UDP与TCP报头介绍,三次握手与四次挥手详谈

先介绍我们UDP/TCP协议缓冲区

在UDP和TCP在数据传输和介绍时有有缓冲区概念的。

UDP缓冲区

UDP没有真正意义上的 发送缓冲区. 调用sendto会直接交给内核, 由内核将数据传给网络层协议进行后 续的传输动作;

UDP具有接收缓冲区. 但是这个接收缓冲区不能保证收到的UDP报的顺序和发送UDP报的顺序一致; 如果 缓冲区满了, 再到达的UDP数据就会被丢弃;

TCP缓冲区

TCP在内核中是具有接收缓冲区和发送缓冲区的。

TCP和UDP由于他们的发送缓冲区和接收缓冲区是独立的(尽管udp没有真正发送缓冲区),所以使用TCP和UDP通信是全双工状态的。

udp协议报头介绍

报头也是结构体。

为了节约紧凑数据,降低内存对齐问题,我们的结构体使用位段结构。

不做数据浪费,tcp报头数据结构也是使用位段结构

UDP报头内容介绍

原端口号:发送方的端口号,接收方再给发送方发送数据时候,可以依据端口发送到对应的主机中特定的进程。

目的端口号:发送方机器上绑定该端口的进程。

UDP长度:整个UDP报文(报头+数据)长度,确定数据长度用的,UDP报头是固定的8字节,所以16位UDP报文长度-8字节就是数据长度。

16位UDP检验和:检测这次数据发送情况,如果有误直接将整个报文丢弃。

检验和的检测我们后面讲完TCP报文后一起说。

UDP协议注意事项

  • 无连接: 知道对端的IP和端口号就直接进行传输, 不需要建立连接;
  • 不可靠: 没有确认机制, 没有重传机制; 如果因为网络故障该段无法发到对方, UDP协议层也不会给应用层 返回任何错误信息;
  • 面向数据报: 不能够灵活的控制读写数据的次数和数量

数据报文:报头固定,以一个一个报的发送方式,不考虑

无连接:意味着不需要链接就可以直接对某个服务器发送数据。

不可靠:这并不是一个贬义词而是中性词,不可靠意味着,我们发出数据后不用管数据是否抵达,我们只管发送就行了。不需要太多的编写和维护成本。

注意事项

UDP数据报文如果超过了64K数据,数据报会变成2个UDP报,我们需要手动拼接数据。


tcp协议报头介绍

TCP协议特点与报头内容

这里我们讲报头内容和特点是相辅相成的

确认应答机制:每条报文发送对方都会返回一条确认报文

对应使用的是32位序号32位确认序号。

这两个选项都存在于tcp报文中,为什么不能直接用一个报文呢?

如果我们使用同一个序号,在client多次发送报文后,server将无法对client也发送报文只等应答所有报文,才可以发送数据,这是极其不合理的。只有你在发不让我发送?所以一般来说在通信的过程中,应答报文和常规通信报文是一起发送的,单纯应答报文不带数据的,所以对常规报文携带的数据不会有影响。

观察画图,会发现我们的应答报文的确认序号是发送报文序号+1。

也就是说,client发送序号:1000报文,server发送确认序号:1001报文。

这是为了, 告诉发送者, 我已经收到了哪些数据; 下一次你从哪里开始发。

server发送确认序号:1001报文,告诉client我已经收到了1000报文,下次从1002开始发送。

这里的序号和确认型号分别还有知识点。

序号

在接收到多次数据时候,依托确认序号得知发送的序号。

因为在网络中传输数据的时候,发送3条报文的序号是,1000、2000、3000的。网络中是无序的,有可能接收方接收到的数据报文序号是,2000、1000、3000,这个时候如果是一份大的数据发送,我们需要将3条报文数据合并,但是必须得知道合并顺序,否则数据会乱序。

所以我们需要使用接收到的报文中的序号对报文重新排序。

确认序号

如果类似上面发送“床前明月光.....”大型报文,我们需要发送到多条报文才可以将全部数据发送完毕。所以我们发送了3条报文给server端,按道理来说我们需要对3条报文发送3次确认应答报文。但是这是没有必要的,server端会检测3条报文是否属于同组报文并且检测数据是否存在丢失,如果没有丢失数据,就应答最后序号的报文,发送应答报文,如果发现丢失数据,就发送丢失报文的前一个报文。

 4位的首部长度

4位首部长度,是tcp报文的报头长度,4位比特位最大为15(1111)值,但是我们的标准报头就有20个字节,并且还有可能增加选项(选项也属于报头),所以约定了,4位首部长度的单位是4字节,也就是说15*4=60个字节,也即是最大报文长度位60字节。但是一个tcp报文至少必须有标准报头20字节,所以4位首部长度范围是:5~15;

