爬虫 — 验证码反爬

目录

  • 一、超级鹰
  • 二、图片验证模拟登录
    • 1、页面分析
      • 1.1、模拟用户正常登录流程
      • 1.2、识别图片里面的文字
    • 2、代码实现
  • 三、滑块模拟登录
    • 1、页面分析
    • 2、代码实现(通过对比像素获取缺口位置)
  • 四、openCV
    • 1、简介
    • 2、代码
    • 3、案例
  • 五、selenium 反爬
  • 六、百度智能云 —— EasyDL
    • 1、简介
    • 2、使用步骤

一、超级鹰

是一个智能图片验证码识别、图片分类平台。

工具网址:https://www.chaojiying.com/

步骤:

1、注册账号密码进行登录;

2、进入登录界面之后,点击软件 ID,生成一个软件 ID;

在这里插入图片描述

3、填入对应的软件名称和软件说明,软件 KEY 不用改,最后点击提交按钮;

在这里插入图片描述

4、点击”开发文档“选项,选择“超级鹰图像识别 Python 语言 Demo 下载”选项,将对应代码的压缩包下载下来,解压;

在这里插入图片描述

5、解压后的文件里,找到.py文件,通过 pycharm 打开后,按提示修改以下代码。

if __name__ == '__main__':#用户中心>>软件ID 生成一个替换 96001chaojiying = Chaojiying_Client('超级鹰用户名', '超级鹰用户名的密码', '96001')#本地图片文件路径 来替换 a.jpg 有时WIN系统须要//im = open('a.jpg', 'rb').read()#1902 验证码类型  官方网站>>价格体系 3.4+版 print 后要加()print(chaojiying.PostPic(im, 1902))#print chaojiying.PostPic(base64_str, 1902)  #此处为传入 base64代码

二、图片验证模拟登录

目标网站:https://www.bilibili.com/

需求:模拟登录

1、页面分析

采用 selenium 技术进行模拟登录

1.1、模拟用户正常登录流程

  • 在网站首页点击登录按钮;
  • 弹出框输入账号和密码,点击登录按钮;
  • 出现验证码图片识别。

1.2、识别图片里面的文字

  • 获取要识别的文字(通过 selenium 的截图功能,先截全屏,然后将验证码图片抠出来);
  • 使用超级鹰识别验证码图片文字,获取文字的坐标;
  • 根据文字坐标进行点击;
  • 点击完成,最后点击确认按钮。

2、代码实现

import time # 导入 time 模块,用于时间相关操作
from PIL import Image # 导入 Image 模块,用于图像处理
from selenium import webdriver # 导入 webdriver 模块,用于自动化测试和控制浏览器
from selenium.webdriver import ActionChains # 导入 ActionChains 类,用于模拟用户操作
from selenium.webdriver.common.by import By # 导入 By 类,用于定位元素
from selenium.webdriver.support.wait import WebDriverWait # 导入 WebDriverWait 类,用于等待元素加载
from selenium.webdriver.support import expected_conditions as EC # 导入 EC 模块,用于预期条件判断
from chaojiying_Python.chaojiying import Chaojiying_Client # 引入超级鹰验证码识别 API 客户端class Bili_login(object):# 初始法方法,用户名跟密码def __init__(self, username, password):# 加载驱动self.driver = webdriver.Chrome()# 窗口最大化self.driver.maximize_window()# 目标 urlself.url = 'https://www.bilibili.com/'# 用户名self.username = username# 密码self.password = password# 显示等待,判断驱动是否加载出来self.wait = WebDriverWait(self.driver, 100)# 加载得到验证码图片def get_img(self):# 加载网站self.driver.get(self.url)# 等待2秒time.sleep(2)# 点击登录self.driver.find_element(By.CLASS_NAME, 'header-login-entry').click()# 显示等待,判断账号与密码输入框是否加载出来self.wait.until(EC.presence_of_element_located((By.CLASS_NAME, 'login-pwd-wp')) # 注意方法里面要填元组)# 输入账号self.driver.find_element(By.XPATH, '//form[@class="tab__form"]/div[1]/input').send_keys(self.username)# 等待0.5秒time.sleep(0.5)# 输入密码self.driver.find_element(By.XPATH, '//form[@class="tab__form"]/div[3]/input').send_keys(self.username)# 点击登录self.driver.find_element(By.CLASS_NAME, 'btn_primary ').click()# 判断验证码元素是否加载出来self.wait.until(EC.presence_of_element_located((By.CLASS_NAME, 'geetest_item_img')))# 保存验证码图片div_img = self.save_img()# 返回验证码图片return div_img# 下载验证码图片到本地def save_img(self):# 等待2秒time.sleep(2)# 截全屏图片self.driver.save_screenshot('images/back_img.png')# 获取验证码图片的元素div_img = self.driver.find_element(By.CLASS_NAME, 'geetest_panel_next')# 获取左上角的坐标,返回 x,y 的坐标location = div_img.location# 获取宽度和高度size = div_img.size# 获取左上角的坐标x1, y1 = int(location['x']), int(location['y'])# 获取右下角的坐标x2, y2 = x1 + size['width'], y1 + size['height']# 加载背景图back_img = Image.open('images/back_img.png')# 截图,截图建议电脑缩放比例为100%img = back_img.crop((x1, y1, x2, y2))# 保存图片img.save('images/验证码图片.png')# 返回验证码图片的元素return div_img# 点击文字做验证def click_font(self, loc_dic, div_img):# 循环依次点击for x, y in loc_dic.items():# 鼠标行为链action = ActionChains(self.driver)# 鼠标移动点击action.move_to_element_with_offset(div_img, int(x), int(y)).click().perform()# 等待1秒time.sleep(1)# 点击确定self.driver.find_element(By.CLASS_NAME, 'geetest_commit_tip').click()# 主逻辑处理def main(self):# 加载得到验证码图片div_img = self.get_img()# 用超级鹰识别位置chaojiying = Chaojiying_Client('超级鹰用户名', '超级鹰用户名的密码', '949117')# 本地图片文件路径im = open('images/验证码图片.png', 'rb').read()# 验证码类型log_list = chaojiying.PostPic(im, 9004)['pic_str'].split('|')# 处理坐标数据loc_dic = {i.split(',')[0]: i.split(',')[1] for i in log_list}# 打印位置坐标# print(loc_dic)# 点击图片内文字self.click_font(loc_dic, div_img)# 主程序
if __name__ == '__main__':# 创建了一个对象b = Bili_login('123456', '123456')# 调用 main 方法b.main()

三、滑块模拟登录

目标网站:https://www.geetest.com/demo/slide-float.html

需求:模拟登录

1、页面分析

点击“点击按钮进行验证",会出现滑块。

滑块验证一般使用 selenium 实现,需要先确定滑动的距离。

获取缺口位置(三种方法)

  • 通过对比像素获取缺口位置
  • 通过 openCV 的方式,得到缺口位置
  • 百度智能云(机器学习)识别缺口位置

使用 selenium 进行滑动。

2、代码实现(通过对比像素获取缺口位置)

