Python实现时间序列ARIMA模型(附带超详细理论知识和完整代码实现)

文章目录

  • 0 结果
  • 1 介绍
  • 2 建模
    • 2.1 预备知识
      • 2.1.1 ADF检验结果(单位根检验统计量)
      • 2.1.2 差分序列的白噪声检验(这里使用Ljung-Box检验)
      • 2.1.3 ARIMA模型(差分整合移动平均自回归模型)的三个参数:p,d,q
      • 2.1.4 自相关和偏自相关(用于识别ARMA模型)
      • 2.1.5 AIC与BIC(用于确定p,q参数)
      • 2.1.6 模型检验(残差检验, QQ图,Jarque-Bera检验,D-W检验)
    • 2.2 建模详细过程
  • 3 模型代码实现
    • 3.1 详细步骤
    • 3.2 完整代码
  • 4 测试数据和完整代码
  • 参考文章

0 结果

请添加图片描述
在这里插入图片描述

1 介绍

时间序列分析的基本思想:寻找系统的当前值与其过去的运行记录(观察数据)的关系,建立能够比较精确地反映时间序列中动态依存关系的数学模型,并借此对系统的未来行为进行预报。

ARIMA模型(Autoregressive Integrated Moving Average model,差分整合移动平均自回归模型,又称整合移动平均自回归模型(移动也可称作滑动)),是时间序列预测分析方法之一。ARIMA(p,d,q)中,AR是“自回归”,p为自回归项数;MA为“滑动平均”,q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。“差分”一词虽未出现在ARIMA的英文名称中,却是关键步骤。

该模型十分简单,只需要带有时间的变量,但是
1.要求时序数据是稳定的(stationary),或者是通过差分化(differencing)后是稳定的。
2.本质上只能捕捉线性关系,而不能捕捉非线性关系。

注意⚠️:采用ARIMA模型预测时序数据,必须是稳定的,如果不稳定的数据,是无法捕捉到规律的。比如股票数据用ARIMA无法预测的原因就是股票数据是非稳定的,常常受政策和新闻的影响而波动。

2 建模

2.1 预备知识

2.1.1 ADF检验结果(单位根检验统计量)

ADF检验结果作用:

  • 1,ADF检验是一种检验时间序列是否平稳的方法,其原假设是存在单位根,即非平稳。根据ADF检验的结果,可以通过比较检验统计量和临界值,以及p值和显著性水平,来判断是否拒绝原假设。
  • 2,如果拒绝原假设,可以认为数据是平稳的;如果不拒绝原假设,可以认为数据是非平稳的,需要进行差分后再检验
  • 3,另外,还需要根据不同的模型,判断数据是趋势平稳、截距平稳还是不含截距和时间趋势的平稳。

ADF检验结果的五个参数含义:

  • 第一个参数:adt检验的结果,简称为T值,表示t统计量。

  • 第二个参数:简称为p值,表示t统计量对应的概率值。p值表示在原假设(零假设)的条件下,样本发生或观测值出现的概率。若p值小于小概率事件的阈值(0.05或0.01),那么拒绝原假设(即数据是平稳的),否则接受原假设。

    • 若P<0.01,说明是较强的判定结果,拒绝假定的参数取值;若0.01<P<0.05,说明较弱的判定结果,拒绝假定的参数取值;若P>0.05,说明结果更倾向于接受假定的参数取值。
  • 第三个参数:滞后阶数,时间序列中的滞后阶数指的是当前数据点与前面的几个数据点之间的时间间隔数量。

    • 如果滞后阶数选择得太低,那么模型可能无法捕捉时间序列的所有重要特征,导致预测精度不够高;
    • 如果滞后阶数选择得太高,那么模型就会过于复杂,过度拟合训练数据,从而无法泛化到新的数据上。
  • 第四个参数:AIC(赤池信息量准则)衡量统计模型拟合优良性的一种标准,选取AIC最小的模型。

    • 它建立在熵的概念上,提供了权衡估计模型复杂度和拟合数据优良性的标准。
    • 模型选择是在模型复杂度与模型对数据集描述能力(即似然函数)之间寻求最佳平衡。
    • 很多参数估计问题均采用似然函数作为目标函数,当训练数据足够多时,可以不断提高模型精度,但提高了模型复杂度,同时带来过拟合的问题。
  • 配合第一个参数一起看的,是在99%,95%,90%置信区间下的临界的ADF检验值。

下面为程序示例返回的ADF检验结果:

