Python大数据分析——一元与多元线性回归模型

Python大数据分析——一元与多元线性回归模型

  • 相关分析
    • 概念
    • 示例
  • 一元线性回归模型
    • 概念
    • 理论分析
    • 函数
    • 示例
  • 多元线性回归模型
    • 概念
    • 理论分析
    • 示例
  • 线性回归模型的假设检验
    • 模型的F检验
      • 理论分析
      • 示例
    • 模型的T检验
      • 理论分析
      • 示例

相关分析

概念

在这里插入图片描述
a 正相关;b 负相关;c 不相关;d 存在关系但不存在线性关系

相关系数的计算:
在这里插入图片描述
相关系数ρ一定是取[-1,1]之间的数

示例

对于一元的:

# 导入第三方模块
import pandas as pd
income = pd.read_csv('D:\pythonProject\data\Salary_Data.csv')
# 查看变量有哪些
income.columns
# 查看两者的相关性
income.Salary.corr(income.YearsExperience)

输出:

0.9782416184887598

对于多元的:

# 导入第三方模块
import pandas as pd
# 导入数据
Profit = pd.read_excel(r'D:\pythonProject\data\Predict to Profit.xlsx')
# 查看变量有哪些
Profit.columns
# 查看多对一的相关性(要删除其中的离散变量)
Profit.drop('State', axis=1).corrwith(Profit['Profit'])

输出:
在这里插入图片描述
如果在多元中找两两的相关性用:

# 导入第三方模块
import pandas as pd
# 导入数据
Profit = pd.read_excel(r'D:\pythonProject\data\Predict to Profit.xlsx')
# 查看变量有哪些
Profit.columns
# 查看两两的相关性(要删除其中的离散变量)
Profit.drop('State', axis=1).corr()

输出:
在这里插入图片描述

一元线性回归模型

概念

一元线性回归是分析只有一个自变量(自变量x和因变量y)线性相关关系的方法。一个经济指标的数值往往受许多因素影响,若其中只有一个因素是主要的,起决定性作用,则可用一元线性回归进行预测分析。
在这里插入图片描述

理论分析

首先观察点的分布

在这里插入图片描述
1、两边变量之间存在明显的线性关系;
2、根据常识,工作年限是因,薪资水平是果;
3、是否存在某个模型(即图中的一次函数)可以刻画两个变量
之间的关系呢?

可以根据一元线性函数可得

在这里插入图片描述
1、模型中的x称为自变量,y称为因变量;
2、a为模型的截距项,b为模型的斜率项,ε为模型的误差项;
3、误差项ε的存在主要是为了平衡等号两边的值,通常被称为模型
无法解释的部分;

那么接下来就要考虑a和b如何求解

为了确保生成的线与点的距离靠近,也就是距离最近。
思路:
1、如果拟合线能够精确地捕捉到每一个点(即所有散点全部落在拟
合线上),那么对应的误差项ε应该为0;
2、所以,模型拟合的越好,则误差项ε应该越小。进而可以理解为:
求解参数的问题便是求解误差平方和最小的问题;
在这里插入图片描述
那么公式就为

为什么是平方,因为当点在生成线的下面时,差值为负,为了防止正负相消,我们取平方的值保障为正。
在这里插入图片描述
1、J(a,b)为目标函数,需求这个函数的最小值
2、我们求J最小值,求解方法便是计算目标函数关于参数a和b的两个偏导数,最终令偏导数为0即可。(因为当函数的导数=0的时候,函数取极值)

数学推导过程

1、展开目标函数中的平方项
在这里插入图片描述
2、计算a和b的偏导数,并令其为0
在这里插入图片描述
3、转换公式
在这里插入图片描述
4、化简为a和b为0的形式
在这里插入图片描述
不难发现a的两个求和再除以n的计算为y和x的平均值,并再次化简a和b为
在这里插入图片描述

函数

#导入第三方模块
import statsmodels.api as sm
sm.ols(formula, data, subset=None, drop_cols=None)
formula:以字符串的形式指定线性回归模型的公式,如’y~x’就表示简单线性回归模型
data:指定建模的数据集
subset:通过bool类型的数组对象,获取data的子集用于建模
drop_cols:指定需要从data中删除的变量