将图片保存下来,通过像素识别,需要获取两张图片。一张背景图片(有缺口),一张完整图片。对比像素,拿到缺口位置的坐标,使用 selenium 进行滑动。

import random  # 导入 random 模块,用于生成随机数
import time  # 导入 time 模块,用于时间相关操作
import pyautogui  # 导入 pyautogui 模块,用于控制鼠标和键盘
from PIL import Image  # 导入 Image 模块,用于图像处理
from selenium.webdriver.support.wait import WebDriverWait  # 导入 WebDriverWait 类,用于等待元素加载
from selenium import webdriver  # 导入 webdriver 模块,用于自动化测试和控制浏览器
from selenium.webdriver.support import expected_conditions as EC  # 导入 EC 模块,用于预期条件判断
from selenium.webdriver.common.by import By  # 导入 By 类,用于定位元素class FloatSlide(object):# 初始化方法def __init__(self):# 确定 urlself.url = 'https://www.geetest.com/demo/slide-float.html'# 加载驱动self.driver = webdriver.Chrome()# 最大化窗口self.driver.maximize_window()# 显示等待self.wait = WebDriverWait(self.driver, 100)# 缺口图片保存位置self.gap_img = 'images/gap.png'# 完整图片保存位置self.intact_img = 'images/intact.png'# 加载图片并截取图片def load_img(self):# 加载网站self.driver.get(self.url)# 等待2秒time.sleep(2)# 点击按钮self.driver.find_element(By.CLASS_NAME, 'geetest_radar_tip').click()# 用显示判断,图片是否加载出来self.wait.until(EC.presence_of_element_located((By.XPATH, '//div[@class="geetest_slicebg geetest_absolute"]')))# 修改样式,获取缺口图片self.driver.execute_script('document.querySelectorAll("canvas")[1].style="opacity: 1; display: none;"')# 找到验证码图片的标签元素div_img = self.driver.find_element(By.CLASS_NAME, 'geetest_window')# 等待1秒time.sleep(1)# 缺口图片的保存位置div_img.screenshot(self.gap_img)# 修改样式,获取完整图片self.driver.execute_script('document.querySelectorAll("canvas")[2].style=""')# 完整图片的保存位置div_img.screenshot(self.intact_img)# 恢复样式self.driver.execute_script('document.querySelectorAll("canvas")[1].style="opacity: 1; display: block;"')# 对比验证图片,获取缺口位置def get_gap(self):# 加载缺口图片gap_img = Image.open(self.gap_img)# 加载完整图片intact_img = Image.open(self.intact_img)# 从第一个位置开始做对比left = 0# 嵌套循环做对比for x in range(0, gap_img.size[0]):for y in range(0, gap_img.size[1]):# 判断像素if not self.is_pixel_equal(gap_img, intact_img, x, y):# 相同赋值给 leftleft = x# 不相同,返回 x 坐标return left# 判断像素def is_pixel_equal(self, gap_img, intact_img, x, y):# 加载缺口图片位置pixel1 = gap_img.load()[x, y]# 加载完整图片位置pixel2 = intact_img.load()[x, y]# 打印图片位置# print(pixel1, pixel2)# 阈值threshold = 60# 对比 RGBif abs(pixel1[0] - pixel2[0]) < threshold and abs(pixel1[1] - pixel2[1]) < threshold and abs(pixel1[2] - pixel2[2]) < threshold:# 在阈值内相似返回 Truereturn True# 不在阈值内不相似返回 False,缺口找到return False# 滑动滑块def move_slide(self, offset_x, offset_y, left):# pip install pyautogui 导入 pyautogui 模块,用于控制鼠标和键盘# 将鼠标移动到指定位置 (offset_x, offset_y)pyautogui.moveTo(offset_x, offset_y, duration=0.1 + random.uniform(0, 0.1 + random.randint(1, 100) / 100))# 按下鼠标,准备开始滑动pyautogui.mouseDown()# 在当前 offset_y 的基础上增加一个随机值offset_y += random.randint(9, 19)# 将鼠标移动到偏移位置 (offset_x + int(left * 随机值), offset_y)pyautogui.moveTo(offset_x + int(left * random.randint(15, 25) / 20), offset_y, duration=0.28)# 在当前 offset_y 的基础上减少一个随机值offset_y += random.randint(-9, 0)# 将鼠标移动到偏移位置 (offset_x + int(left * 随机值), offset_y)pyautogui.moveTo(offset_x + int(left * random.randint(17, 23) / 20), offset_y,duration=random.randint(20, 31) / 100)# 在当前 offset_y 的基础上增加一个随机值offset_y += random.randint(0, 8)# 将鼠标移动到偏移位置 (offset_x + int(left * 随机值), offset_y)pyautogui.moveTo(offset_x + int(left * random.randint(19, 21) / 20), offset_y,duration=random.randint(20, 40) / 100)# 在当前 offset_y 的基础上增加或减少一个随机值offset_y += random.randint(-3, 3)# 将鼠标移动到偏移位置 (left + offset_x + 随机值, offset_y)pyautogui.moveTo(left + offset_x + random.randint(-3, 3), offset_y,duration=0.5 + random.randint(-10, 10) / 100)# 在当前 offset_y 的基础上增加或减少一个随机值offset_y += random.randint(-2, 2)# 将鼠标移动到偏移位置 (left + offset_x + 随机值, offset_y)pyautogui.moveTo(left + offset_x + random.randint(-2, 2), offset_y, duration=0.5 + random.randint(-3, 3) / 100)# 松开鼠标左键,结束滑动操作pyautogui.mouseUp()# 等待3秒time.sleep(3)# 主函数def main(self):# 加载图片并截取图片self.load_img()# 对比验证图片,获取缺口位置left = self.get_gap()# 误差值left -= 6# 根据位置滑动滑块(测量一下浏览器左上角到滑块按钮的距离)x = 1260y = 490# 滑动滑块self.move_slide(x, y, left)# 主程序
if __name__ == '__main__':# 创建了一个对象f = FloatSlide()# 调用 main 方法f.main()

四、openCV

1、简介

OpenCV(Open Source Computer Vision)是一个开源的计算机视觉库,它提供了丰富的图像和视频处理函数,可用于开发计算机视觉相关的应用程序。

