加功能3、删除功能4、修改功能5、异常消息处理6、分页功能7、分页Bug处理8、条件查询 接下来加入前端页面&#xff0c;使用axios发送异步请求调用上篇的接口。调前端代码时&#xff0c;发现还挺有趣&#xff0c;刷新、…

基于SSM的电动车租赁网站设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…