算法学习——LeetCode力扣补充篇8(146. LRU 缓存、 215. 数组中的第K个最大元素、25. K 个一组翻转链表)

算法学习——LeetCode力扣补充篇8

在这里插入图片描述

146. LRU 缓存

146. LRU 缓存 - 力扣(LeetCode)

描述

请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache 类:
LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。
函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。

示例

示例:

输入
[“LRUCache”, “put”, “put”, “get”, “put”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]

解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4

提示

1 <= capacity <= 3000
0 <= key <= 10000
0 <= value <= 105
最多调用 2 * 105 次 get 和 put

代码解析

链表法(超时)
class LRUCache {
public:list<pair<int,int>> my_list;int max_size = 0;LRUCache(int capacity) {max_size = capacity;}int get(int key) {auto it = my_list.begin();for(int i=0 ; i<my_list.size() ;i++,it++){if(it->first == key) {pair<int,int> tmp = *it;my_list.erase(it);my_list.push_front(tmp);return tmp.second;}}return -1;}void put(int key, int value) {auto it = my_list.begin();for(int i=0 ; i<my_list.size() ;i++,it++){if(it->first == key){my_list.erase(it);break;}}my_list.push_front({key,value});if(my_list.size() > max_size) my_list.pop_back();return ;}
};/*** Your LRUCache object will be instantiated and called as such:* LRUCache* obj = new LRUCache(capacity);* int param_1 = obj->get(key);* obj->put(key,value);*/
自制双向链表
class LRUCache {
public:struct  Node{int key;int value;Node* pre;Node* next;Node():key(0),value(0),pre(nullptr),next(nullptr) {}Node(int x,int y):key(x),value(y),pre(nullptr),next(nullptr) {}};LRUCache(int capacity) {_capacity = capacity;head = new Node();tail = new Node();head->next = tail;tail->pre  = head;}int get(int key) {if(my_map.find(key) == my_map.end() ) return -1;Node* tmp = my_map[key];remove_node(tmp);add_head(tmp);return tmp->value;}void put(int key, int value) {if(my_map.find(key) == my_map.end() ) //不存在{Node* new_node = new Node(key,value);my_map[key] = new_node;add_head(new_node);size++;if(size > _capacity){my_map.erase(tail->pre->key);remove_node(tail->pre);}}else{Node* tmp = my_map[key];tmp->value = value;remove_node(tmp);add_head(tmp);}}void add_head(Node* new_node){new_node->pre = head;new_node->next = head->next;head->next->pre = new_node;head->next = new_node;}void remove_node(Node* node){node->pre->next = node->next;node->next->pre = node->pre;}
private:int _capacity;Node* head;Node* tail;int size=0;unordered_map<int,Node*> my_map;};/*** Your LRUCache object will be instantiated and called as such:* LRUCache* obj = new LRUCache(capacity);* int param_1 = obj->get(key);* obj->put(key,value);*/

215. 数组中的第K个最大元素

215. 数组中的第K个最大元素 - 力扣(LeetCode)

描述

给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。

请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

你必须设计并实现时间复杂度为 O(n) 的算法解决此问题。

示例

示例 1:

输入: [3,2,1,5,6,4], k = 2
输出: 5

示例 2:

输入: [3,2,3,1,2,4,5,5,6], k = 4
输出: 4

提示

1 <= k <= nums.length <= 105
-104 <= nums[i] <= 104

代码解析

库函数
class Solution {
public:int findKthLargest(vector<int>& nums, int k) {sort(nums.begin(),nums.end());return nums[nums.size()-k];}
};
快速排序
class Solution {
public:void swap(int &a , int &b){int tmp = b;b = a;a = tmp;}int part(vector<int>& nums , int left , int right){int key = nums[left];while(left<right){while(left < right && nums[right] <= key) right--;swap(nums[left] , nums[right]);while(left < right && nums[left] >= key) left++;swap(nums[left] , nums[right]);}return left;}void quick_sort(vector<int>& nums , int left , int right){if(left > right) return;int mid = part(nums,left,right);quick_sort(nums,left,mid-1);quick_sort(nums,mid+1,right);}int findKthLargest(vector<int>& nums, int k) {quick_sort(nums,0,nums.size()-1);return nums[k-1];}
};
快速排序
class Solution {
public:void quickSort(vector<int>& arr, int left, int right) {// 定义枢轴int pivot = arr[(left + right) / 2];//int pivot = arr[left]; 也可以// 定义两个指针int i = left;int j = right;// 当左指针比右指针小时继续循环while (i <= j){// 左指针从左往右扫描,直到找到一个元素比枢轴大while (arr[i] > pivot) i++;// 右指针从右往左扫描,直到找到一个元素比枢轴小while (arr[j] < pivot) j--;// 如果两个指针没有相遇,交换它们所指向的元素if (i <= j){int temp = arr[i];arr[i] = arr[j];arr[j] = temp;i++;j--;}}// 如果左边还有元素,递归左边的排序if (left < j) quickSort(arr, left, j);// 如果右边还有元素,递归右边的排序if (i < right) quickSort(arr, i, right);}int findKthLargest(vector<int>& nums, int k) {quickSort(nums,0,nums.size()-1);return nums[k-1];}
};