2、代码

识别缺口位置,获取缺口距离。

# pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple
import cv2def identify_gap(bg_image, tp_image, out="images/new_image.png"):"""通过cv2计算缺口位置:param bg_image: 有缺口的背景图片文件:param tp_image: 缺口小图文件图片文件:param out: 绘制缺口边框之后的图片:return: 返回缺口位置"""# 读取背景图片和缺口图片bg_img = cv2.imread(bg_image)  # 背景图片tp_img = cv2.imread(tp_image)  # 缺口图片# 识别图片边缘# 因为验证码图片里面的目标缺口通常是有比较明显的边缘 所以可以借助边缘检测算法结合调整阈值来识别缺口# 目前应用比较广泛的边缘检测算法是Canny John F.Canny在1986年所开发的一个多级边缘检测算法 效果挺好的bg_edge = cv2.Canny(bg_img, 100, 200)tp_edge = cv2.Canny(tp_img, 100, 200)print(bg_edge, tp_edge)# 转换图片格式# 得到了图片边缘的灰度图,进一步将其图片格式转为RGB格式bg_pic = cv2.cvtColor(bg_edge, cv2.COLOR_GRAY2RGB)tp_pic = cv2.cvtColor(tp_edge, cv2.COLOR_GRAY2RGB)# 缺口匹配# 一幅图像中找与另一幅图像最匹配(相似)部分 算法:cv2.TM_CCOEFF_NORMED# 在背景图片中搜索对应的缺口res = cv2.matchTemplate(bg_pic, tp_pic, cv2.TM_CCOEFF_NORMED)# res为每个位置的匹配结果,代表了匹配的概率,选出其中「概率最高」的点,即为缺口匹配的位置# 从中获取min_val,max_val,min_loc,max_loc分别为匹配的最小值、匹配的最大值、最小值的位置、最大值的位置min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)  # 寻找最优匹配# 绘制方框th, tw = tp_pic.shape[:2]tl = max_loc  # 左上角点的坐标br = (tl[0] + tw, tl[1] + th)  # 右下角点的坐标cv2.rectangle(bg_img, tl, br, (0, 0, 255), 2)  # 绘制矩形cv2.imwrite(out, bg_img)  # 保存在本地# 返回缺口的X坐标return tl[0]# 传入两张图片,返回缺口位置
left = identify_gap('images/jindong_bg.png', 'images/jingdong_gap.png')

3、案例

需求:用 selenium 进行模拟登录

目标网站:https://passport.jd.com/new/login.aspx

页面分析

  • 切换密码登录模式
  • 输入账号和密码
  • 点击登录按钮
  • 加载完滑块之后,获取滑块验证码图片
  • 识别缺口位置,获取距离,进行滑动

代码实现

1、搭建框架

import random # 导入 random 模块,用于生成随机数
import time # 导入 time 模块,用于添加时间延迟
import cv2 # 导入 OpenCV 模块,用于图像处理
import pyautogui # 导入 pyautogui 模块,用于模拟鼠标和键盘操作
from selenium.webdriver.support.wait import WebDriverWait # 导入 WebDriverWait 类,用于等待条件
from selenium import webdriver # 导入 webdriver 模块,用于控制浏览器
from selenium.webdriver.support import expected_conditions as EC # 导入 expected_conditions 模块,用于指定预期条件
from selenium.webdriver.common.by import By # 导入 By 模块,用于指定元素定位方式
from PIL import Image # 导入 Image 模块,用于图像处理
import urllib.request # 导入 urllib.request 模块,用于进行网络请求class JinDong_Logic(object):# 初始化操作def __init__(self, username, password):pass# 获取缺口图片def login(self):pass# 计算缺口位置def identify_gap(self, bg_image, tp_image, out="images/new_image.png"):pass# 滑动函数def move_slide(self, offset_x, offset_y, left):pass# 主程序
if __name__ == '__main__':# 创建对象l = JinDong_Logic('123', 'abcd')# 调用 login 方法l.login()

2、初始化操作

	# 初始化操作def __init__(self, username, password):# 确定 urlself.url = 'https://passport.jd.com/new/login.aspx'# 账号self.username = username# 密码self.password = password# 加载驱动self.driver = webdriver.Chrome()# 窗口最大化self.driver.maximize_window()# 显示等待self.wait = WebDriverWait(self.driver, 100)# 设置图片保存位置# 有缺口的背景图片self.bg_img = 'images/bg_img.png'# 缺口小图片self.gap_img = 'images/gap_img.png'

3、获取缺口图片

	# 获取缺口图片def login(self):# 加载 urlself.driver.get(self.url)# 等待1秒time.sleep(1)# 切换登录方式self.driver.find_element(By.CLASS_NAME, 'login-tab-r').click()# 输入账号self.driver.find_element(By.ID, 'loginname').send_keys(self.username)# 输入密码self.driver.find_element(By.ID, 'nloginpwd').send_keys(self.password)# 等待0.5秒time.sleep(0.5)# 点击登录按钮self.driver.find_element(By.ID, 'loginsubmit').click()# 显示等待判断图片是否加载出来self.wait.until(EC.presence_of_element_located((By.CLASS_NAME, 'JDJRV-slide ')))# 获取背景图片(向图片链接发请求,获取图片)bg_img_url = self.driver.find_element(By.XPATH, '//div[@class="JDJRV-bigimg"]/img').get_attribute('src')# 保存图片urllib.request.urlretrieve(bg_img_url, self.bg_img)# 获取缺口图片gap_img_url = self.driver.find_element(By.XPATH, '//div[@class="JDJRV-smallimg"]/img').get_attribute('src')# 保存图片urllib.request.urlretrieve(gap_img_url, self.gap_img)# 修改背景图片的尺寸im = Image.open(self.bg_img)# 重新设置图片尺寸image = im.resize((278, 108))# 保存图片image.save('images/1.png')# 修改缺口图片的尺寸im1 = Image.open(self.gap_img)# 重新设置图片尺寸image1 = im1.resize((39, 39))# 保存图片image1.save('images/2.png')# 获取两张图片,计算缺口位置,识别距离left = self.identify_gap('images/1.png', 'images/2.png')# 根据位置滑动滑块(测量一下浏览器左上角到滑块按钮的距离)x, y = 1485, 485# 滑动self.move_slide(x, y, left)

4、计算缺口位置

	# 计算缺口位置def identify_gap(self, bg_image, tp_image, out="images/new_image.png"):"""通过cv2计算缺口位置:param bg_image: 有缺口的背景图片文件:param tp_image: 缺口小图文件图片文件:param out: 绘制缺口边框之后的图片:return: 返回缺口位置"""# 读取背景图片和缺口图片bg_img = cv2.imread(bg_image)  # 背景图片tp_img = cv2.imread(tp_image)  # 缺口图片# 识别图片边缘# 因为验证码图片里面的目标缺口通常是有比较明显的边缘 所以可以借助边缘检测算法结合调整阈值来识别缺口# 目前应用比较广泛的边缘检测算法是Canny John F.Canny在1986年所开发的一个多级边缘检测算法 效果挺好的bg_edge = cv2.Canny(bg_img, 100, 200)tp_edge = cv2.Canny(tp_img, 100, 200)print(bg_edge, tp_edge)# 转换图片格式# 得到了图片边缘的灰度图,进一步将其图片格式转为RGB格式bg_pic = cv2.cvtColor(bg_edge, cv2.COLOR_GRAY2RGB)tp_pic = cv2.cvtColor(tp_edge, cv2.COLOR_GRAY2RGB)# 缺口匹配# 一幅图像中找与另一幅图像最匹配(相似)部分 算法:cv2.TM_CCOEFF_NORMED# 在背景图片中搜索对应的缺口res = cv2.matchTemplate(bg_pic, tp_pic, cv2.TM_CCOEFF_NORMED)# res为每个位置的匹配结果,代表了匹配的概率,选出其中「概率最高」的点,即为缺口匹配的位置# 从中获取min_val,max_val,min_loc,max_loc分别为匹配的最小值、匹配的最大值、最小值的位置、最大值的位置min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)  # 寻找最优匹配# 绘制方框th, tw = tp_pic.shape[:2]tl = max_loc  # 左上角点的坐标br = (tl[0] + tw, tl[1] + th)  # 右下角点的坐标cv2.rectangle(bg_img, tl, br, (0, 0, 255), 2)  # 绘制矩形cv2.imwrite(out, bg_img)  # 保存在本地# 返回缺口的X坐标return tl[0]

