【核心完整复现】基于目标级联法的微网群多主体分布式优化调度

主要内容

之前发布了华电学报的复现程序《基于目标级联法的微网群多主体分布式优化调度》,具体链接为【防骗版】基于目标级联法的微网群多主体分布式优化调度,虽然对模型及结果进行了复现,但是部分模型细节和参数并没有完全实现,本次发布该程序的完整复现版本,主要实现的内容如下:

1.考虑多源异质分布式电源的出力随机性,增加风光出力的鲁棒约束;

2.完全复现基于目标级联法的分布式​求解流程;

3.参数基本完全按照文献所列​;

4.程序目标函数和约束条件和文献一致​。

  • 程序主要内容

建立微网群系统的两级递阶优化调度模型: 上层是微网群能量调度中心优化调度模型,下层是子微网优化调度模型,然后对所建递阶优化调度模型耦合性和分布性进行分析,采用一种新型的协同优化方法———目标级联法,实现上下层模型的解耦独立优化,以3微网为算例进行验证,证明方法的可行性。

  • 上层微网群模型

  • 下层微网模型

  • 模型流程图

部分程序

%最终迭代后结果图
figure;
wwz=max(gPpcc1,0);
wwf=min(gPpcc1,0);
yyf=[-x_P_ch1;wwf]';
bar(yyf,'
stack
');
hold on
yyz=[x_P_dis1;x_P_g1;PV1;x_c_ld1;wwz]'
;bar(yyz,'stack');
plot(Pload1+Pkk1,'r','LineWidth',1.5)
xlabel('时间/h');
ylabel('功率/MW');
title('微网1功率');
sy=legend('储能充电','接受微网群电功率','储能放电','柴油发电','光伏','负荷响应','供给其他微网','微网1负荷');
sy.NumColumns = 3;
figure;
wwz=max(gPpcc2,0);
wwf=min(gPpcc2,0);
yyf=[-x_P_ch2;wwf]';
bar(yyf,'
stack
');
hold on
yyz=[x_P_dis2;x_P_g2;PW2;x_c_ld2;wwz]'
;bar(yyz,'stack');
plot(Pload2+Pkk2,'r','LineWidth',1.5)
xlabel('时间/h');
ylabel('功率/MW');
title('微网2功率');
sy=legend('储能充电','接受微网群电功率','储能放电','柴油发电','风电','负荷响应','供给其他微网','微网2负荷');
sy.NumColumns = 3;
figure;
wwz=max(gPpcc3,0);
wwf=min(gPpcc3,0);
yyf=[-x_P_ch3;wwf]';
bar(yyf,'
stack
');
hold on
yyz=[x_P_dis3;sum(x_P_g3);PW3;PV3;x_c_ld3;wwz]'
;bar(yyz,'stack');
plot(Pload3+Pkk3,'r','LineWidth',1.5)
xlabel('时间/h');
ylabel('功率/MW');
title('微网3功率');
sy=legend('储能充电','接受微网群电功率','储能放电','柴油发电','风电','光伏','负荷响应','供给其他微网','微网3负荷');
sy.NumColumns = 3;
figure;
plot(pv13,'r-o','LineWidth',1)
hold on
plot(pw2,'b-*','LineWidth',1)
plot(pw3,'m-s','LineWidth',1)
legend('MG1/MG3光伏','MG2风电','MG3风电');
xlabel('预测时段/h');
ylabel('可再生能源预测出力/p.u.');
grid on
figure;
plot(ploadz,'r-o','LineWidth',1)
hold on
plot(pload1,'b-*','LineWidth',1)
plot(pload2,'m-s','LineWidth',1)
plot(pload3,'c-^','LineWidth',1)
legend('微网群负荷','子微网1负荷','子微网2负荷','子微网3负荷');
xlabel('预测时段/h');
ylabel('预测负荷功率/p.u.');
grid on
figure;
title_name = '独立优化模型惩罚项';
title(title_name);   %%关键
plot(faz,'b-o','LineWidth',1.5);
hold on
plot(fa1,'b-o','LineWidth',1.5);
plot(fa2,'r-*','LineWidth',1.5);
plot(fa3,'k-^','LineWidth',1.5);
xlabel('迭代次数');
ylabel('独立优化模型惩罚项/元');
grid on
figure;
title_name = '最大连接变量偏差';
title(title_name);   %%关键
plot(detamax,'m-o','LineWidth',1.5);
xlabel('迭代次数');
ylabel('最大连接变量偏差/kW');
grid on
figure;
title_name = '整体经济性';
title(title_name);   %%关键
plot(y4,'b-o','LineWidth',1.5);
xlabel('迭代次数');
ylabel('整体经济性/元');
grid on
figure;
subplot(311)
plot(gPpcc1c,'--','LineWidth',1.5)
hold on
plot(gPMGc(1,:),'-','LineWidth',1.5)
grid on
legend('下层连接变量值','上层连接变量值');
xlabel('迭代次数');
ylabel('子微网1联络功率');
% ylim([0 200]);
subplot(312)
plot(gPpcc2c,'--','LineWidth',1.5)
hold on
plot(gPMGc(2,:),'-','LineWidth',1.5)
grid on
xlabel('迭代次数');
ylabel('子微网2联络功率');
% ylim([0 500]);
subplot(313)
plot(gPpcc3c,'--','LineWidth',1.5)
hold on
plot(gPMGc(3,:),'-','LineWidth',1.5)
grid on
xlabel('迭代次数');
ylabel('子微网3联络功率');