其中ols,我们指的是最小二乘法

示例

# 导入第三方模块
import pandas as pd
import statsmodels.api as sm
income = pd.read_csv('D:\pythonProject\data\Salary_Data.csv')
# 利用收入数据集,构建回归模型
fit = sm.formula.ols('Salary ~ YearsExperience', data = income).fit()
# 返回模型的参数值
fit.params

输出:
在这里插入图片描述
a也就是Intercept,截距
b也就是YearsExperience,斜率

多元线性回归模型

概念

对于一元线性回归模型来说,其反映的是单个自变量对因变量的影响,然而实际情况中,影响因变量的自变量往往不止一个,从而需要将一元线性回归模型扩展到多元线性回归模型。
在这里插入图片描述
其中,xij 代表第 i 行的第 j 变量值。如果按照一元线性回归模型的逻辑,那么多元线性回归模型应该就是因变量y与自变量X的线性组合。

所以,基于一元线性回归模型的扩展,可以将多元线性回归模型表示为:
在这里插入图片描述
进一步,根据线性代数的知识,可以将上式表示为矩阵的形式:

在这里插入图片描述

理论分析

首先构造目标函数(跟一元思路一样)
在这里插入图片描述
展开平方项

在线性代数里,Σz^2=z’*z(z’为z的转置)
为了方便理解举个例子:
在这里插入图片描述
那么我们就可得
在这里插入图片描述
求偏导为0

这里要补充点矩阵求导知识点
在这里插入图片描述
更多矩阵求导内容请点击这里
根据上面计算,由此我们可得
在这里插入图片描述
计算偏回归函数
在这里插入图片描述

示例

数据内容为
在这里插入图片描述
数据集包含5个变量,分别是产品的研发成本、管理成本、市场营销成本、销售市场和销售利润。

# 导入第三方模块
import pandas as pd
import statsmodels.api as sm
from sklearn import model_selection
# 导入数据
Profit = pd.read_excel(r'D:\pythonProject\data\Predict to Profit.xlsx')
# 将数据集拆分为训练集和测试集,测试集为20%
train, test = model_selection.train_test_split(Profit, test_size = 0.2, random_state=1234)
# 根据train数据集建模,默认为连续的数学变量,而State变成了分类变量
model = sm.formula.ols('Profit ~ RD_Spend+Administration+Marketing_Spend+C(State)', data = train).fit()
print('模型的偏回归系数分别为:\n', model.params)
# 删除test数据集中的Profit变量,用剩下的自变量进行预测
test_X = test.drop(labels = 'Profit', axis = 1)
pred = model.predict(exog = test_X)
print('对比预测值和实际值的差异:\n',pd.DataFrame({'Prediction':pred,'Real':test.Profit}))

输出:
在这里插入图片描述
Intercept 为截距;其余的为系数变量
在预测与实际值比较,差异小说明拟合好,差异大说明不好

注意!
x变量要是全是连续变量p,那么输出的变量也是一致的,也是p
但若出现字符串,那么我们想要字符串也变成数字变量,我们就需要改成分类变量,也就是x2_1, x2_2等,在这里面就是New York和Florida,拆分成了两个x2,那为什么不是全部的?因为在分类变量里,二者会出现强相关内部关系,p会大,不满足线性回归的假设前提,我们需要抛去一个(不过程序会默认砍掉一个)

那么当然我们也可以自己选择删除的变量
默认情况下,对于离散变量State而言,模型选择California值作为对照组。

# 导入第三方模块
import pandas as pd
import statsmodels.api as sm
from sklearn import model_selection
# 导入数据
Profit = pd.read_excel(r'D:\pythonProject\data\Predict to Profit.xlsx')
# 生成由State变量衍生的哑变量
dummies = pd.get_dummies(Profit.State)
# 将哑变量与原始数据集水平合并
Profit_New = pd.concat([Profit,dummies], axis = 1)
# 删除State变量和California变量(因为State变量已被分解为哑变量,New York变量需要作为参照组)
Profit_New.drop(labels = ['State','New York'], axis = 1, inplace = True)
# 拆分数据集Profit_New
train, test = model_selection.train_test_split(Profit_New, test_size = 0.2, random_state=1234)
# 建模
model2 = sm.formula.ols('Profit~RD_Spend+Administration+Marketing_Spend+Florida+California', data = train).fit()
print('模型的偏回归系数分别为:\n', model2.params)

