AI系列:大语言模型的function calling

目录

  • 大语言模型(LLM) 的function calling
  • 实验:OpenAI之function calling
    • 序列图:function calling如何工作
    • 详情: 对话内容
    • 参考代码
  • 后续: 使用LangChain实现function calling
  • 参考

大语言模型(LLM) 的function calling

大语言模型(LLM)可以使用自然语言与人类对话。但在使用它完成某项复杂工作时,很多时候必须依赖其他外部工具,这包括但不限于:

  • 训练的知识库和提示词以外的知识。包括某些垂直细分领域以及非公开的数据。
  • 计算任务。相信我,即使它给出的结果看起来很像样,你也不能相信它在计算方面的能力;它无法保证100%的准确性。
  • 实时数据。需要外部工具提供。

能识别需要使用的外部工具,能根据其结果数据完成对话的功能叫做function calling。

实验:OpenAI之function calling

OpenAI的GPT作为LLM的代表作,我们将给它提出如下问题:

问题:一共有3个人,每个人有15个苹果,10个鸭梨,一共有多少苹果?
注: 这个简单的逻辑和算数题只作为实验用途;实际应用中可以扩展到复杂的计算。

我们将给GPT提供两个function/tool。一个是乘法,一个是加法。
注: 其中加法用来迷惑GPT。

我们期待的结果:GPT能判断使用乘法及其参数,并使用乘法function calling给出的结果数据,最终返回正确答案:
三个人一共有45个苹果。

序列图:function calling如何工作

我们的代码和GPT将怎样完成这个过程呢?这里将整个过程描绘在下面的时序图中:

代码 大模型LLM 1. 调用对话接口,告诉LLM提示词+可使用的functions/tools定义 2. 需要调用的functions/tools及调用参数 3. 将步骤2中LLM的回复加入对话 4. 循环执行function calling,并将结果加入对话 5. 调用对话接口,需要以上所有对话信息 6. 最终回答 alt [分支:需要function calling] [分支:不需要function calling] 代码 大模型LLM

详情: 对话内容

以下内容是真实的对话历史,程序和GPT配合按照我们的预想完成了整个过程,并最终给出了正确答案。
注:以下用到的UserMessage, AIMessage, FunctionMessage都是LangChain中的概念;它比较贴切的抽象了不同role的对话项。


步骤1中的对话项:UserMessage | 向GPT输入对话提示词。

#提示词
{"role": "user","content": "一共有3个人,每个人有15个苹果,10个鸭梨,一共有多少苹果?"
}

另外,在调用GPT接口时,定义了2个function type tools:乘法multiply和加法add。内容参见下一部分的代码部分。


步骤2中的对话项:AIMessage | GPT返回需要调用的functions/tools及其调用参数。

#这里GPT没有给出最终答案,它识别出了需要调用乘法multiply,参数一first_int为3个人,参数二second_int为15个苹果/每人。
{"content": null,"role": "assistant","function_call": null,"tool_calls": [{"id": "call_ZMbo4SiA2iaZUSLJMyX8ZzkP","function": {"arguments": "{\"first_int\":3,\"second_int\":15}","name": "multiply"},"type": "function"}]
}

步骤4中的对话项:FunctionMessage |function calling的调用结果数据。
tool_call_id对应步骤2中的tool_calls元素中的id。content为程序调用function/tool后的结果数据。

#将function calling的结果为3*15=45,设定role为tool,将其加入对话中。
{"tool_call_id": "call_ZMbo4SiA2iaZUSLJMyX8ZzkP","role": "tool","name": "multiply","content": "45"
}

步骤6中的对话项:AIMessage | 程序将以上所有对话项发送给GPT,GPT用自然语言返回最终结论。

#最终结果为:三个人一共有45个苹果。
{"content": "三个人一共有45个苹果。","role": "assistant","function_call": null,"tool_calls": null
}