程序结果

4 下载链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/814107.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024长三角快递物流高质量创新发展论坛

2024长三角快递物流供应链与技术装备展览会(杭州) 2024年7月8-10日 | 杭州国际博览中心 指导单位:浙江省邮政管理局 中国快递协会 主办单位:浙江省快递行业协会 联合主办:上海市快递协会 江苏省快递协会 安徽省快递…

ubuntu22下使用vscode调试redis7源码环境搭建

ubuntu22下使用vscode调试redis7源码环境搭建 ##vscode launch.json配置文件 {// 使用 IntelliSense 了解相关属性。 // 悬停以查看现有属性的描述。// 欲了解更多信息,请访问: https://go.microsoft.com/fwlink/?linkid830387"version": "0.2.0&…

【DL水记】循环神经网络RNN的前世今生,Transformer的崛起,Mamba模型

文章目录 RNN网络简介传统RNN网络结构RNN的分类 长-短期记忆网络 (LSTM)GRU网络横空出世的Transformer网络Self-AttentionVisionTransformer Mamba模型Reference: RNN网络简介 “当人类接触新事物时,他们不会从头开始思考。就像你在阅读这篇文章时,你会根…

目标检测笔记

目标检测笔记 one-stage和two-stage目标检测算法Two-Stage 目标检测算法One-Stage 目标检测算法既然Faster R-CNN使得候选区域生成和目标检测可以在同一个网络中端到端训练,为什么它还是属于Two-stage算法? 目标检测模型,训练中的正负样本是什…

根据ELK官网指引部署ELK- ECK-Elastic-​ Kibana​-Learn-ELK-(一)

**Attention: 1、You need open the ELK official website and step by step to deploy . 2、If you copy my command ,you must check them if it not match your environment . 一、official website Elastic documentation | Elastic Check there. 二、 ECK简介…

常用接口测试工具/免费api

一 接口编辑文档 常用的接口文档编写apipost 二 免费接口测试 api 1. thecat 含有: The Cat API - Cat as a Service The Cat API 2. public-apis 进入页面往下拉 三 常用接口测试工具 postman 四 常用接口性能测试工具 Jmeter,loadrunner

FRDM-MCXN947开发板之RGB灯

一、背景 RGB LED:通过红、绿、蓝三种颜色组合发光的LED,可以理解由三个不同发光属性的LED组成,这个是LCD平板显示原理的基础,一个LED相当于屏幕上面的一个像素 FRDM-MCXN947集成了一块RGB LED,它由三个GPIO口驱动&am…

2024 Guitar Pro 8.1.2-27 (x64) win/mac中文激活版破解版

吉他爱好者必备神器:Guitar Pro v8.1.1 Build 17深度解析 随着数字音乐制作和学习的日益普及,越来越多的吉他爱好者开始寻找能够帮助他们提升技能、创作音乐的专业工具。在众多吉他制作软件中,Guitar Pro因其强大的功能和易用的界面备受推崇…

Docker Image (镜像) 常见命令

Docker Image (镜像) 常用命令 docker images 功能:列出本地所有的镜像。如果镜像 ID 相同,但是 Tag 标签不同,也会被当作不同的条目被列出来。 语法: docker images [options] [REPOSITORY[:TAG]] 别名: docker ima…