输出:
我们可以看到没了纽约,而有了其他的
在这里插入图片描述
那最后函数可写成:Profit=58068.05+0.80RDSpend-0.06Administation+0.01Marketing_Spend+1440.86Florida
+513.47California

线性回归模型的假设检验

做假设检验的目的,是看我们构造的模型合不合理。

模型的F检验

F检验是检验模型的合理性

1、提出问题的原假设和备择假设
2、在原假设的条件下,构造统计量F
3、根据样本信息,计算统计量的值
4、对比统计量的值和理论F分布的值,当统计量值超过理论值时,拒绝原假设,否则接受原假设

理论分析

首先构造假设

H0叫原假设;H1叫备择假设在这里插入图片描述
再构造统计量
在这里插入图片描述
n是变量数目,p是样本数目
计算的F与分布的理论F(p, n-p-1)两者相互比对

其中:
在这里插入图片描述
TSS=ESS+RSS
ESS叫离差/残差平方和
RSS叫回归平方和
TSS叫总差平方和

示例

我们先建模,然后做F检验

# 导入第三方模块
import pandas as pd
import statsmodels.api as sm
from sklearn import model_selection
# 导入数据
Profit = pd.read_excel(r'D:\pythonProject\data\Predict to Profit.xlsx')
# 生成由State变量衍生的哑变量
dummies = pd.get_dummies(Profit.State)
# 将哑变量与原始数据集水平合并
Profit_New = pd.concat([Profit,dummies], axis = 1)
# 删除State变量和California变量(因为State变量已被分解为哑变量,New York变量需要作为参照组)
Profit_New.drop(labels = ['State','New York'], axis = 1, inplace = True)
# 拆分数据集Profit_New
train, test = model_selection.train_test_split(Profit_New, test_size = 0.2, random_state=1234)
# 建模
model2 = sm.formula.ols('Profit~RD_Spend+Administration+Marketing_Spend+Florida+California', data = train).fit()
# print('模型的偏回归系数分别为:\n', model2.params)# 导入第三方模块
import numpy as np
# 计算建模数据中因变量的均值
ybar = train.Profit.mean()
# 统计变量个数和观测个数
p = model2.df_model
n = train.shape[0]
# 计算回归离差平方和
RSS = np.sum((model2.fittedvalues-ybar) ** 2)
# 计算误差平方和
ESS = np.sum(model2.resid ** 2)
# 计算F统计量的值
F = (RSS/p)/(ESS/(n-p-1))
print('F统计量的值:',F)

输出:

F统计量的值: 174.63721716733755

接着对比实际

# 导入模块
from scipy.stats import f
# 计算F分布的理论值
F_Theroy = f.ppf(q=0.95, dfn = p,dfd = n-p-1)
print('F分布的理论值为:',F_Theroy)

输出:

F分布的理论值为: 2.502635007415366

我们发现,计算出来的F统计量值174.64远远大于F分布的理论值2.50,所以应当拒绝原假设,即认为多元线性回归模型是显著的,也就是说回归模型的偏回归系数都不全为0。