原始序列的ADF检验结果为: (
-1.065623530928928, 
0.7285844104901973, 
11, 
43, 
{'1%': -3.5925042342183704, '5%': -2.931549768951162, '10%': -2.60406594375338}, 922.2003862834713)

观察角度:

  • 1,由第二个参数可得p值为0.7285844104901973,无法拒绝原假设,即数据不稳定。
  • 2,由第一个参数可得T值为-1.065623530928928,由第五个参数结合第一个参数可得-1.065623530928928大于'10%': -2.60406594375338,即接受原假设,数据不稳定。

2.1.2 差分序列的白噪声检验(这里使用Ljung-Box检验)

作用:白噪声序列有个特点,任意两项的协方差/相关性系数都是零,也就是说任意不同的两项之间不存在相关性关系。 如果一个时间序列是白噪声,那么就不具有分析的意义,因为从一个纯随机的东西中找不出任何有价值的规律。

参数说明:

  • lbvalue:测试的统计量
  • pvalue:基于卡方分布的p统计量
    • 如果pvalue值大于0.05,就说明我们无法拒绝原假设(该序列是白噪声序列),这个时间序列的确就是白噪声序列。

示例:

差分序列的白噪声检验结果为:      lb_stat     lb_pvalue
1  33.952495  5.647422e-09

这里得到的p值为5.647422e-09,即拒绝原假设,序列不是白噪声。

2.1.3 ARIMA模型(差分整合移动平均自回归模型)的三个参数:p,d,q

p:代表预测模型中采用的时序数据本身的滞后数(lags) ,也叫做AR/Auto-Regressive项
d:代表时序数据需要进行几阶差分化,才是稳定的,也叫Integrated项。
q:代表预测模型中采用的预测误差的滞后数(lags),也叫做MA/Moving Average项

ARIMA模型的特例:
1,ARIMA(0,1,0) :(此时当d=1,p和q为0时,称为random walk模型,)该模型表示每一个时刻的位置,只与上一时刻的位置有关。
2,ARIMA(1,0,0) ,(此时p=1, d=0,q=0,称为 first-order autoregressive model)该模型说明时序数据是稳定的和自相关的。
3,ARIMA(1,1,0),(此时p=1,d=1,q=0,称为differenced first-order autoregressive model) ,该模型说明时序数据在一阶差分化之后是稳定的和自回归的,即一个时刻的差分(y)只与上一个时刻的差分有关。
4,ARIMA(0,1,1) ,(此时p=0, d=1 ,q=1,称为simple exponential smoothing with growth模型)=该模型说明数据在一阶差分后是稳定的和移动平均的,即一个时刻的估计值的差分与上一个时刻的预测误差有关。

2.1.4 自相关和偏自相关(用于识别ARMA模型)

1,作用:自相关和偏自相关用于测量当前序列值和过去序列值之间的相关性,并指示预测将来值时最有用的过去序列值。

2,区别自相关函数和偏自相关函数

  • 自相关函数 (ACF):延迟为 k 时,这是相距 k 个时间间隔的序列值之间的相关性。
  • 偏自相关函数 (PACF):延迟为 k 时,这是相距 k 个时间间隔的序列值之间的相关性,同时考虑了间隔之间的值。

3,自相关图和偏自相关图:

  • 自相关图:有助于判断时间序列数据是否存在季节性或周期性变化,并且可以用来选择合适的时间序列模型。如果一个时间序列数据存在季节性变化,则其自相关图通常会呈现出明显的周期性模式。
  • 偏自相关图:可以帮助我们确定时间序列数据中的短期相关性,从而选择合适的时间序列模型。如果一个时间序列数据存在短期相关性,则其偏自相关图通常会显示出急速衰减的模式。

4,区别:截尾和拖尾

  • 截尾:在大于某个常数k后快速趋于0为k阶截尾
  • 拖尾:始终有非零取值,不会在k大于某个常数后就恒等于零(或在0附近随机波动)

请添加图片描述

观察自相关图和偏自相关图,然后根据如下表选择模型:
请添加图片描述

2.1.5 AIC与BIC(用于确定p,q参数)

贝叶斯信息准则(Bayesian Information Criterion,BIC):与AIC相似,用于模型选择BIC的惩罚项比AIC的大,考虑了样本数量,样本数量过多时,可有效防止模型精度过高造成的模型复杂度过高。

区别:

  • 1,AIC=2k−2ln(L)BIC=kln(n)−2ln(L)
  • 2,当n ≥ 102时,kln(n)≥2k,所以BIC相比AIC在大数据量时对模型参数惩罚得更多,导致BIC更倾向于选择参数少的简单模型。

