【多模态检索】Coarse-to-Fine Visual Representation

快手文本视频多模态检索论文

论文:Towards Efficient and Effective Text-to-Video Retrieval with Coarse-to-Fine Visual Representation Learning
链接:https://arxiv.org/abs/2401.00701

摘要

近些年,基于CLIP的text-to-video检索方法广为流行,但大多从视觉文本对齐方法上演进。按照原文:design a heavy fusion block for sentence (words)-video (frames) interaction,而忽视了复杂度和检索效率。

  • 升级点
  • 本文采用多粒度视觉特征学习,捕获从抽象到具体的视觉内容。Multi-granularity visual feature learning, ensuring the model’s comprehensiveness in capturing visual content features spanning from abstract to detailed levels during the training phase.
  • 设计两阶段检索框架,优点在于 balances the coarse and fine granularity of retrieval content.
    • 在训练阶段,设计一个parameter-free text-gated interaction block (TIB) 模块用于细粒度视觉表征学习并嵌入一个额外的 Pearson Constraint来优化跨模态表示学习。
    • 在检索阶段,使用粗粒度视觉表征快速检索topk结果,然后使用细粒度视觉表示rerank(recall-then-rerank pipeline)。
  • 效果:nearly 50 times faster
  • 难点:对比原始图像文本匹配任务(包含较少的视觉信息),聚合整个视频表示易导致过度抽象以及误导。在视觉文本检索任务中,一个句子通常只描述一个感兴趣的视频子区域。现有工作很多不够合理与成熟,衍生出很多CLIP的变体,大体分为两个方向。例如CLIP4Clip,仅仅是将预训练的CLIP简单进行MeanPooling就从image-text迁移到video-text领域。
    • 设计a heavy fusion block来加强视觉和文本的交互以达到模态间更好地对齐的目的;
    • 优化text-driven video representations,keep multi-grained features including video-level and frame-level for brute-force search。
  • 近些年方法虽然有效果提升,但却需要巨大的计算成本(text-video similarity calculation)。
    在这里插入图片描述
    过于细粒度的计算可能会放大视频局部噪声,降低检索效率。需要在有效性和效率上做trade-off。

方法

  • 整体架构
    在这里插入图片描述

  • 特征输入:a video v consists ofT sequential frames {f1, f2, …, fT |fi ∈ RH ×W ×C};each frame is divided into N patches {f 1i , f 2i , …, f N i |f n i ∈RP×P×C} with P × P size;text t。

  • 模型结构

    • 视觉端

      • a spatial encoder (SE) with 12 transformer layers initialized by the public CLIP checkpoints
      • a temporal encoder (TE) with 4 transformer layers to model temporal relationship among sequential frames, [CLS] enocde patch to frame(0th patch feature represent frame)
      • a MeanPooling layer (MP) to aggregate all frame-level features into a text-agnostic feature vector
        注:patch 和 frame都包含位置编码在这里插入图片描述
    • 视觉文本交互 – Text-Gated Interaction Block

      • 简单的attention机制,π is the temperature,决定多少视觉信息被保留(A small value of π only emphasizes those most relevant visual cues, while a large value pays attention to much more visual cues.)
      • 未引入任何参数
        在这里插入图片描述
  • 损失函数(Inter- and Intra-Feature Supervision Loss)

    • 数据形式:Each batch of B video-text pairs,in each pair, the text tb is a corresponding description of the video vb
    • Contrastive Loss for Inter-Feature Supervision - infoNCE loss,batch内其他为负样本
      在这里插入图片描述
    • Pearson Constraint for Intra-Feature Supervision
      在这里插入图片描述
      在这里插入图片描述
    • Total Loss
      在这里插入图片描述
  • 检索中的两阶段策略 - To balance the efficiency and effectiveness

    • 使用VL1作为tok召回阶段特征
    • rerank这些召回结果用VL2和VL3
    • 两阶段的优点:效率提升 & 过于细粒度的特征可能会导致对局部噪声的过度关注。