25. K 个一组翻转链表

25. K 个一组翻转链表 - 力扣(LeetCode)

描述

给你链表的头节点 head ,每 k 个节点一组进行翻转,请你返回修改后的链表。

k 是一个正整数,它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保持原有顺序。

你不能只是单纯的改变节点内部的值,而是需要实际进行节点交换。

示例

示例 1:
在这里插入图片描述

输入:head = [1,2,3,4,5], k = 2
输出:[2,1,4,3,5]

示例 2:

在这里插入图片描述

输入:head = [1,2,3,4,5], k = 3
输出:[3,2,1,4,5]

提示

链表中的节点数目为 n
1 <= k <= n <= 5000
0 <= Node.val <= 1000

进阶:你可以设计一个只用 O(1) 额外内存空间的算法解决此问题吗?

代码解析

/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution {
public:ListNode* reverseKGroup(ListNode* head, int k) {stack<int> my_stack;vector<int> v_nums;ListNode* tmp = head;int num = 0;while(tmp != nullptr && num < k){num++;v_nums.push_back(tmp->val);my_stack.push(tmp->val);if(num == k){while(num--) v_nums.pop_back();num = k;while(num--){v_nums.push_back(my_stack.top());my_stack.pop();}cout<<num<<' ';num = 0;}tmp = tmp->next;}tmp = head;int i=0;while(tmp != nullptr){tmp->val = v_nums[i];tmp = tmp->next;i++;}return head;}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/821752.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

weblogic JSP action的配置

action(如xxx.do&#xff09;可以在Java文件中通过注解的方式配置&#xff0c;也可以在web.xml中进行配置 在java文件中配置的场合 WebServlet(xxxx.do) 并实现支持的方法&#xff1a;doGet或doPost等 或者 WebServlet(xxxx.do) 并实现service方法 所有method的处理方法都会…

华为 2024 届实习招聘——硬件-电源机试题(四套)

华为 2024 届实习招聘——硬件-电源机试题&#xff08;四套&#xff09; 部分题目分享&#xff0c;完整版带答案(有答案&#xff0c;答案非官方&#xff0c;未仔细校正&#xff0c;仅供参考&#xff09;&#xff08;共四套&#xff09; 获取&#xff08;WX:didadidadidida313&…

【保姆级讲解docker 的常用命令】

&#x1f308;个人主页: 程序员不想敲代码啊 &#x1f3c6;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f44d;点赞⭐评论⭐收藏 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共…

设计模式-命令模式(Command)

1. 概念 命令模式&#xff08;Command Pattern&#xff09;是一种行为型设计模式&#xff0c;也被称为动作模式或事务模式。它的核心思想是将一个请求封装成一个对象&#xff0c;从而使你可以用不同的请求对客户进行参数化。对请求排队或记录&#xff0c;以及支持可撤销的操作…

Excel高效办公:人力资源管理(AI版)

AI人力资源管理一本通&#xff1a;147个“温馨提示”53个“教您一招”&#xff0c;掌握使用Excel高效完成人力资源管理工作的“心法”&#xff0c;助你早做完、不加班。 一本书掌握人力资源高效管理的“心法”&#xff01; 案例丰富&#xff0c;参考性强&#xff1a;本书不是…

Web3与社会契约:去中心化治理的新模式

在数字化时代&#xff0c;技术不断为我们提供新的可能性&#xff0c;而Web3技术作为一种基于区块链的创新&#xff0c;正在引领着互联网的下一波变革。它不仅改变了我们的经济模式和商业逻辑&#xff0c;还对社会契约和权力结构提出了全新的挑战和思考。本文将深入探讨Web3的基…

excel 无法正确处理 1900-03-01 前的日期

问题由来&#xff1a;excel 用公式 TEXT(A1,"yyyy-mm-dd") 转日期时&#xff0c;当A1 的值等于59 的时候&#xff0c;返回值是1900-02-28&#xff1b;当A1 的值等于61 的时候&#xff0c;返回值是1900-03-01&#xff1b;那么当 A1的值为 60 的时候&#xff0c;返回值…

【iOS】——SDWebImage源码学习

文章目录 一、SDWebIamge简介二、SDWebImage的调用流程SDWebImage源码分析1.UIImageViewWebCache层2.UIViewWebCache层3.SDWebManager层4.SDWebCache层5.SDWebImageDownloader层 一、SDWebIamge简介 SDWebImage是iOS中提供图片加载的第三方库&#xff0c;可以给UIKit框架中的控…