2.1.6 模型检验(残差检验, QQ图,Jarque-Bera检验,D-W检验)

  • 残差检验:如果残差(残差 = 实际观测值 – 模型预测值)是正态分布,我们就可以认为他是随机的,如果它是随机的就可以认为它是对随机误差比较好的拟合;
  • QQ图:检验残差是否满足正态分布;
  • Jarque-Bera检验(雅克-贝拉检验): 判断数据是否符合总体正态分布;
    • P值<指定水平0.05,拒绝原假设,认为样本数据在5%的显著水平下不服从正态分布;
    • 适用于 样本数量大于30 ,而且样本数越多,JB检验效果越准确。
  • 利用D-W检验(残差序列自相关):检验残差的自相关性;
    • 一般DW值在2附近(比如1.7-2.3之间),则说明没有自相关性,模型构建良好;

例子:

------------残差检验-----------
NormaltestResult(statistic=4.4959826117374515, pvalue=0.10561115214326909)------------Jarque-Bera检验-----------
Jarque-Bera test:
JB: 4.0642468241648775
p-value: 0.13105693759455012
Skew: 0.33412880151714236
Kurtosis: 4.151920700073933------DW检验:残差序列自相关----
1.71022123825392

2.2 建模详细过程

1)对数据绘图,进行 ADF 检验,观察序列是否平稳(一般为不平稳);对于非平稳时间序列要先进行d阶差分运算,化为平稳时间序列;
2)对平稳时间序列进行白噪声检验,如果不是白噪声序列,则继续下面的建模;
3)使用AIC和BIC准则定阶q和p的值;

  • 或者是p 值可从偏自相关系数(PACF)图的最大滞后点来大致判断,q 值可从自相关系数(ACF)图的最大滞后点来大致判断,得到最佳的阶数 p 和阶数 q;
  • 或者是使用BIC矩阵来计算q和p的值;
    4)由以上得到的d、q、p得到ARIMA模型;
    5)最后对进行模型检验,例如残差检验,D-W检验(残差序列自相关)。

3 模型代码实现

3.1 详细步骤

1,引入头文件

from __future__ import annotations
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.tsa.stattools import adfuller as ADF
from statsmodels.stats.diagnostic import acorr_ljungbox
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf #ACF与PACF
from statsmodels.tsa.arima.model import ARIMA #ARIMA模型
from statsmodels.graphics.api import qqplot  #qq图
from scipy import stats

2,把原始数据转为pandas.core.frame.DataFrame的数据进行操作,

  • 直接从字典转换:
# dict类型的原始数据
need_data = {'2016-02': 44964.03, '2016-03': 56825.51, '2016-04': 49161.98, '2016-05': 45859.35, '2016-06': 45098.56, '2016-07': 45522.17, '2016-08': 57133.18, '2016-09': 49037.29, '2016-10': 43157.36, '2016-11': 48333.17, '2016-12': 22900.94,'2017-01': 67057.29, '2017-02': 49985.29, '2017-03': 49771.47, '2017-04': 35757.0, '2017-05': 42914.27, '2017-06': 44507.03, '2017-07': 40596.51, '2017-08': 52111.75, '2017-09': 49711.18, '2017-10': 45766.09, '2017-11': 45273.82, '2017-12': 22469.57,'2018-01': 71032.23, '2018-02': 37874.38, '2018-03': 44312.24, '2018-04': 39742.02, '2018-05': 43118.38, '2018-06': 33859.69, '201807': 38910.89, '2018-08': 39138.42, '2018-09': 37175.03, '2018-10': 44159.96, '2018-11': 46321.72, '2018-12': 22410.88,'2019-01': 61241.94, '2019-02': 31698.6, '2019-03': 44170.62, '2019-04': 47627.13, '2019-05': 54407.37, '2019-06': 50231.68, '2019-07': 61010.29, '2019-08': 59782.19, '2019-09': 57245.15, '2019-10': 61162.55, '2019-11': 52398.25, '2019-12': 15482.64,'2020-01': 38383.97, '2020-02': 26943.55, '2020-03': 57200.32, '2020-04': 49449.95, '2020-05': 47009.84, '2020-06': 49946.25, '2020-07': 56383.23, '2020-08': 60651.07}
# 转换为Dataframedata = {'time_data': list(need_data.keys()), 'click_value_rate': list(need_data.values())}df = pd.DataFrame(data)df.set_index(['time_data'], inplace=True) # 设置索引data = df
  • 从excel中数据转换:
path = '/Users/mac/Downloads/时间序列模型测试数据.xlsx'
df=pd.read_excel(path)
# 更改列名
df.rename(columns={'data':'deal_data', 'time':'time_data'}, inplace = True)
# 设置索引
df.set_index(['time_data'], inplace=True)data = df