如何对图像进行聚类

文章来源:https://medium.com/voxel51/how-to-cluster-images-6e09bdff7361 2024 年 4 月 10 日 使用 FiftyOne、Scikit-learn和特征嵌入 在 2024 年深度学习的计算密集型环境中,集群一词最常出现在讨论 GPU 集群时--高度优化的矩阵乘法机器的大规模集…

海洋信息管理系统:守护蓝色星球,促进海洋经济新发展

海洋,覆盖地球表面超过七成的广阔水域,是生命之源,也是经济发展的重要空间。然而,随着人类活动的增加,海洋生态环境面临严峻挑战,海洋资源的可持续利用成为全球关注的焦点。在这样的背景下,构建…

数字IC/FPGA——亚稳态及跨时钟域

什么是亚稳态亚稳态会造成什么平均故障间隔时间如何解决亚稳态同步时钟和异步时钟单bit电平信号如何跨时钟域单bit脉冲信号如何跨时钟域多bit信号如何跨时钟域 目录 一、亚稳态1.基本概念2.危害3.平均故障时间4.解决亚稳态的方法 二、跨时钟域1.同步电路和异步电路(…

RNN知识体系构筑:详尽阐述其理论基础、技术架构及其在处理序列数据挑战中的创新应用

一、为什么需要RNN 尽管神经网络被视为一种强大且理论上能够近似任何连续函数的模型,尤其当训练数据充足时,它们能够在输入空间中的某个点( x )映射到输出空间的特定值( y ),然而,这并不能完全解释为何在众多应用场景中&#xff…

牛客2024【牛客赛文X】春招冲刺ONT61 每日温度【hard 单调栈 Java、Go、PHP】

题目 题目链接: https://www.nowcoder.com/practice/1f54e163e6944cc7b8759cc09e9c78d8 思路 单调栈最直接的应用就是获取数组中每个位置i,i的左边第一个比i大或者小的位置/数以及,i的右边第一个比i大或者小的位置/数不懂的同学看这里https://blog.csdn.net/Borsl…

String类中常见面试题

1.string类属于基本类型吗? string类不是基本类型;它属于引用数据类型 2.操作字符串的类有哪些?有什么区别? 有三种:string,stringBuilder,stringBuffer 区别: String:不可变类,字符串一旦被创建就不能…

Unity打包出来的apk安装时提示应用程式与手机不兼容,无法安装应用程式

1、遇到的问题 * 2、解决办法 这是因为你在Unity中导出来的apk手机安装包是32位的,才导致上述问题发生,要解决这个办法,需要在Unity中导出64位的手机安装包。 32位跟64位的区别,以及如何区分打出来的手机安装包是否是32位或者是…

腐蚀Rust 服务端搭建架设个人社区服务器Windows教程

腐蚀Rust 服务端搭建架设个人社区服务器Windows教程 大家好我是艾西,一个做服务器租用的网络架构师也是游戏热爱者。最近在steam发现rust腐蚀自建的服务器以及玩家还是非常多的,那么作为服务器供应商对这商机肯定是不会放过的哈哈哈! 艾西这…

Day:004(4) | Python爬虫:高效数据抓取的编程技术(数据解析)

XPath工具 浏览器-元素-CtrlF 浏览器-控制台- $x(表达式) Xpath helper (安装包需要科学上网) 问题 使用离线安装包 出现 程序包无效 解决方案 使用修改安装包的后缀名为 rar,解压文件到一个文件夹,再用 加载文件夹的方式安装即可 安装 python若使用…

2024年认证杯SPSSPRO杯数学建模D题(第一阶段)AI绘画带来的挑战全过程文档及程序

2024年认证杯SPSSPRO杯数学建模 D题 AI绘画带来的挑战 原题再现: 2023 年开年,ChatGPT 作为一款聊天型 AI 工具,成为了超越疫情的热门词条;而在 AI 的另一个分支——绘图领域,一款名为 Midjourney(MJ&…

2024年认证杯数学建模挑战赛C题全解析

2024年认证杯C题的已经完成啦,包括参考论文,模型代码,分享给大家~ 问题分析 对于这些问题,我们首先需要确定影响日光辐射降低效应的关键参数,例如海盐气溶胶的浓度、粒子大小、分布以及喷洒高度和范围。同…