参考代码

function calling的实现代码如下:

import json# 初始化环境和OpenAI
from openai import OpenAI
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
client = OpenAI()#调用GPT大模型
def get_completion(messages, tools, model="gpt-3.5-turbo"):response = client.chat.completions.create(model=model,messages=messages,# tool_choice支持设置 "auto"(由模型决定是否调用tool) 或者 "none" (不调用tool)作为value。 有tools定义时默认由模型决定。# 也可以强制要求必须调用指定的函数,如下所示# tool_choice= {"type": "function", "function": {"name": "multiply"}} ,  tools=tools)return response.choices[0].message#定义function/tool 1: multiply
def multiply(first_int: int, second_int: int) -> int:"""两个整数相乘"""return first_int * second_int#定义function/tool 2: add
def add(first_add: int, second_add: int) -> int:"""两个整数相加"""return first_add + second_add#以列表形式将function calling的格式告诉大模型
tools=[{"type": "function","function": {"name": "multiply","description": "两个整数相乘","parameters": {"type": "object","properties": {"first_int": {"type": "integer","description": "第一个乘数",},"second_int": {"type": "integer","description": "第二个乘数",}},"required": ["first_int", "second_int"],}}},{"type": "function","function": {"name": "add","description": "两个整数相加","parameters": {"type": "object","properties": {"first_add": {"type": "integer","description": "第一个加数",},"second_add": {"type": "integer","description": "第二个加数",}},"required": ["first_add", "second_add"],}}
}]# 调用大模型
prompt = "一共有3个人,每个人有15个苹果,10个鸭梨,一共有多少苹果?"
messages = [{"role": "user", "content": prompt}
]
response = get_completion(messages, tools)# 把大模型的回复加入到对话中
messages.append(response)  # 处理大模型需要function calling的情况
while (response.tool_calls is not None):# 循环进行function calling,将结果加入到对话中for tool_call in response.tool_calls:selected_tool = {"add": add, "multiply": multiply}[tool_call.function.name]args = json.loads(tool_call.function.arguments)tool_output = selected_tool(**args)messages.append({"tool_call_id": tool_call.id,  # 用于标识函数调用的 ID"role": "tool","name": tool_call.function.name,"content": str(tool_output)  # 数值result 必须转成字符串})# 调用大模型并把大模型的回复加入到对话中response = get_completion(messages, tools)messages.append(response)  print("=====最终回复=====")
print(response.content)

后续: 使用LangChain实现function calling

后续将更新:如何使用LangChain实现function calling,LangChain对比原生调用能提供哪些便利,以及其中可能出现的坑。

参考

OpenAI / function calling
LangChain / Tool/function calling

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/818681.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android中的Context

前言 在Android开发中,当我们要创建或启动四大组件时,不能通过简单的new关键字实现,而是要通过他们的上下文环境,也就是我们要讨论的Context。 Android的应用模型是基于组件的应用设计模式,而组件的运行需要一个完整…

python数据结构与算法之线性表

1、线性表 是一种由n个元素(n> 0 )数据元素组成的有限序列,所包含的元素数量通常被称为表的长度 n 0 的表被称为空表,线性表的数据元素可以单一也可以复杂,可以是整数,字符串,也可以是由几…

c---内置函数模拟(memset,memcmp,memcpy,memmove)

void* my_memset(void* s1, int zifu, int num) {//引用string.h assert(s1); void* ret &s1; while (num--) { *(char*)s1 (char)zifu; s1 (char*)s1 1; } return ret; } int my_memcmp(const void* s1,const void* s2,int num)…

python_31-32

目录 1.进程 2.同步进程: 3.守护进程: 1.进程 # ### 进程 process import os,time""" # ps -aux 查看进程号 # ps -aux | grep 2784 过滤查找2784这个进程# 强制杀死进程 kill -9 进程号# 获取当前进程号 res os.getpid() print(res)…

进程间通信--管道

1.有名管道 管道的分类:有名管道和无名管道 有名管道也成为命名管道.区别:有名管道在任意两个进程之间通信,无名管道在父子进程之间通信. 1.创建有名管道使用命令:mkfifo 2.打开管道:open(); 关闭管道:close(); 读数据:read(); 写入数据:write(); 2.有名管道来演示进程间通信:…

高光谱遥感数据处理与机器学习深度应用

高光谱遥感数据处理的基础、python开发基础、机器学习和应用实践。重点解释高光谱数据处理所涉及的基本概念和理论,旨在帮助学员深入理解科学原理。结合Python编程工具,专注于解决高光谱数据读取、数据预处理、高光谱数据机器学习等技术难题,…

将自己的项目上传至Git

一、安装Git 官网:Git (git-scm.com) 二、注册gitee 官网:工作台 - Gitee.com 进入“我的”出现以下界面 三、创建仓库 点击加号,新建仓库 根据自己的需求取名,描述仓库,开源还是私有,点击创建即可,点击我的即可…

[docker] 核心知识 - 容器/镜像的管理和操作

[docker] 核心知识 - 容器/镜像的管理和操作 想要查看完整的指令,可以通过 docker --help 列举所有的指令,这里会提到一些比较常用的核心指令 查看容器的状态 这个应该是最常用的指令,语法为 docker ps, ps 为 process status …