3, 对原始数据进行绘图;

    # 绘制时序图plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'] # 用来正常显示中文标签# plt.rcParams['font.sans-serif'] = ['SimHei']plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号# 绘图data.plot()# 图片展示plt.show()# 绘制自相关图plot_acf(data).show()# 绘制偏自相关图plot_pacf(data).show()
平稳性检测print(u'原始序列的ADF检验结果为:', ADF(data[u'deal_data']))

下图为时序图:
请添加图片描述
下图为自相关图:
请添加图片描述
请添加图片描述
截尾

---------------------ADF检验结果----------------------
ADF Statistic(T-value): -1.065624
p-value: 0.728584
Lags Used: 11
Observations Used: 43
Critical Values:1%: -3.5935%: -2.93210%: -2.604
====================================================

由于p值为0.728584,不能拒绝原假设(数据不稳定)。

4,对原始数据进行差分,让数据变成平稳时间序列;

    tmp_data = data.diff().dropna()  #一阶差分并去空列D_data = tmp_data.diff().dropna()  #二阶差分tmp_data.columns = [u'用户转化率差分'] # 取列名D_data.columns = [u'用户转化率差分']# 时序图D_data.plot()plt.show()# 自相关图plot_acf(D_data).show()# 偏自相关图plot_pacf(D_data).show()print(u'一阶差分序列的ADF检验结果为:', ADF(tmp_data[u'用户转化率差分']))  # 平稳性检测print(u'二阶差分序列的ADF检验结果为:', ADF(D_data[u'用户转化率差分']))  # 平稳性检测

下图时序图(从左到右,分别为原始数据,一阶差分,二阶差分):

可以看出数据逐渐趋于有规律
请添加图片描述
下图自相关图(从左到右,分别为原始数据,一阶差分,二阶差分):
请添加图片描述
下图偏自相关图(从左到右,分别为原始数据,一阶差分,二阶差分):
请添加图片描述
ADF检验结果:

一阶差分序列的ADF检验结果为: (-2.075566084251588, 0.25445240835460714, 11, 42, {'1%': -3.596635636000432, '5%': -2.933297331821618, '10%': -2.6049909750566895}, 891.9896110441426)
二阶差分序列的ADF检验结果为: (-5.158293394368312, 1.0689898139736479e-05, 10, 42, {'1%': -3.596635636000432, '5%': -2.933297331821618, '10%': -2.6049909750566895}, 874.5861617359358)

可以看的二阶差分后的数据的p值远远小于0.1,即可以拒绝原假设(数据不稳定),得到数据数据稳定。

5,差分序列的白噪声检验;

    print(u'差分序列的白噪声检验结果为:', acorr_ljungbox(D_data, lags=1))  # 返回统计量和p值

运行结果

二阶差分序列的白噪声检验结果为:      lb_stat     lb_pvalue
1  33.952495  5.647422e-09

这里得到的p值为5.647422e-09,即拒绝原假设,序列不是白噪声。

6,确定ARIMA的p,q参数;

方法一(使用BIC矩阵):

    pmax = int(len(D_data) / 10)  # 一般阶数不超过length/10qmax = int(len(D_data) / 10)  # 一般阶数不超过length/10bic_matrix = []  # BIC矩阵# 差分阶数diff_num = 2for p in range(pmax):tmp = []for q in range(qmax):try:tmp.append(ARIMA(D_data, order=(p, diff_num, q)).fit().bic)except Exception as e:print(e)tmp.append(None)bic_matrix.append(tmp)bic_matrix = pd.DataFrame(bic_matrix)  # 从中可以找出最小值p, q = bic_matrix.stack().idxmin()  # 先用stack展平,然后用idxmin找出最小值位置。print(u'BIC最小的p值和q值为:%s、%s' % (p, q))

得到结果:

BIC最小的p值和q值为:13

方法二:使用AIC和BIC准则定阶

    AIC = sm.tsa.stattools.arma_order_select_ic(D_data, max_ar=4, max_ma=4, ic='aic')['aic_min_order']# BICBIC = sm.tsa.stattools.arma_order_select_ic(D_data, max_ar=4, max_ma=4, ic='bic')['bic_min_order']print('---AIC与BIC准则定阶---')print('the AIC is{}\nthe BIC is{}\n'.format(AIC, BIC), end='')p = BIC[0]q = BIC[1]diff_num = 2
---AIC与BIC准则定阶---
the AIC is(0, 2)
the BIC is(0, 2)

7,模型预测;

    model = ARIMA(data, order=(p, diff_num, q)).fit()  # 建立ARIMA(p, diff+num, q)模型print('模型报告为:\n', model.summary())print("预测结果:")print(model.forecast(forecast_num))print("预测结果(详细版):\n")forecast = model.get_forecast(steps=forecast_num)table = pd.DataFrame(forecast.summary_frame())print(table)

8,模型检验

def Model_checking(model):# 残差检验:检验残差是否服从正态分布,画图查看,然后检验# 绘制残差图model.resid.plot(figsize=(10, 3))plt.title("残差图")plt.show()print('------------残差检验-----------')# model.resid:残差 = 实际观测值 – 模型预测值print(stats.normaltest(model.resid))# QQ图看正态性qqplot(model.resid, line="q", fit=True)plt.title("Q-Q图")plt.show()# 绘制直方图plt.hist(model.resid, bins=50)plt.show()# 进行Jarque-Bera检验:判断数据是否符合总体正态分布jb_test = sm.stats.stattools.jarque_bera(model.resid)print("==================================================")print('------------Jarque-Bera检验-----------')print('Jarque-Bera test:')print('JB:', jb_test[0])print('p-value:', jb_test[1])print('Skew:', jb_test[2])print('Kurtosis:', jb_test[3])# 残差序列自相关:残差序列是否独立print('------DW检验:残差序列自相关----')print(sm.stats.stattools.durbin_watson(model.resid.values))

结果:

------------残差检验-----------
NormaltestResult(statistic=4.4959826117374515, pvalue=0.10561115214326909)------------Jarque-Bera检验-----------
Jarque-Bera test:
JB: 4.0642468241648775
p-value: 0.13105693759455012
Skew: 0.33412880151714236
Kurtosis: 4.151920700073933------DW检验:残差序列自相关----
1.71022123825392