16位窗口大小

如果我们的client端一致给server发送报文,但是我们的server端真正处理一个重要的报文,也就是说发送速度和处理报文速率不相等,导致了server端的接收缓冲区满了或者快满了,这个信息必须通知发送方client。

servser当前缓冲区以使用980/1000,server需要使用一种发送将当前链接的接收缓冲区情况通知client,server将自己的接收缓冲区剩余情况发送给client。

偏移量数据,当出现紧急报文时候,立刻服务器立刻优先执行该报文,提托紧急数据选项,查看服务器情况。


到这里发现这6个位我们并没有介绍,我们在三次握手和四次挥手中一同介绍。

三次握手和四次挥手

三次握手

介绍报文类型:

  • SYN: 请求建立连接; 我们把携带SYN标识的称为同步报文段
  • ACK: 确认号是否有效
  • RST:链接重置(server重启,旧链接发送数据立刻会被链接重置;三次握手最后的ACK失败,但是client发送数据,被server要求链接重载)

我们的链接的过程其实就是三次握手的过程。

这三次握手必须是客户端和服务器都3次握手才是链接成功建立。

三次握手后,将公钥密钥的交流发挥到了极值

三次次握手的意义

1、防止低级SYN洪水

防止SYN洪水攻击,如果只有一次握手或者两次,恶意分子可以使用client端向我们的server发送大量的恶意的链接请求,并且自己不处于链接状态。

一次:恶意攻击,直接大量发送SYN报文,并且自己不处于链接状态。

二次:对方链接建立成功,给我们返回ACK报文,直接丢弃,不建立链接。

大量的链接需要服务器维护为该链接的缓冲区,数据结构等等,当到了一定的数量,服务器将再也接收不了链接,甚至崩溃。

为什么3次链接可以有效预防被一台client搞崩的情况呢?

一般而言都是client向server发送链接请求的,在最后一次握手client发送ACK报文后处于先链接状态,而server只有在接收到ACK报文才会处于链接态,说明了client必须链接成功才能让server链接成功,client和server维护相同数量的链接以相关结构体数量。一般而已,server的能力远大于client,所以一台设备client攻击服务器,自己先会崩溃。(但是如果几十万台服务器同时攻击,这就不是三次握手能解决的了)

而三次握手

Client必须承受和Server一样的链接数量。

2、测试全双工通路

client发送SYN给server后,接收到server发送的SYN+ACK,证明了client的接收通路和发送通路畅通

server接收client发送的SYN后,发送SYN+ACK,进入等待后再次接收到ACK确认应答,证明了        server的接收通路和发送通路畅通。

四次挥手

链接断开时需要做的工作。

FIN: 通知对方, 本端要关闭了

断开链接需要双方同时做四次挥手的动作:client端做4次挥手动作,server端也要做4次挥手动作。就像签署离婚协议一样,需要双方签字才生效。

我们server调用close关闭套接字。


理解 CLOSE_WAIT 状态

服务器测试代码:我们只链接客户端,当客户端关闭的时候我们链接不退出。

服务器客户端一同启动。建立链接成功,我们查看一下链接情况。

因为我们使用的是本地链接所以链接是一样的,查看state,发现我们的client和server都处于ESTABLISHED状态,正常通信状态。

我们将客户端关闭。

再次观察连接情况

选择服务器server变成了CLOSE_WAIT状态并保持,客户端变成FIN_WAIT2状态,应证了如果client端发送断开链接,如果服务器在收到断开FIN后并没有执行close函数,关闭套接字的话,服务器和客户端依旧处于临界状态,并且这个状态不会随着时间而关闭,链接必须一定等待server调用close发送FIN才可打破这种状态。这是很关键的一个地方,如果链接一直未关闭,服务器过载将发送崩塌,我们该错误称之为文件描述符泄露。

理解TIME_WAIT状态

TCP协议规定,主动关闭连接的一方要处于TIME_ WAIT状态,等待两个MSL(maximum segment lifetime) 的时间后才能回到CLOSED状态

如果是客户端关闭链接,就是客户端进入TIME状态,等待

如果是服务器关闭链接,就是服务端进入TME状态,等待

在TIME_WAIT状态下的一方会进入TIME_WAIT状态,依旧可以接收信息,在等待2MSL时间下下,一个MSL是在网络通信中最远距离通信的时间,这一般由各个linux确定,在Centos7上默认配置的值是60s。使用cat /proc/sys/net/ipv4/tcp_fin_timeout,查看MSL时长

为什么需要TMIE_WAIT状态呢?