5、滑动函数

	# 滑动函数def move_slide(self, offset_x, offset_y, left):# pip install pyautogui 导入 pyautogui 模块,用于控制鼠标和键盘# 将鼠标移动到指定位置 (offset_x, offset_y)pyautogui.moveTo(offset_x, offset_y, duration=0.1 + random.uniform(0, 0.1 + random.randint(1, 100) / 100))# 按下鼠标,准备开始滑动pyautogui.mouseDown()# 在当前 offset_y 的基础上增加一个随机值offset_y += random.randint(9, 19)# 将鼠标移动到偏移位置 (offset_x + int(left * 随机值), offset_y)pyautogui.moveTo(offset_x + int(left * random.randint(15, 25) / 20), offset_y, duration=0.28)# 在当前 offset_y 的基础上减少一个随机值offset_y += random.randint(-9, 0)# 将鼠标移动到偏移位置 (offset_x + int(left * 随机值), offset_y)pyautogui.moveTo(offset_x + int(left * random.randint(17, 23) / 20), offset_y,duration=random.randint(20, 31) / 100)# 在当前 offset_y 的基础上增加一个随机值offset_y += random.randint(0, 8)# 将鼠标移动到偏移位置 (offset_x + int(left * 随机值), offset_y)pyautogui.moveTo(offset_x + int(left * random.randint(19, 21) / 20), offset_y,duration=random.randint(20, 40) / 100)# 在当前 offset_y 的基础上增加或减少一个随机值offset_y += random.randint(-3, 3)# 将鼠标移动到偏移位置 (left + offset_x + 随机值, offset_y)pyautogui.moveTo(left + offset_x + random.randint(-3, 3), offset_y,duration=0.5 + random.randint(-10, 10) / 100)# 在当前 offset_y 的基础上增加或减少一个随机值offset_y += random.randint(-2, 2)# 将鼠标移动到偏移位置 (left + offset_x + 随机值, offset_y)pyautogui.moveTo(left + offset_x + random.randint(-2, 2), offset_y, duration=0.5 + random.randint(-3, 3) / 100)# 松开鼠标左键,结束滑动操作pyautogui.mouseUp()# 等待3秒time.sleep(3)

完整代码

import random # 导入 random 模块,用于生成随机数
import time # 导入 time 模块,用于添加时间延迟
import cv2 # 导入 OpenCV 模块,用于图像处理
import pyautogui # 导入 pyautogui 模块,用于模拟鼠标和键盘操作
from selenium.webdriver.support.wait import WebDriverWait # 导入 WebDriverWait 类,用于等待条件
from selenium import webdriver # 导入 webdriver 模块,用于控制浏览器
from selenium.webdriver.support import expected_conditions as EC # 导入 expected_conditions 模块,用于指定预期条件
from selenium.webdriver.common.by import By # 导入 By 模块,用于指定元素定位方式
from PIL import Image # 导入 Image 模块,用于图像处理
import urllib.request # 导入 urllib.request 模块,用于进行网络请求class JinDong_Logic(object):# 初始化操作def __init__(self, username, password):# 确定 urlself.url = 'https://passport.jd.com/new/login.aspx'# 账号self.username = username# 密码self.password = password# 加载驱动self.driver = webdriver.Chrome()# 窗口最大化self.driver.maximize_window()# 显示等待self.wait = WebDriverWait(self.driver, 100)# 设置图片保存位置# 有缺口的背景图片self.bg_img = 'images/bg_img.png'# 缺口小图片self.gap_img = 'images/gap_img.png'# 获取缺口图片def login(self):# 加载 urlself.driver.get(self.url)# 等待1秒time.sleep(1)# 切换登录方式self.driver.find_element(By.CLASS_NAME, 'login-tab-r').click()# 输入账号self.driver.find_element(By.ID, 'loginname').send_keys(self.username)# 输入密码self.driver.find_element(By.ID, 'nloginpwd').send_keys(self.password)# 等待0.5秒time.sleep(0.5)# 点击登录按钮self.driver.find_element(By.ID, 'loginsubmit').click()# 显示等待判断图片是否加载出来self.wait.until(EC.presence_of_element_located((By.CLASS_NAME, 'JDJRV-slide ')))# 获取背景图片(向图片链接发请求,获取图片)bg_img_url = self.driver.find_element(By.XPATH, '//div[@class="JDJRV-bigimg"]/img').get_attribute('src')# 保存图片urllib.request.urlretrieve(bg_img_url, self.bg_img)# 获取缺口图片gap_img_url = self.driver.find_element(By.XPATH, '//div[@class="JDJRV-smallimg"]/img').get_attribute('src')# 保存图片urllib.request.urlretrieve(gap_img_url, self.gap_img)# 修改背景图片的尺寸im = Image.open(self.bg_img)# 重新设置图片尺寸image = im.resize((278, 108))# 保存图片image.save('images/1.png')# 修改缺口图片的尺寸im1 = Image.open(self.gap_img)# 重新设置图片尺寸image1 = im1.resize((39, 39))# 保存图片image1.save('images/2.png')# 获取两张图片,计算缺口位置,识别距离left = self.identify_gap('images/1.png', 'images/2.png')# 根据位置滑动滑块(测量一下浏览器左上角到滑块按钮的距离)x, y = 1485, 485# 滑动self.move_slide(x, y, left)# 计算缺口位置def identify_gap(self, bg_image, tp_image, out="images/new_image.png"):"""通过cv2计算缺口位置:param bg_image: 有缺口的背景图片文件:param tp_image: 缺口小图文件图片文件:param out: 绘制缺口边框之后的图片:return: 返回缺口位置"""# 读取背景图片和缺口图片bg_img = cv2.imread(bg_image)  # 背景图片tp_img = cv2.imread(tp_image)  # 缺口图片# 识别图片边缘# 因为验证码图片里面的目标缺口通常是有比较明显的边缘 所以可以借助边缘检测算法结合调整阈值来识别缺口# 目前应用比较广泛的边缘检测算法是Canny John F.Canny在1986年所开发的一个多级边缘检测算法 效果挺好的bg_edge = cv2.Canny(bg_img, 100, 200)tp_edge = cv2.Canny(tp_img, 100, 200)print(bg_edge, tp_edge)# 转换图片格式# 得到了图片边缘的灰度图,进一步将其图片格式转为RGB格式bg_pic = cv2.cvtColor(bg_edge, cv2.COLOR_GRAY2RGB)tp_pic = cv2.cvtColor(tp_edge, cv2.COLOR_GRAY2RGB)# 缺口匹配# 一幅图像中找与另一幅图像最匹配(相似)部分 算法:cv2.TM_CCOEFF_NORMED# 在背景图片中搜索对应的缺口res = cv2.matchTemplate(bg_pic, tp_pic, cv2.TM_CCOEFF_NORMED)# res为每个位置的匹配结果,代表了匹配的概率,选出其中「概率最高」的点,即为缺口匹配的位置# 从中获取min_val,max_val,min_loc,max_loc分别为匹配的最小值、匹配的最大值、最小值的位置、最大值的位置min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)  # 寻找最优匹配# 绘制方框th, tw = tp_pic.shape[:2]tl = max_loc  # 左上角点的坐标br = (tl[0] + tw, tl[1] + th)  # 右下角点的坐标cv2.rectangle(bg_img, tl, br, (0, 0, 255), 2)  # 绘制矩形cv2.imwrite(out, bg_img)  # 保存在本地# 返回缺口的X坐标return tl[0]# 滑动函数def move_slide(self, offset_x, offset_y, left):# pip install pyautogui 导入 pyautogui 模块,用于控制鼠标和键盘# 将鼠标移动到指定位置 (offset_x, offset_y)pyautogui.moveTo(offset_x, offset_y, duration=0.1 + random.uniform(0, 0.1 + random.randint(1, 100) / 100))# 按下鼠标,准备开始滑动pyautogui.mouseDown()# 在当前 offset_y 的基础上增加一个随机值offset_y += random.randint(9, 19)# 将鼠标移动到偏移位置 (offset_x + int(left * 随机值), offset_y)pyautogui.moveTo(offset_x + int(left * random.randint(15, 25) / 20), offset_y, duration=0.28)# 在当前 offset_y 的基础上减少一个随机值offset_y += random.randint(-9, 0)# 将鼠标移动到偏移位置 (offset_x + int(left * 随机值), offset_y)pyautogui.moveTo(offset_x + int(left * random.randint(17, 23) / 20), offset_y,duration=random.randint(20, 31) / 100)# 在当前 offset_y 的基础上增加一个随机值offset_y += random.randint(0, 8)# 将鼠标移动到偏移位置 (offset_x + int(left * 随机值), offset_y)pyautogui.moveTo(offset_x + int(left * random.randint(19, 21) / 20), offset_y,duration=random.randint(20, 40) / 100)# 在当前 offset_y 的基础上增加或减少一个随机值offset_y += random.randint(-3, 3)# 将鼠标移动到偏移位置 (left + offset_x + 随机值, offset_y)pyautogui.moveTo(left + offset_x + random.randint(-3, 3), offset_y,duration=0.5 + random.randint(-10, 10) / 100)# 在当前 offset_y 的基础上增加或减少一个随机值offset_y += random.randint(-2, 2)# 将鼠标移动到偏移位置 (left + offset_x + 随机值, offset_y)pyautogui.moveTo(left + offset_x + random.randint(-2, 2), offset_y, duration=0.5 + random.randint(-3, 3) / 100)# 松开鼠标左键,结束滑动操作pyautogui.mouseUp()# 等待3秒time.sleep(3)# 主程序
if __name__ == '__main__':# 创建对象l = JinDong_Logic('123', 'abcd')# 调用 login 方法l.login()