模型的T检验

T检验是检验系数的合理性

理论分析

首先提出假设
在这里插入图片描述
构造统计量
在这里插入图片描述
ε是误差项;cjj是(X’X)^-1的对角线,也就是(X’X)逆的对角线

示例

利用model的方法

# 导入第三方模块
import pandas as pd
import statsmodels.api as sm
from sklearn import model_selection
# 导入数据
Profit = pd.read_excel(r'D:\pythonProject\data\Predict to Profit.xlsx')
# 生成由State变量衍生的哑变量
dummies = pd.get_dummies(Profit.State)
# 将哑变量与原始数据集水平合并
Profit_New = pd.concat([Profit,dummies], axis = 1)
# 删除State变量和California变量(因为State变量已被分解为哑变量,New York变量需要作为参照组)
Profit_New.drop(labels = ['State','New York'], axis = 1, inplace = True)
# 拆分数据集Profit_New
train, test = model_selection.train_test_split(Profit_New, test_size = 0.2, random_state=1234)
# 建模
model2 = sm.formula.ols('Profit~RD_Spend+Administration+Marketing_Spend+Florida+California', data = train).fit()
# print('模型的偏回归系数分别为:\n', model2.params)# 有关模型的概览信息
model2.summary()

输出:
在这里插入图片描述
对比下结论
p≤0.05时才通过,或者叫t的绝对值大于2
从返回的结果可知,只有截距项Intercept和研发成本RD Spend对应的p值小于0.05,其余变量都没有通过系数的显著性检验,即在模型中这些变量不是影响利润的重要因素。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/816574.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024 十五届蓝桥杯省赛Python B组

以下仅是我的答案,仅供参考,欢迎讨论。 A:穿越时空之门 二进制、四进制转换。答案:63。 B:数字串个数 排除0,总的方案数9^10000,减去不存在3和不存在7的2*8^10000,再加上同时不存在3和7的7^…

RedisTemplate

3.3.RedisTemplate 在Sentinel集群监管下的Redis主从集群,其节点会因为自动故障转移而发生变化,Redis的客户端必须感知这种变化,及时更新连接信息。Spring的RedisTemplate底层利用lettuce实现了节点的感知和自动切换。 下面,我们…

InnoDB中高度为3的B+树最多可以存多少数据?

参考: 🔥我说MySQL每张表最好不超过2000万数据,面试官让我回去等通知? - 掘金 考虑到磁盘IO是非常高昂的操作,计算机操作系统做了预读的优化,当一次IO时,不光把当前磁盘地址的数据,…

计算机网络常问面试题

一.HTTPS是如何保证安全传输的 https通过使⽤对称加密、⾮对称加密、数字证书等⽅式来保证数据的安全传输。 客户端向服务端发送数据之前,需要先建⽴TCP连接,所以需要先建⽴TCP连接,建⽴完TCP连接后,服务端会先给客户端发送公钥…

您与此网站之间建立的连接不安全

正如标题一样,打开的网站地址栏显示:如果你使用浏览器提示您与此网站之间建立的连接不安全、与此站点的连接不安全、网站非安全连接等类似提示。 是因为网站采取的是http地址协议,这种协议有一种缺点,当您常使用的网站出现上述提示…

Vue项目实战:基于用户身份的动态路由管理

🌟 前言 欢迎来到我的技术小宇宙!🌌 这里不仅是我记录技术点滴的后花园,也是我分享学习心得和项目经验的乐园。📚 无论你是技术小白还是资深大牛,这里总有一些内容能触动你的好奇心。🔍 &#x…

如何安装MacOS的虚拟机?mac安装虚拟机的步骤 虚拟机安装MacOS VMware Fusion和Parallels Desktop19

要在Mac上运行MacOS的虚拟机,常用的方法是使用虚拟化软件如VMware Fusion或Parallels Desktop。 以下是安装MacOS的虚拟机的主要步骤: 1. 检查系统要求:确定您的Mac硬件和操作系统满足安装要求。您需要一台具备足够性能的Mac,并…

223 基于matlab的结构有限元分析

基于matlab的结构有限元分析。包括基于4节点四面体单元的空间块体分析、基于4节点四边形单元的矩形薄板分析、基于3节点三角形单元的矩形薄板分析、三梁平面框架结构的有限元分析、四杆桁架结构的有限元分析、基于8节点六面体单元的空间块体分析。每个程序都要相应的文档说明。…

spring-cloud-alibaba微服务Sentinel

Sentinel 官方网站 sentinel-dashboard-1.8.7.jar包下载地址 在window通过命令行启动(java -Dserver.port8080 -Dproject.namesentinel-dashboard -jar sentinel-dashboard-1.8.7.jar),可以通过 -Dserver.port修改控制台的端口 使用的版本最好…