请添加图片描述

请添加图片描述

由检测结果可以看出,模式良好。

3.2 完整代码

from __future__ import annotations
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.tsa.stattools import adfuller as ADF
from statsmodels.stats.diagnostic import acorr_ljungbox
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf #ACF与PACF
from statsmodels.tsa.arima.model import ARIMA #ARIMA模型
from statsmodels.graphics.api import qqplot  #qq图
from scipy import statsimport warnings
warnings.filterwarnings("ignore")# 绘图设置(适用于mac)
# plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号# 模型检测
def Model_checking(model) -> None:# 残差检验:检验残差是否服从正态分布,画图查看,然后检验print('------------残差检验-----------')# model.resid:残差 = 实际观测值 – 模型预测值print(stats.normaltest(model.resid))# QQ图看正态性qqplot(model.resid, line="q", fit=True)plt.title("Q-Q图")plt.show()# 绘制直方图plt.hist(model.resid, bins=50)plt.show()# 进行Jarque-Bera检验:判断数据是否符合总体正态分布jb_test = sm.stats.stattools.jarque_bera(model.resid)print("==================================================")print('------------Jarque-Bera检验-----------')print('Jarque-Bera test:')print('JB:', jb_test[0])print('p-value:', jb_test[1])print('Skew:', jb_test[2])print('Kurtosis:', jb_test[3])# 残差序列自相关:残差序列是否独立print("==================================================")print('------DW检验:残差序列自相关----')print(sm.stats.stattools.durbin_watson(model.resid.values))# 使用BIC矩阵计算p和q的值
def cal_pqValue(D_data, diff_num=0) -> List[float]:# 定阶pmax = int(len(D_data) / 10)  # 一般阶数不超过length/10qmax = int(len(D_data) / 10)  # 一般阶数不超过length/10bic_matrix = []  # BIC矩阵# 差分阶数diff_num = 2for p in range(pmax + 1):tmp = []for q in range(qmax + 1):try:tmp.append(ARIMA(D_data, order=(p, diff_num, q)).fit().bic)except Exception as e:print(e)tmp.append(None)bic_matrix.append(tmp)bic_matrix = pd.DataFrame(bic_matrix)  # 从中可以找出最小值p, q = bic_matrix.stack().idxmin()  # 先用stack展平,然后用idxmin找出最小值位置。print(u'BIC最小的p值和q值为:%s、%s' % (p, q))return p, q# 计算时序序列模型
def cal_time_series(data, forecast_num=3) -> None:# 绘制时序图data.plot()# 存储图片plt.savefig('/Users/mac/Downloads/1.png')plt.show()# 绘制自相关图plot_acf(data).show()# 绘制偏自相关图plot_pacf(data).show()# 时序数据平稳性检测original_ADF = ADF(data[u'deal_data'])print(u'原始序列的ADF检验结果为:', original_ADF)# 对数序数据进行d阶差分运算,化为平稳时间序列diff_num = 0 # 差分阶数diff_data = data     # 差分数序数据ADF_p_value = ADF(data[u'deal_data'])[1]while  ADF_p_value > 0.01:diff_data = diff_data.diff(periods=1).dropna()diff_num = diff_num + 1ADF_result = ADF(diff_data[u'deal_data'])ADF_p_value = ADF_result[1]print("ADF_p_value:{ADF_p_value}".format(ADF_p_value=ADF_p_value))print(u'{diff_num}差分的ADF检验结果为:'.format(diff_num = diff_num), ADF_result )# 白噪声检测print(u'差分序列的白噪声检验结果为:', acorr_ljungbox(diff_data, lags=1))  # 返回统计量和p值# 使用AIC和BIC准则定阶q和p的值(推荐)AIC = sm.tsa.stattools.arma_order_select_ic(diff_data, max_ar=4, max_ma=4, ic='aic')['aic_min_order']BIC = sm.tsa.stattools.arma_order_select_ic(diff_data, max_ar=4, max_ma=4, ic='bic')['bic_min_order']print('---AIC与BIC准则定阶---')print('the AIC is{}\nthe BIC is{}\n'.format(AIC, BIC), end='')p = BIC[0]q = BIC[1]# 使用BIC矩阵来计算q和p的值# pq_result = cal_pqValue(diff_data, diff_num)# p = pq_result[0]# q = pq_result[1]# 构建时间序列模型model = ARIMA(data, order=(p, diff_num, q)).fit()  # 建立ARIMA(p, diff+num, q)模型print('模型报告为:\n', model.summary())print("预测结果:\n", model.forecast(forecast_num))print("预测结果(详细版):\n")forecast = model.get_forecast(steps=forecast_num)table = pd.DataFrame(forecast.summary_frame())print(table)# 绘制残差图diff_data.plot(color='orange', title='残差图')model.resid.plot(figsize=(10, 3))plt.title("残差图")# plt.savefig('/Users/mac/Downloads/1.png')plt.show()# 模型检查Model_checking(model)if __name__ == '__main__':# 数据测试1:need_data = {'2016-02': 44964.03, '2016-03': 56825.51, '2016-04': 49161.98, '2016-05': 45859.35,'2016-06': 45098.56,'2016-07': 45522.17, '2016-08': 57133.18, '2016-09': 49037.29, '2016-10': 43157.36,'2016-11': 48333.17,'2016-12': 22900.94,'2017-01': 67057.29, '2017-02': 49985.29, '2017-03': 49771.47, '2017-04': 35757.0, '2017-05': 42914.27,'2017-06': 44507.03, '2017-07': 40596.51, '2017-08': 52111.75, '2017-09': 49711.18,'2017-10': 45766.09,'2017-11': 45273.82, '2017-12': 22469.57,'2018-01': 71032.23, '2018-02': 37874.38, '2018-03': 44312.24, '2018-04': 39742.02,'2018-05': 43118.38,'2018-06': 33859.69, '2018-07': 38910.89, '2018-08': 39138.42, '2018-09': 37175.03,'2018-10': 44159.96,'2018-11': 46321.72, '2018-12': 22410.88,'2019-01': 61241.94, '2019-02': 31698.6, '2019-03': 44170.62, '2019-04': 47627.13, '2019-05': 54407.37,'2019-06': 50231.68, '2019-07': 61010.29, '2019-08': 59782.19, '2019-09': 57245.15,'2019-10': 61162.55,'2019-11': 52398.25, '2019-12': 15482.64,'2020-01': 38383.97, '2020-02': 26943.55, '2020-03': 57200.32, '2020-04': 49449.95,'2020-05': 47009.84,'2020-06': 49946.25, '2020-07': 56383.23, '2020-08': 60651.07}data = {'time_data': list(need_data.keys()), 'deal_data': list(need_data.values())}df = pd.DataFrame(data)df.set_index(['time_data'], inplace=True)  # 设置索引cal_time_series(df, 7) # 模型调用# 数据测试2(从excel中读取):# path = '/Users/mac/Downloads/时间序列模型测试数据.xlsx'# df = pd.read_excel(path)# df.rename(columns={'data': 'deal_data', 'time': 'time_data'}, inplace=True)# df.set_index(['time_data'], inplace=True)  # 设置索引# cal_time_series(df, 7) # 模型调用