五、selenium 反爬

在这里插入图片描述

去除 selenium 标志:

1、进入 chrome 路径

2、在文件路径出输入cmd ,回车,打开终端

3、导入 ChromeOptions 类,用于配置 Chrome 浏览器选项

from selenium.webdriver.chrome.options import Options

4、加入代码

# 创建 Options 对象,用于配置浏览器选项
options = Options()
# 连接浏览器到指定的调试地址
options.add_experimental_option('debuggerAddress', '127.0.0.1:9222')
# 加载驱动
self.driver = webdriver.Chrome(options=options)

5、把谷歌浏览器全部关闭,在终端里启动命令

chrome --remote-debugging-port=9222

6、在 PyCharm 里运行代码

案例

import random # 导入 random 模块,用于生成随机数
import time # 导入 time 模块,用于添加时间延迟
import cv2 # 导入 OpenCV 模块,用于图像处理
import pyautogui # 导入 pyautogui 模块,用于模拟鼠标和键盘操作
from selenium.webdriver.chrome.options import Options # 导入 ChromeOptions 类,用于配置 Chrome 浏览器选项
from selenium.webdriver.support.wait import WebDriverWait # 导入 WebDriverWait 类,用于等待条件
from selenium import webdriver # 导入 webdriver 模块,用于控制浏览器
from selenium.webdriver.support import expected_conditions as EC # 导入 expected_conditions 模块,用于指定预期条件
from selenium.webdriver.common.by import By # 导入 By 模块,用于指定元素定位方式
from PIL import Image # 导入 Image 模块,用于图像处理
import urllib.request # 导入 urllib.request 模块,用于进行网络请求class JinDong_Logic(object):# 初始化操作def __init__(self, username, password):# 确定 urlself.url = 'https://passport.jd.com/new/login.aspx'# 账号self.username = username# 密码self.password = password# 创建 Options 对象,用于配置浏览器选项options = Options()# 连接浏览器到指定的调试地址options.add_experimental_option('debuggerAddress', '127.0.0.1:9222')# 加载驱动self.driver = webdriver.Chrome(options=options)# 窗口最大化self.driver.maximize_window()# 显示等待self.wait = WebDriverWait(self.driver, 100)# 设置图片保存位置# 有缺口的背景图片self.bg_img = 'images/bg_img.png'# 缺口小图片self.gap_img = 'images/gap_img.png'# 获取缺口图片def login(self):# 加载 urlself.driver.get(self.url)# 等待1秒time.sleep(1)# 切换登录方式self.driver.find_element(By.CLASS_NAME, 'login-tab-r').click()# 输入账号self.driver.find_element(By.ID, 'loginname').send_keys(self.username)# 输入密码self.driver.find_element(By.ID, 'nloginpwd').send_keys(self.password)# 等待0.5秒time.sleep(0.5)# 点击登录按钮self.driver.find_element(By.ID, 'loginsubmit').click()# 显示等待判断图片是否加载出来self.wait.until(EC.presence_of_element_located((By.CLASS_NAME, 'JDJRV-slide ')))# 获取背景图片(向图片链接发请求,获取图片)bg_img_url = self.driver.find_element(By.XPATH, '//div[@class="JDJRV-bigimg"]/img').get_attribute('src')# 保存图片urllib.request.urlretrieve(bg_img_url, self.bg_img)# 获取缺口图片gap_img_url = self.driver.find_element(By.XPATH, '//div[@class="JDJRV-smallimg"]/img').get_attribute('src')# 保存图片urllib.request.urlretrieve(gap_img_url, self.gap_img)# 修改背景图片的尺寸im = Image.open(self.bg_img)# 重新设置图片尺寸image = im.resize((278, 108))# 保存图片image.save('images/1.png')# 修改缺口图片的尺寸im1 = Image.open(self.gap_img)# 重新设置图片尺寸image1 = im1.resize((39, 39))# 保存图片image1.save('images/2.png')# 获取两张图片,计算缺口位置,识别距离left = self.identify_gap('images/1.png', 'images/2.png')# 根据位置滑动滑块(测量一下浏览器左上角到滑块按钮的距离)x, y = 1485, 455# 滑动self.move_slide(x, y, left)# 计算缺口位置def identify_gap(self, bg_image, tp_image, out="images/new_image.png"):"""通过cv2计算缺口位置:param bg_image: 有缺口的背景图片文件:param tp_image: 缺口小图文件图片文件:param out: 绘制缺口边框之后的图片:return: 返回缺口位置"""# 读取背景图片和缺口图片bg_img = cv2.imread(bg_image)  # 背景图片tp_img = cv2.imread(tp_image)  # 缺口图片# 识别图片边缘# 因为验证码图片里面的目标缺口通常是有比较明显的边缘 所以可以借助边缘检测算法结合调整阈值来识别缺口# 目前应用比较广泛的边缘检测算法是Canny John F.Canny在1986年所开发的一个多级边缘检测算法 