Python 全栈 Web 应用模板:成熟架构,急速开发 | 开源日报 No.223

tiangolo/full-stack-fastapi-template Stars: 15.6k License: MIT full-stack-fastapi-template 是一个现代化的全栈 Web 应用模板。 使用 FastAPI 构建 Python 后端 API。使用 SQLModel 进行 Python SQL 数据库交互(ORM)。Pydantic 用于数据验证和设…

Linux目录和文件管理

Linux 目录结构 是树形结构,默认是以 根目录 / 为所有文件、目录的起点 目录介绍/root 超级用户(系统管理员)的主目录(特权阶级)/home存放所有用户文件的根目录,是用户主目录的基点,比如用户user的主目录就是/home/user,可以…

NODE MCU (ESP8285-ESP8266)用Arduino lDE 2.3.2烧录系统后串口监控不打印问题

问题: Arduino lDE 2.3.2,集合DOIT ESP-Mx DevKit板子,烧录代码后,串口监视器 打印不出来调试数据 分析: Arduino lDE 2.3.2工具提示,不支持调试 板载flash按钮无需按下,即可烧录系统,由于烧录和调试共用串口,所以怀疑是Arduino lDE 2.3.2在烧录时设置了串口的配置…

YOLTV8 — 大尺度图像目标检测框架(欢迎star)

YOLTV8 — 大尺度图像目标检测框架【ABCnutter/YOLTV8: 🚀】 针对大尺度图像(如遥感影像、大尺度工业检测图像等),由于设备的限制,无法利用图像直接进行模型训练。将图像裁剪至小尺度进行训练,再将训练结果…

Echarts简单的多表联动效果和添加水印和按钮切换数据效果

多表联动 多表联动效果指的是在多个表格之间建立一种交互关系,以便它们之间的操作或选择能够相互影响。通常情况下,多表联动效果可以通过以下方式之一实现: 数据关联: 当在一个表格中选择或操作某些数据时,另一个表格…

java数据结构与算法刷题-----LeetCode476. 数字的补数

java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846 文章目录 1. 位运算:取出非前导0位标1,进行异或2. …

Hadoop 3.1.3

第1章 Hadoop概述 1.1 Hadoop是什么 1.2 Hadoop发展历史(了解) 1.3 Hadoop三大发行版本(了解) Hadoop三大发行版本:Apache、Cloudera、Hortonworks。 Apache版本最原始(最基础)的版本&#x…

HTML基本语法

前言&#xff1a; html中不区分大小写&#xff0c;但建议用小写&#xff0c;因为使用组件时一般使用大写&#xff0c;便于区分两者 注释&#xff1a; <!-- 注释的内容 --> ~注释的内容只会显示在源码当中&#xff0c;不会显示在网页中 ~用于解释说明代码&#xff0c;或隐…

Unity 2D让相机跟随角色移动

相机跟随移动 最简单的方式通过插件Cinemachine 在窗口/包管理器选择全部找到Cinemachine&#xff0c;导入。然后在游戏对象/Cinemachine创建2D Camera。此时层级中创建一个2D相机。选中人物拖入检查器Follow。此时相机跟随人物移动。 修改相机视口距离 在检查器中Lens下调正…

Java开发从入门到精通(二十):Java的面向对象编程OOP:Stream流

Java大数据开发和安全开发 &#xff08;一&#xff09;Java的新特性&#xff1a;Stream流1.1 什么是Stream?1.2 Stream流的使用步骤1.3 获取Stream流1.4 Stream流常见的中间方法1.5 Stream流常见的终结方法 &#xff08;一&#xff09;Java的新特性&#xff1a;Stream流 1.1 …

1. 信息存储

系列文章目录 信息的表示和处理 : Information Storage&#xff08;信息存储&#xff09;Integer Representation&#xff08;整数表示&#xff09;Integer Arithmetic&#xff08;整数运算&#xff09;Floating Point&#xff08;浮点数&#xff09; 文章目录 系列文章目录前…