  1. 防止在关闭后网络中依旧有的报文数据需要被接收,我们需要将这些报文做消散处理,避免短时间内再次通信时,收到了上次旧时报文。
  2. 如果第4次挥手时,ACK发送丢包,被动断开方会再次发送FIN数据,请求断开,这个时候如果,没有TIME_WAIT状态,那么被动断开方将无法收到ACK反馈(但是也没啥,如果发送一定次数后依旧没有ACK状态,被动接收方也就直接断开链接了)。

在TIME_WAIT下再次接收到FIN,将再次发送last ACK,然后重置TIME_WAIT时间重新等待

解决服务器TMIE_WAIT时需要紧急重启

在server的TCP连接没有完全断开之前不允许重新监听, 某些情况下可能是不合理的

  1. 服务器需要处理非常大量的客户端的连接(每个连接的生存时间可能很短, 但是每秒都有很大数量的客户 端来请求).
  2. 这个时候如果由服务器端主动关闭连接(比如某些客户端不活跃, 就需要被服务器端主动清理掉), 就会产 生大量TIME_WAIT连接.
  3. 由于我们的请求量很大, 就可能导致TIME_WAIT的连接数很多, 每个连接都会占用一个通信五元组(源ip, , 协议). 其中服务器的ip和端口和协议是固定的源端口 . 如果新来的客户端连接的 , 目的ip, 目的端口 ip和之前关闭的一样,会造成数据混乱。端口号和TIME_WAIT占用的链接重复了, 就会出现问题.

我们可以使用使用setsockopt()设置socket描述符的 选项SO_REUSEADDR为1, 表示允许创建端口号相同但IP地址不同的多个 socket描述符.

int opt=1;
setsockopt(_listen_socket,SOL_SOCKET,SO_REUSEADDR|SO_REUSEPORT,&opt,sizeof opt);

其实就是跳过判定端口是否被占用的代码。虽然可能数据混乱,但是比较服务器需要等待的损失会较小点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/81455.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言天花板——指针(初阶)

🌠🌠🌠 大家在刚刚接触C语言的时候就肯定听说过,指针的重要性以及难度等级,以至于经常“谈虎色变”,但是今天我来带大家走进指针的奇妙世界。🎇🎇🎇 一、什么是指针&…

旋转角度对迭代次数的影响

( A, B )---3*30*2---( 1, 0 )( 0, 1 ) 让网络的输入只有3个节点,AB训练集各由5张二值化的图片组成,让A中有3个1,B中全是0,统计迭代次数并排序。 在3*5的空间内分布3个点有19种可能,但不同的分布只有6种 差值就诶够 …

七天学会C语言-第二天(数据结构)

1. If 语句&#xff1a; If 语句是一种条件语句&#xff0c;用于根据条件的真假执行不同的代码块。它的基本形式如下&#xff1a; if (条件) {// 条件为真时执行的代码 } else {// 条件为假时执行的代码 }写一个基础的If语句 #include<stdio.h> int main(){int x 10;…

硬件故障诊断:快速定位问题

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

Linux基础开发工具使用快速上手

软件包管理器 概念理解 在Linux下安装软件的话&#xff0c;一个比较原始的办法是下载程序的源代码&#xff0c;然后进行编译&#xff0c;进而得到可执行程序&#xff0c;然后就可以运行这个软件了。但是这种做法太麻烦了&#xff0c;于是就有些人把一些常用的软件提前编译好&…

笔记1.5:计算机网络体系结构

从功能上描述计算机网络结构 分层结构 每层遵循某个网络协议完成本层功能 基本概念 实体&#xff1a;表示任何可发送或接收信息的硬件或软件进程。 协议是控制两个对等实体进行通信的规则的集合&#xff0c;协议是水平的。 任一层实体需要使用下层服务&#xff0c;遵循本层…

uniapp 小程序 父组件调用子组件方法

答案&#xff1a;配合小程序API > this.selectComponent("")&#xff0c;来选择组件&#xff0c;再使用$vm选择组件实例&#xff0c;再调用方法&#xff0c;或者data 1 设置组件的id,如果你的多端&#xff0c;请跟据情况设置ref,class,id&#xff0c;以便通过小…

一阶低通滤波器滞后补偿算法

一阶低通滤波器的推导过程和双线性变换算法请查看下面文章链接: PLC算法系列之数字低通滤波器(离散化方法:双线性变换)_双线性离散化_RXXW_Dor的博客-CSDN博客PLC信号处理系列之一阶低通(RC)滤波器算法_RXXW_Dor的博客-CSDN博客_rc滤波电路的优缺点1、先看看RC滤波的优缺点…