4 测试数据和完整代码

网盘链接:提取码: o8po

参考文章

图灵追慕者
SPSSPRO​
Github上facebook的prophet项目
Yuting_Sunshine
一眉师傅
English Chan
Sany 何灿
机器之心
seriesc
北京大学《金融时间序列分析讲义》
Foneone
statsmodels中文官网API

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/818509.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《系统分析与设计》实验-----需求规格说明书 哈尔滨理工大学

文章目录 需求规格说明书1&#xff0e;引言1.1编写目的1.2项目背景1.3定义1.4参考资料 2&#xff0e;任务概述2.1目标2.2运行环境2.3条件与限制 3&#xff0e;数据描述3.1静态数据3.2动态数据3.3数据库介绍3.4数据词典3.5数据采集 4&#xff0e;功能需求4.1功能划分4.2功能描述…

(一)C++自制植物大战僵尸集成开发环境安装

植物大战僵尸游戏开发教程专栏地址http://t.csdnimg.cn/uzrnw 1、下载Visual Studio集成开发环境 首先在微软官网下载Visual Studio 2022 Community版本。Community版本是免费的&#xff0c;并且满足个人开发的各种需求。Visual Studio 2022 下载链接&#xff1a;微软官网。选…

springboot+vue全栈开发【2.前端准备工作篇】

目录 前言准备工作Vue框架介绍MVVM模式 快速入门导入vue在vscode创建一个页面 前言 hi&#xff0c;这个系列是我自学开发的笔记&#xff0c;适合具有一定编程基础&#xff08;html、css那些基础知识要会&#xff01;&#xff09;的同学&#xff0c;有问题及时指正&#xff01;…

在Windows上配置VS Code GO语言开发环境

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

【代码随想录】【动态规划】完全背包:零钱兑换,组合总和

零钱兑换 零钱作为物品 &#xff0c;零钱的面额作为物品的重量 def change(self, amount, coins):""":type amount: int:type coins: List[int]:rtype: int"""dp [0]*(amount 1)dp[0] 1# 遍历物品for i in range(len(coins)):# 遍历背包for …

室内设计师怎么获取合适的3D模型?

在室内设计中&#xff0c;3D模型的使用已经变得越来越普遍。它们可以帮助设计师更好地展示他们的设计想法&#xff0c;同时也能帮助客户更好地理解他们所期待的装修效果。然而&#xff0c;如何获取合适的3D模型却是许多设计师和客户面临的挑战。那么室内设计师怎么获取合适的3D…

watchdog,监控文件变化的强大的python库

大家好&#xff0c;今天为大家分享一个无敌的 Python 库 - watchdog。 Github地址&#xff1a;github.com/gorakhargos… 在软件开发和系统管理领域&#xff0c;经常需要监控文件和目录的变化&#xff0c;以便在文件被创建、修改或删除时触发相应的操作。Python Watchdog是一…

有图片转成PDF文件格式的方法吗?分享图片转成PDF文件的方法

将图片转换为PDF文件是一个相对简单的过程&#xff0c;但也需要一定的步骤和注意事项。下面&#xff0c;我将详细介绍如何将图片转换为PDF文件&#xff0c;包括所需的工具、步骤以及可能遇到的问题和解决方案。 首先&#xff0c;我们需要一个能够将图片转换为PDF文件的工具。市…

【Booksim】Booksim2.0模拟器集成新拓扑

Incorporating a new topology in Booksim 1. 新拓扑结构2. 需要添加的文件3. 修改步骤 3.1 添加testnet.hpp3.2 添加testnet.cpp3.3 将testnet集成到network.cpp中3.4 创建配置文件testnetconfig3.5 在main.cpp和global.hpp中加入gP_testnet和gA_testnet变量3.6 make进行编译 …