效果挺好的bg_edge = cv2.Canny(bg_img, 100, 200)tp_edge = cv2.Canny(tp_img, 100, 200)print(bg_edge, tp_edge)# 转换图片格式# 得到了图片边缘的灰度图,进一步将其图片格式转为RGB格式bg_pic = cv2.cvtColor(bg_edge, cv2.COLOR_GRAY2RGB)tp_pic = cv2.cvtColor(tp_edge, cv2.COLOR_GRAY2RGB)# 缺口匹配# 一幅图像中找与另一幅图像最匹配(相似)部分 算法:cv2.TM_CCOEFF_NORMED# 在背景图片中搜索对应的缺口res = cv2.matchTemplate(bg_pic, tp_pic, cv2.TM_CCOEFF_NORMED)# res为每个位置的匹配结果,代表了匹配的概率,选出其中「概率最高」的点,即为缺口匹配的位置# 从中获取min_val,max_val,min_loc,max_loc分别为匹配的最小值、匹配的最大值、最小值的位置、最大值的位置min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)  # 寻找最优匹配# 绘制方框th, tw = tp_pic.shape[:2]tl = max_loc  # 左上角点的坐标br = (tl[0] + tw, tl[1] + th)  # 右下角点的坐标cv2.rectangle(bg_img, tl, br, (0, 0, 255), 2)  # 绘制矩形cv2.imwrite(out, bg_img)  # 保存在本地# 返回缺口的X坐标return tl[0]# 滑动函数def move_slide(self, offset_x, offset_y, left):# pip install pyautogui 导入 pyautogui 模块,用于控制鼠标和键盘# 将鼠标移动到指定位置 (offset_x, offset_y)pyautogui.moveTo(offset_x, offset_y, duration=0.1 + random.uniform(0, 0.1 + random.randint(1, 100) / 100))# 按下鼠标,准备开始滑动pyautogui.mouseDown()# 在当前 offset_y 的基础上增加一个随机值offset_y += random.randint(9, 19)# 将鼠标移动到偏移位置 (offset_x + int(left * 随机值), offset_y)pyautogui.moveTo(offset_x + int(left * random.randint(15, 25) / 20), offset_y, duration=0.28)# 在当前 offset_y 的基础上减少一个随机值offset_y += random.randint(-9, 0)# 将鼠标移动到偏移位置 (offset_x + int(left * 随机值), offset_y)pyautogui.moveTo(offset_x + int(left * random.randint(17, 23) / 20), offset_y,duration=random.randint(20, 31) / 100)# 在当前 offset_y 的基础上增加一个随机值offset_y += random.randint(0, 8)# 将鼠标移动到偏移位置 (offset_x + int(left * 随机值), offset_y)pyautogui.moveTo(offset_x + int(left * random.randint(19, 21) / 20), offset_y,duration=random.randint(20, 40) / 100)# 在当前 offset_y 的基础上增加或减少一个随机值offset_y += random.randint(-3, 3)# 将鼠标移动到偏移位置 (left + offset_x + 随机值, offset_y)pyautogui.moveTo(left + offset_x + random.randint(-3, 3), offset_y,duration=0.5 + random.randint(-10, 10) / 100)# 在当前 offset_y 的基础上增加或减少一个随机值offset_y += random.randint(-2, 2)# 将鼠标移动到偏移位置 (left + offset_x + 随机值, offset_y)pyautogui.moveTo(left + offset_x + random.randint(-2, 2), offset_y, duration=0.5 + random.randint(-3, 3) / 100)# 松开鼠标左键,结束滑动操作pyautogui.mouseUp()# 等待3秒time.sleep(3)# 主程序
if __name__ == '__main__':# 创建对象l = JinDong_Logic('123', 'abcd')# 调用 login 方法l.login()

六、百度智能云 —— EasyDL

1、简介

百度智能云的 EasyDL 是一个基于深度学习的图像识别和目标检测平台,它提供了简单易用的接口和工具,使开发者可以轻松构建自己的图像识别模型。

准备该网站有缺口的背景图片,做一个训练集,运用了机器学习知识。将这些训练集导入百度智能云,在此平台标注出每一张图片的缺口位置,根据图片以及标注缺口位置,就能训练出一个模型。

有了该模型,如果传入类似的图片,就可以识别缺口位置,获取缺口的距离。

2、使用步骤

2.1、打开网站 EasyDL-零门槛AI开发平台;

2.2、点击“立即使用”;

在这里插入图片描述

2.3、点击“物体检测”;

在这里插入图片描述

2.4、点击“数据总览”,点击“创建数据集”;

在这里插入图片描述

2.5、填写数据集名称后,点击“创建并导入”;

在这里插入图片描述

2.6、导入图片后,点击“确认并返回”;

在这里插入图片描述

2.7、点击“查看与标注”;

在这里插入图片描述

2.8、点击“添加标签”;

在这里插入图片描述

2.9、填入标签名称后,点击“确定”;

在这里插入图片描述

2.10、点击“标注图片”;

在这里插入图片描述

2.11、将每一张图片的缺口位置标注出来;

在这里插入图片描述

2.12、标注好之后的图片;

在这里插入图片描述

2.13、点击“我的模型”,点击“训练模型”;

在这里插入图片描述

2.14、个人信息可选“学生”,其它信息按情况填写好后,点击“完成创建”;

在这里插入图片描述

2.15、选择好要训练的数据集后,点击“下一步”;

在这里插入图片描述

2.16、训练方式选择“常规训练”,训练环境选择第一个后,点击“开始训练”;

在这里插入图片描述

2.17、等待训练完成;

在这里插入图片描述

2.18、训练完成,点击“校验”;

在这里插入图片描述

2.19、点击“启动模型校验服务”;

在这里插入图片描述

2.20、点击“点击添加图片”;

在这里插入图片描述

2.21、选择一张图片验证;

在这里插入图片描述

2.22、验证没有问题,可以点击“申请发布”;

在这里插入图片描述

2.23、填写“服务名称”和“接口地址”后,点击“提交申请”;

