回归预测 | Matlab基于RIME-SVR霜冰算法优化支持向量机的数据多输入单输出回归预测

回归预测 | Matlab基于RIME-SVR霜冰算法优化支持向量机的数据多输入单输出回归预测

目录

    • 回归预测 | Matlab基于RIME-SVR霜冰算法优化支持向量机的数据多输入单输出回归预测
      • 预测效果
      • 基本描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab基于RIME-SVR霜冰算法优化支持向量机的数据多输入单输出回归预测(完整源码和数据)
2.选择最佳的SVM核函数参数c和g;
3.多特征输入单输出的回归预测。程序内注释详细,excel数据,直接替换数据就可以用。
4.程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图,运行环境matlab2020b及以上。评价指标包括:R2、RPD、MSE、RMSE、MAE、MAPE等。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式资源处下载Matlab基于RIME-SVR霜冰算法优化支持向量机的数据多输入单输出回归预测。
%%  参数设置
%%  优化算法
[Best_score,Best_pos, curve] =(pop, Max_iteration, lb, ub, dim, fun); %%  获取最优参数
bestc = Best_pos(1, 1);  
bestg = Best_pos(1, 2); %%  建立模型
cmd = [' -t 2 ', ' -c ', num2str(bestc), ' -g ', num2str(bestg), ' -s 3 -p 0.01 '];
model = svmtrain(t_train, p_train, cmd);%%  仿真预测
[t_sim1, error_1] = svmpredict(t_train, p_train, model);
[t_sim2, error_2] = svmpredict(t_test , p_test , model);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
T_sim1 =T_sim1';
T_sim2 =T_sim2';
%%  适应度曲线
figure;
plot(1 : length(curve), curve, 'LineWidth', 1.5);
title('适应度曲线', 'FontSize', 13);
xlabel('迭代次数', 'FontSize', 13);
ylabel('适应度值', 'FontSize', 13);
grid
set(gcf,'color','w')%%  相关指标计算
%%  均方根误差
toc
%% 测试集结果
figure;
plotregression(T_test,T_sim2,['回归图']);
set(gcf,'color','w')
figure;
ploterrhist(T_test-T_sim2,['误差直方图']);
set(gcf,'color','w')
%%  均方根误差 RMSE
error1 = sqrt(sum((T_sim1 - T_train).^2)./M);
error2 = sqrt(sum((T_test - T_sim2).^2)./N);%%
%决定系数
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;%%
%均方误差 MSE
mse1 = sum((T_sim1 - T_train).^2)./M;
mse2 = sum((T_sim2 - T_test).^2)./N;
%%
%RPD 剩余预测残差
SE1=std(T_sim1-T_train);
RPD1=std(T_train)/SE1;SE=std(T_sim2-T_test);
RPD2=std(T_test)/SE;
%% 平均绝对误差MAE
MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/816362.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL优化慢SQL的6种方式

⛰️个人主页: 蒾酒 🔥系列专栏:《mysql经验总结》 🌊山高路远,行路漫漫,终有归途 目录 写在前面 优化思路 优化方法 1.避免查询不必要的列 2.分页优化 3.索引优化 4.JOIN优化 5.排序优化 6.UNION 优化…

无线网络2.4和5G的区别

无线网络2.4和5的区别 无线网络2.4GHz和5GHz的主要区别在于频率、覆盖范围、传输速度、干扰能力和穿透性。以下是详细介绍:12 频率不同。2.4GHz的频率较低,而5GHz的频率较高。频率越低,信号在传播过程中的损失越小,因此覆盖范围…

linux学习:文件属性

在操作文件的时候,经常需要获取文件的属性,比如类型、权限、大小、所有者等等, 这些信息对于比如文件的传输、管理等是必不可少的,而这些信息 这三个函数的功能完全一样,区别是:stat( )参数是一个文件的名字…

网络篇05 | 应用层 http/https

网络篇05 | 应用层 http/https 01 HTTP请求报文协议(Request)1)Request简述2)请求行(首行)3)请求头(Request Headers)4)空行5)正文(Re…

【机器学习300问】67、均方误差与交叉熵误差,两种损失函数的区别?

一、均方误差(Mean Squared Error, MSE) 假设你是一个教练,在指导学生射箭。每次射箭后,你可以测量子弹的落点距离靶心的差距(误差)。MSE就像是计算所以射击误差的平方后的平均值。它强调了每一次偏离靶心的…

ARM v8 Cortex R52内核 04 时钟和复位 Clocking and Resets

ARM v8 Cortex R52内核 04 时钟和复位 Clocking and Resets 4.1 Clock and clock enables 时钟和时钟使能 Cortex-R52处理器具有一个单一的时钟,驱动着所有的触发器和RAM。各种输入,包括复位输入,都有同步逻辑使它们可以与处理器时钟异步操…

如何在MacOS上使用OpenHarmony SDK交叉编译?