实验

主实验:
在这里插入图片描述

其他数据集:
在这里插入图片描述
消融实验:
可以看到去掉帧粒度的文本交互特征指标下降明显。当去掉所有文本交互特征时,只使用视觉特征会引入很多噪声(引入喝多与文本无关的特征),mislead the matching process。
在这里插入图片描述
top100的下降可能是由于重新排序阶段过度关注视觉局部细节,增加 top-k 引入的噪声会对重新排序阶段造成更多的干扰
在这里插入图片描述
Re-ranking 消融
在这里插入图片描述
Intra-Feature Pearson Constraint消融
在这里插入图片描述
Visualization of Coarse-to-Fine Retrieval
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/821428.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

openstack修改实例名称但是gnocchi监控数据中实例名称没有变更的问题处理

文章目录 一、问题描述二、调研过程1、变更实例名称2、查看grafana中的监控数据3、libvirt服务中的xml文件4、现有的监控数据流转架构 总结 一、问题描述 openstack修改实例名称但是gnocchi监控数据中实例名称没有变更的问题处理。 通过修改实例名称的功能修改了实例名称&…

自动化测试常见的三大问题及解决方案

🔥 交流讨论:欢迎加入我们一起学习! 🔥 资源分享:耗时200小时精选的「软件测试」资料包 🔥 教程推荐:火遍全网的《软件测试》教程 📢欢迎点赞 👍 收藏 ⭐留言 &#x1…

【Entity Framework】你必须要了解EF中数据查询之数据加载

【Entity Framework】你必须要了解EF中数据查询之数据加载 文章目录 【Entity Framework】你必须要了解EF中数据查询之数据加载一、概述二、预先加载2.1 包含多个层级2.2 经过筛选的包含 三、显示加载3.1查询关联实体 四、延时加载4.1 不使用代理进行延迟加载 一、概述 Entity…

平板拖把头建模

没找到合适的配件,只能自己做了。 difference(){union(){cylinder(11.5,10,10,$fn365);translate([-10,0,0])cube([20,16,11.5]);rotate([0,90,0])translate([-11.5/2,16-3-2,-18])cylinder(2088,3,3,$fn365);}translate([0,0,-1])cylinder(13,2.5,2.5,$fn365); }

飞腾UEFI电源控制选择代码解析

飞腾UEFI电源控制选择代码解析 CPLD 处理方式EC 处理方式注:本文以飞腾UEFI edk-code-4.2.0版本进行说明,如果有朋友需要借鉴,请使用该版本代码。 以D2000打工工具为例,下图打包工具中有选择主板电源管理方式,这里可以选择CPLD、EC、和SE,其中SE代表为X100控制上下电时序…

arm中模/数转换器工作原理以及I2C工作原理

ADC介绍 什么是ADC ADC就是模拟到数字转换器(Analog-to-Digital Converter)的缩写。 它是一种电子设备或模块,S3C2440内部拥有一个ADC外设。用于将连续变化的模拟信号转换为离散的数字信号,以便数字系统(如微处理器、微控制器等)能够对其进行处理和分析。 模拟信号:一…

用Gold-yolo模块改进yolov8模型

gold-yolo论文: https://arxiv.org/pdf/2309.11331.pdf gold-yolo代码: https://github.com/huawei-noah/Efficient-Computing/tree/master/Detection/Gold-YOLO 一 gold模块简介 Gold-Yolo是华为诺亚方舟实验室2023年发布的工作,主要优化检…

护网行动 | 蓝队应急响应流程概述

了解蓝队应急响应的流程 应急响应通常是指为了应对各种意外事件发生前所做的准备,以及在意外事件发生后所采取的措施。 网络安全应急响应是指对已经发生或可能发送的安全事件进行监控、分析、协调、处理、保护资产安全。 网络安全应急响应主要是为了让人们对网络安全…

【深度学习】执行wandb sync同步命令报错wandb: Network error (SSLError), entering retry loop

执行wandb sync同步命令报错wandb: Network error (SSLError), entering retry loop 在代码中设置wandb offline的命令 os.environ["WANDB_API_KEY"] "API keys" os.environ["WANDB_MODE"] "offline"日志文件生成后,使…

sqlilabs靶场1—20题学习笔记(思路+解析+方法)