在这里插入图片描述

2.24、点击“服务详情”,点击“查看API文档”;

在这里插入图片描述

2.25、点击“EasyDL版控制台“;

在这里插入图片描述

2.26、登录之后,选择”公有云部署“,选择”应用列表“,点击”创建应用“;

在这里插入图片描述

2.27、填写”应用名称“,”应用归属“选择”个人“,简单填写一下”应用描述“,点击”立即创建“;

在这里插入图片描述

2.28、点击“返回应用列表”;

在这里插入图片描述

2.29、查看“API Key”,“Secret Key”值;

在这里插入图片描述

2.30、回到“接口赋权”页面,点击“物体检测API调用文档”,找到“请求代码示例”,点击“Python3”,复制代码;

在这里插入图片描述

"""
EasyDL 物体检测 调用模型公有云API Python3实现
"""import json
import base64
import requests
"""
使用 requests 库发送请求
使用 pip(或者 pip3)检查我的 python3 环境是否安装了该库,执行命令pip freeze | grep requests
若返回值为空,则安装该库pip install requests
"""# 目标图片的 本地文件路径,支持jpg/png/bmp格式
IMAGE_FILEPATH = "【您的测试图片地址,例如:./example.jpg】"# 可选的请求参数
# threshold: 默认值为建议阈值,请在 我的模型-模型效果-完整评估结果-详细评估 查看建议阈值
PARAMS = {"threshold": 0.3}# 服务详情 中的 接口地址
MODEL_API_URL = "【您的API地址】"# 调用 API 需要 ACCESS_TOKEN。若已有 ACCESS_TOKEN 则于下方填入该字符串
# 否则,留空 ACCESS_TOKEN,于下方填入 该模型部署的 API_KEY 以及 SECRET_KEY,会自动申请并显示新 ACCESS_TOKEN
ACCESS_TOKEN = "【您的ACESS_TOKEN】"
API_KEY = "【您的API_KEY】"
SECRET_KEY = "【您的SECRET_KEY】"print("1. 读取目标图片 '{}'".format(IMAGE_FILEPATH))
with open(IMAGE_FILEPATH, 'rb') as f:base64_data = base64.b64encode(f.read())base64_str = base64_data.decode('UTF8')
print("将 BASE64 编码后图片的字符串填入 PARAMS 的 'image' 字段")
PARAMS["image"] = base64_strif not ACCESS_TOKEN:print("2. ACCESS_TOKEN 为空,调用鉴权接口获取TOKEN")auth_url = "https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials"\"&client_id={}&client_secret={}".format(API_KEY, SECRET_KEY)auth_resp = requests.get(auth_url)auth_resp_json = auth_resp.json()ACCESS_TOKEN = auth_resp_json["access_token"]print("新 ACCESS_TOKEN: {}".format(ACCESS_TOKEN))
else:print("2. 使用已有 ACCESS_TOKEN")print("3. 向模型接口 'MODEL_API_URL' 发送请求")
request_url = "{}?access_token={}".format(MODEL_API_URL, ACCESS_TOKEN)
response = requests.post(url=request_url, json=PARAMS)
response_json = response.json()
response_str = json.dumps(response_json, indent=4, ensure_ascii=False)
print("结果:\n{}".format(response_str))

2.31、将“图片地址”,“API地址”,“ACESS_TOKEN”,“API_KEY”,“SECRET_KEY“等值替换成自己的

"""
EasyDL 物体检测 调用模型公有云API Python3实现
"""import json
import base64
import requests
"""
使用 requests 库发送请求
使用 pip(或者 pip3)检查我的 python3 环境是否安装了该库,执行命令pip freeze | grep requests
若返回值为空,则安装该库pip install requests
"""# 目标图片的 本地文件路径,支持jpg/png/bmp格式
IMAGE_FILEPATH = "images/1.png"# 可选的请求参数
# threshold: 默认值为建议阈值,请在 我的模型-模型效果-完整评估结果-详细评估 查看建议阈值
PARAMS = {"threshold": 0.3}# 服务详情 中的 接口地址
MODEL_API_URL = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/detection/jdyanzheng"# 调用 API 需要 ACCESS_TOKEN。若已有 ACCESS_TOKEN 则于下方填入该字符串
# 否则,留空 ACCESS_TOKEN,于下方填入 该模型部署的 API_KEY 以及 SECRET_KEY,会自动申请并显示新 ACCESS_TOKEN
ACCESS_TOKEN = ""
API_KEY = "API_KEY"
SECRET_KEY = "SECRET_KEY"print("1. 读取目标图片 '{}'".format(IMAGE_FILEPATH))
with open(IMAGE_FILEPATH, 'rb') as f:base64_data = base64.b64encode(f.read())base64_str = base64_data.decode('UTF8')
print("将 BASE64 编码后图片的字符串填入 PARAMS 的 'image' 字段")
PARAMS["image"] = base64_strif not ACCESS_TOKEN:print("2. ACCESS_TOKEN 为空,调用鉴权接口获取TOKEN")auth_url = "https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials"\"&client_id={}&client_secret={}".format(API_KEY, SECRET_KEY)auth_resp = requests.get(auth_url)auth_resp_json = auth_resp.json()ACCESS_TOKEN = auth_resp_json["access_token"]print("新 ACCESS_TOKEN: {}".format(ACCESS_TOKEN))
else:print("2. 使用已有 ACCESS_TOKEN")print("3. 向模型接口 'MODEL_API_URL' 发送请求")
request_url = "{}?access_token={}".format(MODEL_API_URL, ACCESS_TOKEN)
response = requests.post(url=request_url, json=PARAMS)
response_json = response.json()
response_str = json.dumps(response_json, indent=4, ensure_ascii=False)
print("结果:\n{}".format(response_str))

2.32、运行之后,可显示缺口的坐标位置。

在这里插入图片描述

记录学习过程,欢迎讨论交流,尊重原创,转载请注明出处~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/81781.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

中央处理器(408)

一、基本结构 【2010统考】下列寄存器中&#xff0c;汇编语言程序员可见的是&#xff08;B&#xff09; A、MAR B、PC C、MDR D、IR 解析&#xff1a;IR、MAR、MDR是内部工作寄存器&#xff0c;对程序员不可见 可见&#xff1a;通用寄存器、程序状态字…

概率统计笔记:从韦恩图的角度区分 条件概率和联合概率

联合概率&#xff1a;两个或多个事件同时发生的概率。用 P(A∩B) 或 P(A,B) 表示 条件概率&#xff1a;在已知某个事件发生的条件下&#xff0c;另一个事件发生的概率。用P(A∣B) 表示在事件 B 发生的条件下&#xff0c;事件 A 发生的概率。 不难发现联合概率的样本空间更大&am…

基于Java的高校宣讲会管理系统设计与实现(亮点:选题新颖、功能实用、老师看见直接过!)