Redis 篇

1、为什么要用缓存&#xff1f; 使用缓存的目的就是提升读写性能。而实际业务场景下&#xff0c;更多的是为了提升读性能&#xff0c;带来更好的性能&#xff0c;带来更高的并发量。 Redis 的读写性能比 Mysql 好的多&#xff0c;我们就可以把 Mysql 中的热点数据缓存到 Redis…

Linux学习第14天:Linux设备树(一):枝繁叶茂见晴天

本节笔记主要学习了Linux设备树相关知识点&#xff0c;由于内容较多&#xff0c;打算分两天进行总结。今天着重学习Linux设备树&#xff0c;主要包括前三节内容&#xff0c;分别是概念、格式和语法。 本节思维导图内容如下&#xff1a; 一、什么是设备树 设备树可以用一个图来进…

Vivado XADC IP核 使用详解

本文介绍Vivado中XADC Wizard V3.3的使用方法。 XADC简介 XADC Wizard Basic Interface Options&#xff1a; 一共三种&#xff0c;分别是AXI4Lite、DRP、None。勾选后可在界面左侧看到相应通信接口情况。Startup Channel Selection Simultaneous Selection&#xff1a;同时监…

长胜证券:煤价突破900元大关 GLP-1减重药进入集中获批期

上星期五&#xff0c;两市股指早盘震动上扬&#xff0c;午后回落走低。到收盘&#xff0c;沪指跌0.28%报3117.74点&#xff0c;深成指跌0.52%报10144.59点&#xff0c;创业板指涨跌0.45%报2002.73点&#xff0c;科创50指数涨0.71%&#xff1b;两市合计成交7217亿元&#xff0c;…

【算法训练-二叉树 一】【遍历二叉树】前序遍历、中序遍历、后续遍历、层序遍历、锯齿形层序遍历、二叉树右视图

废话不多说&#xff0c;喊一句号子鼓励自己&#xff1a;程序员永不失业&#xff0c;程序员走向架构&#xff01;本篇Blog的主题是【二叉树的遍历】&#xff0c;使用【二叉树】这个基本的数据结构来实现&#xff0c;这个高频题的站点是&#xff1a;CodeTop&#xff0c;筛选条件为…

OmniShade - Mobile Optimized Shader

OmniShade Pro是一款专为移动设备设计的高性能着色器。它包含多种技术,使其几乎可以实现从现实到卡通到动漫的任何外观,但由于自适应系统仅计算任何功能集所需的内容,它的速度也非常快。 它旨在弥合Unity的标准着色器和移动着色器之间的差距,但由于其高级别的风格化、组合…

浏览器事件机制详解

目录 前言 事件类型 鼠标事件 表单事件 窗口事件 DOM事件 多媒体事件 拖拽与放置事件 移动设备事件 剪切板事件 错误事件 过渡、动画事件 事件监听 onevent addEventListener(event) 事件触发 事件流程 捕获阶段 目标阶段 冒泡阶段 事件对象 总结 相关代…

Pyhton压缩JS代码

文章目录 1.安装依赖2.目录结构3.代码4.执行结果 1.安装依赖 pip install jsmin2.目录结构 3.代码 import jsmindef run(src_path, tgt_path):with open(src_path, "r", encodingutf-8) as input_file:with open(tgt_path, "w", encodingutf-8) as outpu…

【Java 基础篇】Java 字节流详解:从入门到精通

Java中的字节流是处理二进制数据的关键工具之一。无论是文件操作、网络通信还是数据处理&#xff0c;字节流都发挥着重要作用。本文将从基础概念开始&#xff0c;深入探讨Java字节流的使用&#xff0c;旨在帮助初学者理解和掌握这一重要主题。 什么是字节流&#xff1f; 在Ja…

Claude 使用指南 | 可与GPT-4媲美的语言模型

本文全程干货&#xff0c;让你轻松使用上claude&#xff0c;这也是目前体验cluade的唯一途径&#xff01;废话不多说&#xff0c;直接上教程&#xff0c;cluade的能力不逊于GPT4&#xff0c;号称是ChatGPT4.0最强竞品。相对Chatgpt来说&#xff0c;Claude不仅是完全免费的&…

springboot集成kafka

创建工程 父工程pom 父工程做了子工程管理和包管理 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocati…

深度解析NLP文本摘要技术:定义、应用与PyTorch实战

目录 1. 概述1.1 什么是文本摘要&#xff1f;1.2 为什么需要文本摘要&#xff1f; 2. 发展历程2.1 早期技术2.2 统计方法的崛起2.3 深度学习的应用2.4 文本摘要的演变趋势 3. 主要任务3.1 单文档摘要3.2 多文档摘要3.3 信息性摘要 vs. 背景摘要3.4 实时摘要 4. 主要类型4.1 抽取…