RT-Thread时钟管理

操作系统需要通过时间来规范其任务,主要介绍时钟节拍和基于时钟节拍的定时器。 时钟节拍 任何操作系统都需要提供一个时钟节拍,以供系统处理所有和时间有关的事件,如线程的延时、线程的时间片轮转调度以及定时器超时等。 RT-Thread 中,时钟节拍的长度可以根据 RT_TICK_P…

图像识别在医疗诊断中的应用与价值

图像识别技术在医疗诊断中的应用与价值日益凸显,为医生提供了更为准确、高效的诊断工具。这种技术利用深度学习算法和神经网络模型对大量医学图像数据进行训练,从而实现对图像的准确识别和分类。 在医疗诊断中,图像识别技术主要应用于医学影…

代码随想录-算法训练营day08【字符串01:反转字符串、替换数字、反转字符串里的单词、右旋转字符串】

代码随想录-035期-算法训练营【博客笔记汇总表】-CSDN博客 第四章 字符串part01今日任务 ● 344.反转字符串 ● 541. 反转字符串II ● 卡码网:54.替换数字 ● 151.翻转字符串里的单词 ● 卡码网:55.右旋转字符串详细布置 344.反转字符串 建议&#xff1a…

租用马来西亚服务器:稳定高效的网络选择

马来西亚首都是吉隆坡。作为一个新兴的多元化经济国家,也属于亚洲四小龙之一。地理位置优越,中间隔着南中国海。一部分是北接泰国的位于马来半岛的西马来西亚,另一部分则是东马来西亚,在婆罗洲岛的北部。这种地理位置有利于促进该…

IGBT退饱和现象解析与防范

IGBT是一种重要的功率半导体器件,广泛应用于电力电子领域,如变频器、电动机驱动、电力传输等。在这些应用中,IGBT的导通和关断特性至关重要,而退饱和是IGBT工作过程中的一个重要现象。 IGBT的退饱和定义 退饱和是指IGBT在导通状态…

Human Motion Diffusion Model 使用笔记

目录 依赖项: 依赖项目: 验证数据集 体验网址: 推理代码整理,一键运行 渲染mesh 可视化代码: GitHub - GuyTevet/motion-diffusion-model: The official PyTorch implementation of the paper "Human Moti…

WordPress用户福音:Elementor Pro国产版替代方案,全新中文界面更懂你

如果你正在考虑创建自己的网站,那么在第一次谷歌搜索时,你可能已经看到了WordPress、Elementor和网站构建器这些专业名称。WordPress是最受欢迎的网站平台之一,这不难理解:它高度可定制,易于学习,而且是免费…

java算法day55 | 动态规划part16 ● 583. 两个字符串的删除操作 ● 72. 编辑距离

583. 两个字符串的删除操作 思路: 和1143.最长公共子序列这道题思路相同,只不过需要对return的数据做一些操作。 class Solution {public int minDistance(String word1, String word2) {int[][] dpnew int[word1.length()1][word2.length()1];for(int …

【Linux 驱动基础】设备树中断

# 前置知识 interrupts 文档 Specifying interrupt information for devices 1) Interrupt client nodes -------------------------Nodes that describe devices which generate interrupts must contain an "interrupts" property, an "interrupts-extende…

业务与数据的终极对决:如何让大数据成为企业的超能力?

在数字化转型的浪潮中,企业如同在茫茫数据海洋中航行的船只,而数据资产管理就是指引航向的罗盘。但是,当业务需求与数据脱节、数据孤岛林立、业务流程与数据流程不同步、以及业务增长带来的数据管理挑战成为阻碍,我们该如何突破重…

ios证书过期需要重新安装app

根据近日工业和信息化部发布的《工业和信息化部关于开展移动互联网应用程序备案工作的通知》,相信不少要进行IOS平台App备案的朋友遇到了一个问题,就是apple不提供云管理式证书的下载,也就无法获取公钥及证书SHA-1指纹。 已经上架的应用不想重…

如何让表单流程引擎提质增效?

随着社会的进步和科技的发展,低代码技术平台在诸多行业中成为利用价值高的平台。对于解决信息孤岛、部门协作不给力、办公效率不高等缺点,低代码技术平台都可以为其架设出一道优质的桥梁,共同朝着高效率的流程化办公方向前进。表单流辰引擎是…