高校宣讲会管理系统 一、前言二、我的优势2.1 自己的网站2.2 自己的小程序&#xff08;小蔡coding&#xff09;2.3 有保障的售后2.4 福利 三、开发环境与技术3.1 MySQL数据库3.2 Vue前端技术3.3 Spring Boot框架3.4 微信小程序 四、功能设计4.1 主要功能描述 五、系统实现5.1 前…

Ubuntu22.04开启后屏幕黄屏

1. 故障现象 系统&#xff1a;Ubuntu22.04 现象&#xff1a;电脑从开机到进入桌面一直屏幕黄屏 2. 故障分析 可能为屏幕色彩调节出现故障 3. 解决方案 系统设置——》色彩——》删除原来的配置&#xff08;remove profile&#xff09;——》添加配置Colorspace:Compatibl…

加速乐源码(golang版本)

一、分析 分析过程网上有很多,这里只说个大概,主要是提供golang源码 请求网站,发现前两次请求都会返回521,第三次请求成功,说明前两次请求肯定是干了什么事情;使用接口请求工具模拟请求分析该过程 使用postman工具请求 a. 第一次请求会在响应头返回jsluid,返回内容中拼接…

华为OD机试 - 流水线 - 逻辑分析(Java 2023 B卷 100分)

目录 专栏导读一、题目描述二、输入描述三、输出描述1、输入2、输出3、说明 四、解题思路五、Java算法源码六、效果展示1、输入2、输出3、说明 华为OD机试 2023B卷题库疯狂收录中&#xff0c;刷题点这里 专栏导读 本专栏收录于《华为OD机试&#xff08;JAVA&#xff09;真题&a…

提升前端开发效率:基于vue的van-radio-group组件封装指南

前言 vant 作为一款流行的 ui 框架&#xff0c;其中&#xff0c;van-radio-group 组件是一个常用的单选框组件&#xff0c;但有时我们需要根据项目需求进行定制化封装。本文将介绍如何基于 vue 框架封装 van-radio-group 组件&#xff0c;让我们一起来探索吧&#xff01; 封装文…

EFK代替ELK方案7.17.3

文章目录 一. 传统的ELK二. EFK2.1 安装elasticSearch2.2 服务端安装fileBeats2.2.1. 安装 该也没有必要安装odcker,直接下载yum或官网jar包启动即可.2.2.2.编辑配置文件 filebeat-java-logback.yml2.2.3. es配置common_log_pipeline解析日志 三.启动测试 最近发现,logstash日志…

性能测试 —— Jmeter 常用三种定时器

1、同步定时器 位置&#xff1a;HTTP请求->定时器->Synchronizing Timer 当需要进行大量用户的并发测试时&#xff0c;为了让用户能真正的同时执行&#xff0c;添加同步定时器&#xff0c;用户阻塞线程&#xff0c;知道线程数达到预先配置的数值&#xff0c;才开始执行…

rk平台快捷键进入uboot模式和烧录模式

(1)进入U-boot命令行模式 上电时,多次按下ctrlc按键(2)进入maskrom烧录模式 方法一:上电时(或者reboot时),多次按下ctrlb 方法二:在uboot命令 手敲rbrom

vue3 - 使用reactive定义响应式数据进行赋值时,视图没有改变,值已经改变的解决方案

问题&#xff1a; 在Vue 3.0 中我们使用 reactive() 定义的响应式数据的时候&#xff0c;当是一个数组或对象时&#xff0c;我们直接进行赋值&#xff0c;发现数据已经修改成功&#xff0c;但是页⾯并没有自动渲染成最新的数据&#xff1b;这是为什么呢&#xff1f; 就如同官网…

线性代数的本质(二)——线性变换与矩阵

文章目录 线性变换与矩阵线性变换与二阶方阵常见的线性变换复合变换与矩阵乘法矩阵的定义列空间与基矩阵的秩逆变换与逆矩阵 线性变换与矩阵 线性变换与二阶方阵 本节从二维平面出发学习线性代数。通常选用平面坐标系 O x y Oxy Oxy &#xff0c;基向量为 i , j \mathbf i,…

数据结构-时间复杂度/空间复杂度

Hello&#xff0c;好久没有更新了哦&#xff0c;已经开始学习数据结构了&#xff0c;这篇文章呢就是对刚学数据结构所接触到的时间复杂度进行一个分享哦&#xff0c;如果有错误之处&#xff0c;大家记得拍拍我哦~ 既然要讨论时间/空间复杂度&#xff0c;那我们就得知道时间/空…

SpringBoot国际化配置组件支持本地配置和数据库配置

文章目录 0. 前言i18n-spring-boot-starter1. 使用方式0.引入依赖1.配置项2.初始化国际化配置表3.如何使用 2. 核心源码实现一个拦截器I18nInterceptorI18nMessageResource 加载国际化配置 3.源码地址 0. 前言 写个了原生的SpringBoot国际化配置组件支持本地配置和数据库配置 背…

tdesign的文件上传(微信小程序+idea的springboot)

目录 1. springboot后端 1.1 FileController.java 1.2 listener文件的ErpApplicationListener.java 1.3 【重点&#xff01;】FileServiceImpl层 1.4 IFileService 1.5 StringUtil通用类 1.6 主程序加一个监听器 1.7 application.yml文件 2. 微信小程序端 2.1 TDesign的…

随机产生两个数在屏幕上打印,例如6*7=? 让学生输入答案,若正确打印答对了,否则提示学生重做,直到答对为止(小游戏)

#include<stdio.h> #include<stdlib.h> #include<time.h>//时间的库函数 int main() {int i 0;srand(time(0));//随机种子初始化int num1 rand() %10;//随机数int num2 rand() %10;printf("%d * %d ?\n", num1, num2);printf("请输入答案…

阿里云无影电脑:免费体验无影云电脑3个月

阿里云无影云电脑免费领取流程&#xff0c;免费无影云电脑配置为4核8G&#xff0c;可以免费使用3个月&#xff0c;阿里云百科分享阿里云无影云电脑&#xff08;云桌面&#xff09;免费申请入口、申请流程及免费使用限制条件说明&#xff1a; 目录 阿里云无影云电脑免费申请入…

【C++初阶】动态内存管理

​&#x1f47b;内容专栏&#xff1a; C/C编程 &#x1f428;本文概括&#xff1a; C/C内存分布、C语言动态内存管理、C动态内存管理、operator new与operator delete函数、new和delete的实现原理、定位new表达式、常见面试问题等。 &#x1f43c;本文作者&#xff1a; 阿四啊 …

CSRF和SSRF有什么不同?

文章目录 CSRF复现SSRF复现启动环境漏洞复现探测存活IP和端口服务计划任务反弹shell 区别 CSRF复现 打开dvwa&#xff0c;将难度调为low&#xff0c;点击CSRF&#xff0c;打开后发现有一个修改密码的输入框&#xff1a; 在这里修改密码&#xff0c;并用bp抓包&#xff0c;在…

C++实现观察者模式(包含源码)

文章目录 观察者模式一、基本概念二、实现方式三、角色四、过程五、结构图六、构建思路七、完整代码 观察者模式 一、基本概念 观察者模式&#xff08;又被称为模型&#xff08;Model&#xff09;-视图&#xff08;View&#xff09;模式&#xff09;是软件设计模式的一种。在…