线性代数基础-矩阵

八、矩阵的基础概念

1.矩阵

我们忘掉之前行列式的一切,列一种全新的数表,虽然长得很像,但是大不相同,首先一个区别就是矩阵不能展开成一个值,这里不讨论矩阵的空间意义
{ a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = b 2 . . . a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + . . . + a n n x n = b n \begin{cases} a_{11}x_1 + a_{12}x_2+a_{13}x_3 +... +a_{1n}x_n= b_1 \\ a_{21}x_1 + a_{22}x_2+a_{23}x_3 +... +a_{2n}x_n= b_2 \\ ...\\ a_{n1}x_1 + a_{n2}x_2+a_{n3}x_3 +... +a_{nn}x_n= b_n \end{cases} a11x1+a12x2+a13x3+...+a1nxn=b1a21x1+a22x2+a23x3+...+a2nxn=b2...an1x1+an2x2+an3x3+...+annxn=bn

2.实矩阵、复矩阵

如果矩阵里全是实数,则是实矩阵,而元素是复数,是复矩阵

3.矩阵相等

行数列数相同,所有元素一一对应相等,记作
A = B A=B A=B

4.零矩阵

所有元素全为0,记作
O m ∗ n 或 O O_{m*n} 或O OmnO

5.负矩阵

对于 A m ∗ n ,它的负矩阵是 − A , 相当于矩阵内每个元素乘 ( − 1 ) 对于A_{m*n},它的负矩阵是 -A ,相当于矩阵内每个元素乘(-1) 对于Amn,它的负矩阵是A,相当于矩阵内每个元素乘(1)

A 3 ∗ 3 = ( a 0 0 0 a 0 0 0 a ) A_{3*3} =\begin{pmatrix} a & 0&0\\ 0 &a&0\\ 0&0&a\\ \end{pmatrix} A33= a000a000a

− A 3 ∗ 3 = ( − a 0 0 0 − a 0 0 0 − a ) -A_{3*3} = \begin{pmatrix} -a & 0&0\\ 0 &-a&0\\ 0&0&-a\\ \end{pmatrix} A33= a000a000a

6.n阶方阵

矩阵不一定是方的,但是如果是方的就叫方阵,行数或者列数就是阶数

7.三角矩阵,对角矩阵

要求是方阵
上三角,下三角矩阵与上三角下三角行列式定义相同,可以类比
对角矩阵也与行列式相同
A 3 ∗ 3 = ( a b b 0 a b 0 0 a ) A_{3*3} =\begin{pmatrix} a & b&b\\ 0 &a&b\\ 0&0&a\\ \end{pmatrix} A33= a00ba0bba

8.数量矩阵

前提是对角矩阵
主对角线全等于同一个常数a
A 3 ∗ 3 = ( a 0 0 0 a 0 0 0 a ) A_{3*3} =\begin{pmatrix} a & 0&0\\ 0 &a&0\\ 0&0&a\\ \end{pmatrix} A33= a000a000a

9.n阶单位矩阵

主对角线值全为1的矩阵
A 3 ∗ 3 = ( 1 0 0 0 1 0 0 0 1 ) A_{3*3} =\begin{pmatrix} 1 & 0&0\\ 0 &1&0\\ 0&0&1\\ \end{pmatrix} A33= 100010001

10.行矩阵、列矩阵

只有一行或者一列的矩阵
也可以叫行向量,列向量

九、矩阵的线性运算

矩阵的加法和数乘统称为矩阵的线性运算

1.矩阵加法

A_{3*3} =\begin{pmatrix}
a_{11} & a_{12}&a_{13}\
a_{21} & a_{22}&a_{23}\
a_{31} & a_{32}&a_{33}\
\end{pmatrix}

B_{3*3} =\begin{pmatrix}
b_{11} & b_{12}&b_{13}\
b_{21} & b_{22}&b_{23}\
b_{31} & b_{32}&b_{33}\
\end{pmatrix}

A_{33} + B_{33} =
\begin{pmatrix}
a_{11}+b_{11} & a_{12}+b_{12}&a_{13}+b_{13}\
a_{21}+b_{21} & a_{22}+b_{22}&a_{23}+b_{23}\
a_{31}+b_{31}& a_{32}+b_{32}&a_{33}+b_{33}\
\end{pmatrix}