前几个题目较为简单,均尝试使用各种方法进行SQL注入 第一题 联合查询 1)思路: 有回显值 1.判断有无注入点 2.猜解列名数量 3.判断回显点 4.利用注入点进行信息收集 爆用户权限,爆库,爆版本号 爆表,爆列&…

基于springboot的医护人员排班系统

随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。本文介绍了医护人员排班系统的开发全过程。通过分析医护人员排班系统管理的不足,创建了一个计算机管理医护人员排班系统的方案。文章介绍了医护人员排班系统的系统分…

每日一题(PTAL2-006):树的遍历--树的构建,队列

因为要层序遍历&#xff0c;所以我们可以考虑构建一颗二叉树。构建完只有利用队列就可以就行层序遍历。 #include <bits/stdc.h> using namespace std; int p1[35]; int p2[35]; typedef struct Tree {int val;struct Tree* left;struct Tree* right; }TT; typedef TT* …

steam怎么退款?steam退款教程?简单几步即可轻松实现退款

steam怎么退款&#xff1f;steam退款教程&#xff1f;简单几步即可轻松实现退款 说到steam平台大家肯定不会陌生&#xff0c;随着现代的发展&#xff0c;在steam上进行购买游戏已经成了很普遍的东西&#xff0c;但是许多玩家在购买游戏试完之后发现游戏并不符合自己的胃口&…

软考证书有用吗?软考证书的含金量大吗?

一、以考代评 通过考试并获得相应级别计算机专业技术资格&#xff08;水平&#xff09;证书的人员&#xff0c;表明其已具备从事相应专业岗位工作的水平和能力&#xff0c;用人单位可根据《工程技术人员职务试行条例》有关规定和工作需要&#xff0c;从获得计算机专业技术资格…

C#创建磁性窗体的方法:创建特殊窗体

目录 一、磁性窗体 二、磁性窗体的实现方法 (1)无标题窗体的移动 (2)Left属性 (3)Top属性 二、设计一个磁性窗体的实例 &#xff08;1&#xff09;资源管理器Resources.Designer.cs设计 &#xff08;2&#xff09;公共类Frm_Play.cs &#xff08;3&#xff09;主窗体 …

WPS的JS宏如何实现全文件路径字符串中截取文件名(excel)

从全文件路径的字符串中&#xff0c;截取文件名称&#xff0c;例如&#xff1a; 全文件路径字符串为&#xff1a;C:\Windows\System32\drivers\acpi1.sys 需要截取文件名&#xff1a;acpi1.sys 方法如下&#xff1a; 1、简单的方式&#xff1a;把全文件路径字符串拷贝&…

面试:sleep 和 wait

一、共同点 wait(),wait(long)和sleep(long)的效果都是让当前线程暂时放弃CPU的使用权&#xff0c;进入阻塞状态 二、不同点 1、方法归属不同 sleep(long)是Thread的静态方法而wait(), wait(long)都是Object的成员方法&#xff0c;每个对象都有 2、醒来的时机不同 执行sleep(l…

NTC热敏电阻采集温度-单片机通用模板

NTC热敏电阻采集温度-单片机通用模板 一、NTC热敏电阻转换温度的原理二、AT104Tem.c的实现三、AT104Tem.h的实现 一、NTC热敏电阻转换温度的原理 ①NTC热敏电阻会随着温度的升高&#xff0c;电阻值R逐渐降低&#xff1b;②硬件搭建电阻分压电路采集ADC逆推热敏电阻当前的阻值&…

C语言学习笔记之指针(二)

指针基础知识&#xff1a;C语言学习笔记之指针&#xff08;一&#xff09;-CSDN博客 目录 字符指针 代码分析 指针数组 数组指针 函数指针 代码分析&#xff08;出自《C陷阱和缺陷》&#xff09; 函数指针数组 指向函数指针数组的指针 回调函数 qsort() 字符指针 一…

新版AndroidStudio使用switch-case语句时出现Constant expression required错误

原因: 在新版的Android Studio中使用JDK17以上版本&#xff0c;会出现switch语句报错"Constant expression required"的问题&#xff0c;这是因为在JDK17中switch语句的条件表达式支持使用枚举类型&#xff0c;而这个特性还没有被支持。 解决方法: ①在gradle.prope…