本文以cJSON三方库为例介绍如何通过OpenHarmony的SDK在Mac平台进行交叉编译。 环境准备 SDK准备 我们可以通过 openHarmony SDK 官方发布渠道下载对应mac版本的SDK,当前OpenHarmony MAC版本的SDK有2种,一种是x86架构,另一种是arm64&#x…

做一个后台项目的架构

后台架构的11个维度 架构1:团队协助基础工具链的选型和培训架构2:搭建微服务开发基础设施架构3:选择合适的RPC框架架构4:选择和搭建高可用的注册中心架构5:选择和搭建高可用的配置中心架构6:选择和搭建高性…

Hudi-ubuntu环境搭建

hudi-ubuntu环境搭建 运行 1.编译Hudi #1.把maven安装包上传到服务器 # 官网下载安装包 https://archive.apache.org/dist/maven/maven-3/ scp -r D:\Users\zh\Desktop\Hudi\compressedPackage\apache-maven-3.6.3-bin.tar.gz zhangheng10.8.4.212:/home/zhangheng/hudi/com…

Spring+SpringMVC的知识总结

一:技术体系架构二:SpringFramework介绍三:Spring loC容器和核心概念3.1 组件和组件管理的概念3.1.1什么是组件:3.1.2:我们的期待3.1.3Spring充当组件管理角色(IOC)3.1.4 Spring优势3.2 Spring Ioc容器和容器实现3.2.1普通和复杂容器3.2.2 SpringIOC的容器介绍3.2.3 Spring IOC…

字符串常量池(StringTable)

目录 String的基本特性 String的内存分配 字符串拼接操作 intern()的使用 String的基本特性 String:字符串,使用一对""引起来表示 String声明为final的,不可被继承 String实现了Serializable接口:表示字符串是支持…

考试酷基本功修炼课学习历程_FPGA成长篇

本文为明德扬原创文章,转载请注明出处!作者:明德扬学员:考试酷账号:11167760 我是硬件工程师,日常工作中主要跟数字电路、模拟电路、嵌入式系统打交道,当然也会涉及到FPGA,但是苦于…

排序算法-基数排序

基数排序是一种非比较排序算法,它将待排序的数字按照位数进行排序。基数排序的思想是先按照个位数进行排序,然后按照十位数进行排序,接着按照百位数进行排序,以此类推,直到最高位排序完成。 基数排序的步骤如下&#x…

设计模式代码实战-桥接模式

1、问题描述 小明家有一个万能遥控器,能够支持多个品牌的电视。每个电视可以执行开机、关机和切换频道的操作,请你使用桥接模式模拟这个操作。 输入示例 6 0 2 1 2 0 4 0 3 1 4 1 3 输出示例 Sony TV is ON TCL TV is ON Switching Sony TV channel S…

【菜狗学前端】原生Ajax笔记(包含原生ajax的get/post传参方式、返回数据等)

这回图片少,给手动替换了~祝看得愉快,学的顺畅!哈哈 一 原生ajax经典四步 (一) 原生ajax经典四步 第一步:创建网络请求的AJAX对象(使用XMLHttpRequest) JavaScript let xhr new XMLHttpRequest() 第二…

QQ农场-phpYeFarm添加数据教程

前置知识 plugin\qqfarm\core\data D:\study-project\testweb\upload\source\plugin\qqfarm\core\data 也就是plugin\qqfarm\core\data是一个缓存文件,如果更新农场数据后,必须要删除才可以 解决种子限制(必须要做才可以添加成功) 你不更改加入了id大于2000直接删除种子 D…

Vulnhub靶机 DC-2渗透详细过程

VulnHub靶机 DC-2 打靶 目录 VulnHub靶机 DC-2 打靶一、将靶机导入到虚拟机当中二、攻击方式主机发现端口扫描服务探针爆破目录web渗透信息收集扫描探针登录密码爆破SSH远程登录rbash提权 一、将靶机导入到虚拟机当中 靶机地址: https://www.vulnhub.com/entry/dc…

信息系统项目管理师0051:管理基础(4信息系统管理—4.1管理方法—4.1.1管理基础)

点击查看专栏目录 文章目录 第四章 信息系统管理4.1管理方法4.1.1管理基础1.层次结构2.系统管理第四章 信息系统管理 在信息技术和数据资源要素的推动下,社会各领域已经并正在加速进入数字化的全新发展时期,基于智能、网络和大数据的新经济业态正在形成,从“数字融合”向“数…

【Java虚拟机】三色标记、增量更新、原始快照、记忆集与卡表

三色标记、增量更新、原始快照、记忆集与卡表 三色标记基本原来错标、漏标错标漏标 增量更新基本原理写屏障 原始快照基本原理为什么G1使用原始快照而不用增量更新。 记忆集与卡表 三色标记 基本原来 三色标记是JVM的垃圾收集器用于标记对象是否存活的一种方法。 三色是指黑…

Servlet实现常用功能及其他方法

getParameter 获取body或url中指定的key/value值 String classIdreq.getParameter("classId"); getQueryString 获取请求的所有查询参数key,values1 String queryStringreq.getQueryString(); from表单提交 前端通过from表单提交用户名和密码 <!DOCTYPE htm…