2.交换率

A + B = B + A A +B = B+ A A+B=B+A

3.结合率

( A + B ) + C = A + ( B + C ) (A+B)+C = A+(B+C) A+B+C=A+B+C

4.特殊运算

A + O = A A + ( − A ) = O A+ O = A\\ A+ (-A) = O A+O=AA+(A)=O

5.数量乘法

A m ∗ n = ( a 11 a 12 a 13 . . . a 1 n a 21 a 22 a 23 . . . a 2 n . . . . . . . . . . . . . . . a n 1 a n 2 . . . . . . a n n ) A_{m*n} =\begin{pmatrix} a_{11} & a_{12} &a_{13}&...&a_{1n}\\ a_{21} & a_{22}&a_{23}&...&a_{2n}\\ ...&...&...&...&...\\ a_{n1}&a_{n2}&...&...&a_{nn}\\ \end{pmatrix} Amn= a11a21...an1a12a22...an2a13a23..................a1na2n...ann

λ ∗ A m ∗ n = ( λ a 11 λ a 12 . . . λ a 1 n λ a 21 λ a 22 . . . λ a 2 n . . . . . . . . . . . . λ a n 1 λ a n 2 . . . λ a n n ) \lambda *A_{m*n} =\begin{pmatrix} \lambda a_{11} & \lambda a_{12} &...& \lambda a_{1n}\\ \lambda a_{21} & \lambda a_{22}&...& \lambda a_{2n}\\ ...&...&...&...\\ \lambda a_{n1}& \lambda a_{n2}&...& \lambda a_{nn}\\ \end{pmatrix} λAmn= λa11λa21...λan1λa12λa22...λan2............λa1nλa2n...λann

十、矩阵的乘法

对于每个矩阵乘法,一定有以下规则
A i ∗ k ∗ B k ∗ j = C i ∗ j A{i*k} * B{k * j} = C{i*j} AikBkj=Cij
矩阵乘法的前提是A矩阵的列数,必须等于B的行数,得到新矩阵的行数为A的行数,列数为B的列数。

1.现实记忆法(多存在于国内教材)

把A矩阵的四个行比作四个班级每一行分别是对三种产品的需求数量
而B矩阵的每一列,他们认为是不同的商家,列中的元素正好是价格

A 4 ∗ 3 = ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 a 41 a 42 a 43 ) ( 每行存储的是每个班级对几种产品的需求数量 ) A_{4*3} =\begin{pmatrix} a_{11} & a_{12}&a_{13}\\ a_{21} & a_{22}&a_{23}\\ a_{31} & a_{32}&a_{33}\\ a_{41} & a_{42}&a_{43}\\ \end{pmatrix} (每行存储的是每个班级对几种产品的需求数量) A43= a11a21a31a41a12a22a32a42a13a23a33a43 (每行存储的是每个班级对几种产品的需求数量)

B 3 ∗ 2 = ( b 11 b 12 b 21 b 22 b 31 b 32 ) ( 每列存储的是每个商家几种产品的价格 ) B_{3*2} =\begin{pmatrix} b_{11} & b_{12}\\ b_{21} & b_{22}\\ b_{31} & b_{32}\\ \end{pmatrix} (每列存储的是每个商家几种产品的价格) B32= b11b21b31b12b22b32 (每列存储的是每个商家几种产品的价格)