尚小标-智能AI商标注册交易平台【24小时您口袋里的商标管家】

随着全球经济一体化进程的推进和科技的飞速发展&#xff0c;知识产权已经成为企业高质量发展的重要竞争关键因素&#xff0c;众多企业发展的核心竞争力。通过加强知识产权保护&#xff0c;企业可以更好地保护自身品牌形象和市场份额&#xff0c;从而提高国内外市场竞争力&#…

C语言洛谷题目分享(9)奇怪的电梯

目录 1.前言 2.题目&#xff1a;奇怪的电梯 1.题目描述 2.输入格式 3.输出格式 4.输入输出样例 5.说明 6.题解 3.小结 1.前言 哈喽大家好啊&#xff0c;前一段时间小编去备战蓝桥杯所以博客的更新就暂停了几天&#xff0c;今天继续为大家带来题解分享&#xff0c;希望大…

通用设计的四大原则,大厂设计师带案例讲解!

作为数字产品设计师&#xff0c;在进行产品设计时要考虑产品的各种因素&#xff0c;例如功能、美观、安全等&#xff0c;要尽可能地满足所有用户的需求&#xff0c;做出对所有用户都尽可能公平的解决方案。但是&#xff0c;对于新手来说&#xff0c;在实际进行产品设计时&#…

HUD抬头显示器中如何设计LCD的阳光倒灌实验

关键词&#xff1a;阳光倒灌实验、HUD光照温升测试、LCD光照温升测试、太阳光模拟器 HUD&#xff08;Head-Up Display&#xff0c;即抬头显示器&#xff09;是一种将信息直接投影到驾驶员视线中的技术&#xff0c;通常用于飞机、汽车等驾驶舱内。HUD系统中的LCD&#xff08;Liq…

RabbbitMQ基本使用及其五种工作模型

初识MQ 同步通讯和异步通讯 什么是同步通讯呢&#xff1f;举个例子&#xff0c;你认识了一个小姐姐&#xff0c;聊的很火热&#xff0c;于是你们慢慢开始打电话&#xff0c;视频聊天&#xff0c;这种方式就成为同步通讯&#xff0c;那什么是一部通讯呢&#xff0c;同样的&…

Ant Design 表单基础用法综合示例

Ant Design 的表单组件设计得非常出色,极大地简化了表单开发的复杂度,让开发者能够快速构建出功能丰富、交互友好的表单界面。 接下来总结一下 Ant Design 中表单的基本用法。 Form 组件 用于定义整个表单,可以设置表单的布局方式、提交行为等。通常会将表单字段组件嵌套在 F…

利用栈删除数组中重复元素

先将数据排序&#xff08;降序或升序&#xff09; 建立一个“栈”&#xff0c;三种情况&#xff1a; 1.栈为空&#xff1a;压入一个元素 2.栈不为空 且 栈顶元素不等于将入栈元素&#xff1a;压入一个元素 3.栈不为空 且 栈顶元素等于将入栈元素&#xff1a;删除将压入元素…

【学习笔记十一】EWM上架目标仓位确定过程及配置

一、EWM确定目标区域概述 1.EWM从仓库处理类型获取源仓库类型&#xff08;Source storage type&#xff09;和源仓位&#xff08;Source Bin&#xff09;2.EWM根据仓库类型&#xff08;storage type&#xff09;、仓库分区&#xff08;storage section&#xff09;和上架策略&a…

Matlab|基于广义Benders分解法的综合能源系统优化规划

目录 1 主要内容 广义benders分解法流程图&#xff1a; 优化目标&#xff1a; 约束条件&#xff1a; 2 部分代码 3 程序结果 4 下载链接 1 主要内容 该程序复现文章《综合能源系统协同运行策略与规划研究》第四章内容基于广义Benders分解法的综合能源系统优化规划&…

Python开源工具库使用之词云Wordcloud

文章目录 前言一、基本使用1.1 文本生成词云1.2 配置项 二、进阶用法2.1 自定义形状2.2 自定义着色2.3 自定义词频2.4 中文 三、实际案例3.1 工作报告词云3.2 周杰伦歌词词云 四、总结4.1 优点和局限性4.2 展望未来发展 参考 前言 当我们需要将大量文本数据可视化展示时&#…

单链表和文件操作使用练习:通讯录

1. 项目文件组成&#xff08;vs2022&#xff09; 1. Contact.h和Contact.c分别为实现通讯录的头文件和源文件。 2. SList.h和SList.c分别为实现单链表的头文件和源文件。 3. test.c为测试用的源文件&#xff0c;用于调用通讯录提供的函数。 4. Contact.txt用于存储联系人信息。…