C语言【数组】

一、数组基本语法 1. 什么是数组 数组是c语言的一种数据结构&#xff0c;用于存储一组具有相同数据类型的数据&#xff1b; 数组中每个元素可以通过下标进行访问&#xff0c;索引从0开始&#xff0c;最大值为数组长度-1。 2. 数组的使用 类型 数组名[元素个数]; int arr[5]…

ICV:《中美量子产业融资比较分析》

近日&#xff0c;全球前沿科技咨询公司ICV发布了A Comparative Analysis of Quantum Industry Financing in the U.S and China&#xff08;美国和中国量子产业融资比较分析&#xff09;报告。该报告旨在对中美两国在量子技术领域的投融资情况进行比较分析&#xff0c;探讨其差…

基于STC12C5A60S2系列1T 8051单片机的带字库液晶显示器LCD12864数据传输并行模式显示16行点x64列点字模串的应用

基于STC12C5A60S2系列1T 8051单片机的带字库液晶显示器LCD12864数据传输并行模式显示16行点x64列点字模串的应用 STC12C5A60S2系列1T 8051单片机管脚图STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式及配置STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式介绍液晶显…

MySQL 试图

视图功能在 5.0 以后的版本启用 视图是一张虚表。数据表确实包含了具体数据并且保存到硬盘中的实表。视图使用数据检索语句动态生 成的一张虚表。每一次数据服务重启或者系统重启之后&#xff0c;在数据库服务启动期间&#xff0c;会使用创建视图的语 句重新生成视图中的数据&…

详解UART通信协议以及FPGA实现

文章目录 一、UART概述二、UART协议帧格式2.1 波特率2.2 奇校验ODD2.3 偶校验EVEN 三、UART接收器设计3.1 接收时序图3.2 Verilog代码3.3 仿真文件测试3.4 仿真结果3.5 上版测试 四、UART发送器设计4.1 发送时序图4.2 Verilog代码4.3 仿真文件测试4.4 仿真结果4.5 上板测试 五、…

用html画一个睡觉的熊动画

<!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><title>睡觉的熊动画</title><link rel"stylesheet" href"./style.css"> </head><body><div id"contain…

免费的 ChatGPT、GPTs、AI绘画(国内版)

&#x1f525;博客主页&#xff1a;白云如幻❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ ChatGPT3.5、GPT4.0、GPTs、AI绘画相信对大家应该不感到陌生吧&#xff1f;简单来说&#xff0c;GPT-4技术比之前的GPT-3.5相对来说更加智能&#xff0c;会根据用户的要求生成多种内容甚…

袁庭新ES系列14节 | 搭建Elasticsearch集群

前言 单节点的Elasticsearch需要在处理大量数据的时候需要消耗大量内存和CPU资源&#xff0c;数据量大到一定程度就会产生处理瓶颈&#xff0c;甚至会出现宕机。 为了解决单节点ES的处理能力的瓶颈及单节点故障问题&#xff0c;我们考虑使用Elasticsearch集群。接下来袁老师带…

【前后端的那些事】SpringBoot 基于内存的ip访问频率限制切面(RateLimiter)

文章目录 1. 什么是限流2. 常见的限流策略2.1 漏斗算法2.2 令牌桶算法2.3 次数统计 3. 令牌桶代码编写4. 接口测试5. 测试结果 1. 什么是限流 限流就是在用户访问次数庞大时&#xff0c;对系统资源的一种保护手段。高峰期&#xff0c;用户可能对某个接口的访问频率急剧升高&am…

记录一下易语言post get使用WinHttp的操作

最近在学易语言&#xff0c;在进行通讯的时候&#xff0c;出现一些问题&#xff0c;现在记录下来&#xff0c;避免以后继续忘记&#xff0c; 先声明文本型变量jsonPostData jsonPostData &#xff1d; “{hostname:” &#xff0b; hostnameTxt &#xff0b; “,hardcode:” &…

【ARM 裸机】I.MX 启动方式之启动头文件 2

接上一节&#xff1a;【ARM 裸机】I.MX 启动方式之启动头文件 1&#xff1b; 2.3、DCD DCD&#xff0c;Device Configuration Data &#xff0c;就是配置 6ULL 寄存器的&#xff0c;DCD 数据最大限制 1768 字节&#xff1b; CCGR0 是不是很熟悉&#xff1f;对&#xff0c;在…

【静态分析】软件分析课程实验-前置准备

课程&#xff1a;南京大学的《软件分析》课程 平台&#xff1a;Tai-e&#xff08;太阿&#xff09;实验作业平台 1. 实验概述 Tai-e 是一个分析 Java 程序的静态程序分析框架&#xff0c;相比于已有的知名静态程序分析框架&#xff08;如 Soot、Wala 等&#xff09;&#xf…