C 4 ∗ 2 = A 4 ∗ 3 ∗ B 3 ∗ 2 = ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 a 41 a 42 a 43 ) ∗ ( b 11 b 12 b 21 b 22 b 31 b 32 ) C_{4*2} = A_{4*3} * B_{3*2} =\begin{pmatrix} a_{11} & a_{12}&a_{13}\\ a_{21} & a_{22}&a_{23}\\ a_{31} & a_{32}&a_{33}\\ a_{41} & a_{42}&a_{43}\\ \end{pmatrix}*\begin{pmatrix} b_{11} & b_{12}\\ b_{21} & b_{22}\\ b_{31} & b_{32}\\ \end{pmatrix} C42=A43B32= a11a21a31a41a12a22a32a42a13a23a33a43 b11b21b31b12b22b32
得到的是一个每个班级在每个商家购买完所需商品的总花销表
C 4 ∗ 2 = ( a 11 ∗ b 11 + a 12 ∗ b 21 + a 13 ∗ b 31 a 11 ∗ b 12 + a 12 ∗ b 22 + a 13 ∗ b 32 a 21 ∗ b 11 + a 22 ∗ b 21 + a 23 ∗ b 31 a 21 ∗ b 12 + a 22 ∗ b 22 + a 23 ∗ b 32 a 31 ∗ b 11 + a 32 ∗ b 21 + a 33 ∗ b 31 a 31 ∗ b 12 + a 32 ∗ b 22 + a 33 ∗ b 32 a 41 ∗ b 11 + a 42 ∗ b 21 + a 43 ∗ b 31 a 41 ∗ b 12 + a 42 ∗ b 22 + a 43 ∗ b 32 ) C_{4*2} =\begin{pmatrix} a_{11}*b_{11}+a_{12}*b_{21} +a_{13}*b_{31}& a_{11}*b_{12}+a_{12}*b_{22} +a_{13}*b_{32}\\ a_{21}*b_{11}+a_{22}*b_{21} +a_{23}*b_{31} & a_{21}*b_{12}+a_{22}*b_{22} +a_{23}*b_{32} \\ a_{31}*b_{11}+a_{32}*b_{21} +a_{33}*b_{31}& a_{31}*b_{12}+a_{32}*b_{22} +a_{33}*b_{32}\\ a_{41}*b_{11}+a_{42}*b_{21} +a_{43}*b_{31} &a_{41}*b_{12}+a_{42}*b_{22} +a_{43}*b_{32}\\ \end{pmatrix} C42= a11b11+a12b21+a13b31a21b11+a22b21+a23b31a31b11+a32b21+a33b31a41b11+a42b21+a43b31a11b12+a12b22+a13b32a21b12+a22b22+a23b32a31b12+a32b22+a33b32a41b12+a42b22+a43b32

公式比较复杂,相当于这个过程

  • A的第一行分别对应乘B的第一列,写到C的第一列
  • A的第二行分别对应乘B的第一列,写到C的第一列
  • A的第三行分别对应乘B的第一列,写到C的第一列
  • A的第四行分别对应乘B的第一列,写到C的第一列

  • A的第一行分别对应乘B的第二列,写到C的第二列
  • A的第二行分别对应乘B的第二列,写到C的第二列
  • A的第三行分别对应乘B的第二列,写到C的第二列
  • A的第四行分别对应乘B的第二列,写到C的第二列

1. 需要注意乘法的前提条件:A的列数 = B的行数
2. AB是A左乘B,也可以是B右乘A,AB与BA结果不同

2.另一种记忆方法

我们以更简单的矩阵举例:
A 2 ∗ 2 = ( 1 2 2 3 ) A_{2*2} =\begin{pmatrix} 1 &2\\ 2& 3\\ \end{pmatrix} A22=(1223)

B 2 ∗ 1 = ( 1 2 ) B_{2*1} =\begin{pmatrix} 1 \\ 2\\ \end{pmatrix} B21=(12)

很容易得出

C 2 ∗ 1 = A 2 ∗ 2 ∗ B 2 ∗ 1 = ( 1 ∗ 1 + 2 ∗ 2 2 ∗ 1 + 3 ∗ 2 ) = ( 5 8 ) C_{2*1} =A_{2*2} *B_{2*1}=\begin{pmatrix} 1*1+2*2\\ 2*1+3*2\\ \end{pmatrix} = \begin{pmatrix} 5\\ 8\\ \end{pmatrix} C21=A22B21=(11+2221+32)=(58)
可以理解为这样的一个操作,A第一列*B第一行 + A第二列 * B第二行
C 2 ∗ 1 = A i 1 ∗ B 1 j + A i 2 ∗ B 2 j C_{2*1} = A_{i1}*B_{1j} +A_{i2}* B_{2j} C21=Ai1B1j+Ai2B2j

我们拓展到更高阶的矩阵
A 3 ∗ 3 = ( 1 2 3 2 3 4 1 4 6 ) A_{3*3} =\begin{pmatrix} 1 &2&3\\ 2& 3&4\\ 1& 4&6\\ \end{pmatrix} A33= 121234346

B 3 ∗ 2 = ( 2 2 1 3 1 2 ) B_{3*2} =\begin{pmatrix} 2 &2\\ 1& 3\\ 1& 2\\ \end{pmatrix} B32= 211232

C 3 ∗ 2 = ( 1 2 3 2 3 4 1 4 6 ) ∗ ( 2 2 1 3 1 2 ) C_{3*2} =\begin{pmatrix} 1 &2&3\\ 2& 3&4\\ 1& 4&6\\ \end{pmatrix} *\begin{pmatrix} 2 &2\\ 1& 3\\ 1& 2\\ \end{pmatrix} C32= 121234346 211232

C 3 ∗ 2 = ( 1 2 1 ) ∗ ( 2 2 ) + ( 2 3 4 ) ∗ ( 1 3 ) + ( 3 4 6 ) ∗ ( 1 2 ) C_{3*2} = \begin{pmatrix} 1 \\ 2\\ 1\\ \end{pmatrix} *\begin{pmatrix} 2 &2\\ \end{pmatrix}+\begin{pmatrix} 2 \\ 3\\ 4\\ \end{pmatrix}*\begin{pmatrix} 1&3\\ \end{pmatrix}+\begin{pmatrix} 3 \\ 4\\ 6\\ \end{pmatrix}*\begin{pmatrix} 1 &2\\ \end{pmatrix} C32= 121 (22)+ 234 (13)+ 346 (12)

C 3 ∗ 2 = ( 2 2 4 4 2 2 ) + ( 2 6 3 9 4 12 ) + ( 3 6 4 8 6 12 ) = ( 7 14 11 21 12 26 ) C_{3*2} =\begin{pmatrix} 2&2 \\ 4&4\\ 2&2\\ \end{pmatrix} + \begin{pmatrix} 2&6 \\ 3&9\\ 4&12\\ \end{pmatrix}+ \begin{pmatrix} 3&6 \\ 4&8\\ 6&12\\ \end{pmatrix} = \begin{pmatrix} 7&14 \\ 11&21\\ 12&26\\ \end{pmatrix} C32= 242242 + 2346912 + 3466812 = 71112142126

C 3 ∗ 2 = A i 1 ∗ B 1 j + A i 2 ∗ B 2 j + A i 3 ∗ B 3 j C_{3*2} = A_{i1}*B_{1j} +A_{i2}* B_{2j}+A_{i3}* B_{3j} C32=Ai1B1j+Ai2B2j+Ai3B3j

可以浅显的理解为A的第x列 * B的第x行 的累加求和

在这里插入图片描述
对于矩阵内每个元素:都有计算公式
在这里插入图片描述

十一、矩阵乘法的运算性质

1.结合律

A ( B C ) = ( A B ) C A(BC) = (AB)C A(BC)=(AB)C

2.分配律

A ( B + C ) = A B + A C λ ( A B ) = A ( λ B ) = ( λ A ) B A(B+C) = AB+AC\\ \lambda (AB) = A(\lambda B) = (\lambda A)B A(B+C)=AB+ACλ(AB)=A(λB)=(λA)B

3.与单位阵的运算

E m ∗ A m ∗ n = A m ∗ n ∗ E n = A m ∗ n E_m * A_{m*n} = A_{m*n} *E_n = A_{m*n} EmAmn=AmnEn=Amn

4.可交换

一般情况下 A B = B A 如果 A B = B A ,则称 A 与 B 可换 一般情况下AB \cancel{=} BA\\ 如果AB=BA,则称A与B可换 一般情况下AB= BA如果AB=BA,则称AB可换

5.转置矩阵

同行列式转置几乎一致(参考行列式转置),记作
A T 或 A ′ A^T 或A' ATA
转置之后的矩阵和原矩阵不相等,这里与行列式有差别,有如下性质

( A T ) T = A ( A + B ) T = A T + B T ( λ A ) T = λ A T ( A B ) T = B T A T (A^T )^T = A\\ (A+B)^T = A^T + B^T \\ (\lambda A)^T = \lambda A^T\\ (AB)^T = B^T A^T (AT)T=A(A+B)T=AT+BT(λA)T=λAT(AB)T=BTAT

6.对称矩阵

条件:

  • A是n阶方阵
  • A的转置 = A

性质:

A 是对称矩阵,则 k 倍的 A 也是对称矩阵 A , B 均是对称矩阵, A + B , A − B 也是对称矩阵 A , B 是对称矩阵, A B = B A , A B 也是对称矩阵 A是对称矩阵,则k倍的A也是对称矩阵 A,B均是对称矩阵,A+B,A-B也是对称矩阵 A,B是对称矩阵,AB=BA,AB也是对称矩阵 A是对称矩阵,则k倍的A也是对称矩阵AB均是对称矩阵,A+B,AB也是对称矩阵A,B是对称矩阵,AB=BAAB也是对称矩阵

7.反对称矩阵

A T = − A A^T = -A AT=A
性质:主对角线元素全为0

8.n阶方阵的特殊运算

A是N阶方阵,有如下运算

A 0 = E n A n = A A . . . A ( k 个 A ) A k A l = A k + l ( A k ) l = A k l E k = E A^0 = E_n\\ A^n = AA...A(k个A)\\ A^kA^l = A^{k+l}\\ (A^{k})^l = A^{kl}\\ E^k = E A0=EnAn=AA...AkAAkAl=Ak+l(Ak)l=AklEk=E

对于N阶方阵A,B

( A B ) k = A k B k ( A + B ) 2 = A 2 + 2 A B + B 2 (AB)^k \cancel{=} A^kB^k\\ (A+B)^2 \cancel{=} A^2+2AB+B^2 ABk= AkBk(A+B)2= A2+2AB+B2

十二、矩阵与行列式

  • 只有n阶方阵才有相应行列式,否则没有
  • A的行列式记作

∣ A ∣ 或 d e t A |A| 或det A AdetA

性质:设A为n阶方阵

∣ A T ∣ = ∣ A ∣ ∣ λ A ∣ = λ n ∣ A ∣ ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |A^T| = |A|\\ |\lambda A| = \lambda ^n |A|\\ |AB| = |A| |B| AT=AλA=λnAAB=A∣∣B

解释:

  1. 因为行列式的转置和原来相等,那么转置矩阵变成行列式还是跟原来相等
  2. 矩阵乘一个常数是所有元素都乘常数,但是行列式乘常数只能乘进一行
  3. 可以通过数学归纳或者拉普拉斯公式证明

十三、逆矩阵、伴随矩阵、奇异矩阵

1.逆矩阵

A ∗ B = B ∗ A = E n A * B = B*A= E_n AB=BA=En
则称B为A的逆矩阵,简称逆阵,记作
B = A − 1 B = A^{-1} B=A1
有如下的性质

A ∗ A − 1 = A − 1 ∗ A = E n A * A^{-1} = A^{-1} *A= E_n AA1=A1A=En

( A − 1 ) − 1 = A A 可逆, A T 也可逆, ( A T ) − 1 = ( A − 1 ) T A 可逆且 k = 0 , 则 k A 可逆 , ( k A ) − 1 = 1 k A − 1 A , B 同阶且可逆,则 A B 也可逆,( A B ) − 1 = B − 1 A − 1 ( 可推广到 n 个 ) 若 A 可逆 , ∣ A − 1 ∣ = ∣ A ∣ − 1 (A^{-1})^{-1} = A\\ A可逆,A^T也可逆,(A^T)^{-1} = (A^{-1})^T\\ A可逆且k \cancel{=}0,则kA可逆,(kA)^{-1 } = \frac{1}{k}A^{-1}\\ A,B同阶且可逆,则AB也可逆,(AB)^{-1}=B^{-1}A^{-1} (可推广到n个)\\ 若A可逆,|A^{-1}| = |A|^{-1} (A1)1=AA可逆,AT也可逆,(AT)1=(A1)TA可逆且k= 0,kA可逆,(kA)1=k1A1A,B同阶且可逆,则AB也可逆,(AB1=B1A1(可推广到n)A可逆,A1=A1

2.奇异矩阵与非奇异矩阵

奇异矩阵也叫退化矩阵,非奇异矩阵才可逆,奇异矩阵不可逆
∣ A ∣ ≠ 0 非奇异矩阵 ∣ A ∣ = 0 奇异矩阵 |A| \not= 0 非奇异矩阵\\ |A| =0奇异矩阵 A=0非奇异矩阵A=0奇异矩阵

3.伴随矩阵

A 3 ∗ 3 = ( 1 2 3 2 2 1 3 4 3 ) A_{3*3} =\begin{pmatrix} 1 & 2&3\\ 2 &2&1\\ 3&4&3\\ \end{pmatrix} A33= 123224313
还记得代数余子式吗,划掉所在行列的行列式,乘-1^(i+j)
Astar就等于对每个矩阵的位置求一个代数余子式的值,然后放在矩阵的同位置

4.伴随矩阵求逆矩阵

充要条件:
∣ A ∣ ≠ 0 , A − 1 = 1 ∣ A ∣ A ∗ |A| \not=0,A^{-1} = \frac{1}{|A|} A^* A=0A1=A1A

推论:
A B = E ,则 A , B 互为逆 AB = E,则A,B互为逆 AB=E,则AB互为逆

十四、矩阵的初等变换

1.初等变换

我们还是把矩阵想象为方程组,方程组能干的,矩阵就能这么做

{ a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = b 2 . . . a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + . . . + a n n x n = b n \begin{cases} a_{11}x_1 + a_{12}x_2+a_{13}x_3 +... +a_{1n}x_n= b_1 \\ a_{21}x_1 + a_{22}x_2+a_{23}x_3 +... +a_{2n}x_n= b_2 \\ ...\\ a_{n1}x_1 + a_{n2}x_2+a_{n3}x_3 +... +a_{nn}x_n= b_n \end{cases} a11x1+a12x2+a13x3+...+a1nxn=b1a21x1+a22x2+a23x3+...+a2nxn=b2...an1x1+an2x2+an3x3+...+annxn=bn

下面三种方式叫做初等行变换

  1. 交换任意两行
  2. 任意一行乘k
  3. 某一行乘k加到另一行

行换成列,就是初等列变换,统称初等变换

2.矩阵等价

若A可以经过若干次初等变换到B,则称A与B等价,记作 A~B

  • 具备传递性,A~B ,B~C ,则A~C
  • 具备对称性 A~B ,B~A
  • 具备反身性,A~A

3.行阶梯矩阵

A 4 ∗ 4 = ( 1 2 3 3 0̸ 3 4 5 0̸ 0̸ 2 1 0̸ 0̸ 0̸ 0̸ ) A_{4*4} =\begin{pmatrix} 1 &2&3&3\\ \not0& 3&4&5\\ \not0& \not0&2&1\\ \not0&\not0&\not0&\not0 \end{pmatrix} A44= 1000230034203510
如果一个矩阵的零行都位于非零行下方,并且每个非零行左起第一个非零元素的列数由上而下严格递增,则称该矩阵为行阶梯矩阵
最简行阶梯矩阵:对于一个行阶梯矩阵,如果每行左起第一个非零元素元素都是1,并且这些1所在的列其他元素都是0,则称最简行阶梯矩阵(行最简形矩阵)
A 4 ∗ 4 = ( 1 0 0 0 0 1 0 0 0 0 1 3 0 0 0 0 ) A_{4*4} =\begin{pmatrix} 1 &0&0&0\\ 0& 1&0&0\\ 0& 0&1&3\\ 0&0&0&0 \end{pmatrix} A44= 1000010000100030
再对A进行初等列变换,得到A的标准型
A 4 ∗ 4 = ( 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 ) A_{4*4} =\begin{pmatrix} 1 &0&0&0\\ 0& 1&0&0\\ 0& 0&1&0\\ 0&0&0&0 \end{pmatrix} A44= 1000010000100000

定义m,n,r,其中mn为行数列数
而该标准型左上角的单位阵可以由r确定,所以三个数就可以表示出标准型
E r = ( 1 0 0 0 1 0 0 0 1 ) E_r = \begin{pmatrix} 1 &0&0\\ 0& 1&0\\ 0& 0&1\\ \end{pmatrix} Er= 100010001
所有与A等价的矩阵组成一个等价类标准型是这个类中最简单的矩阵

十五、初等矩阵与步骤记录

1.定理

定义:由单位阵E经过一次初等变换形成的矩阵,叫做初等矩阵

定理2

  • 对A(m*n)进行一次初等行变换,相当于在A左侧乘相应的m阶初等矩阵

  • 对A(m*n)进行一次初等列变换,相当于在A右侧乘相应的n阶初等矩阵

因为这个定理,我们可以只需要记录下来从A到E变换过程的所有初等矩阵再对E来一遍就可以求出A的逆矩阵

2.初等变换法求逆矩阵:

A 3 ∗ 3 = ( 1 1 − 1 3 2 − 2 5 − 2 1 ) A_{3*3} =\begin{pmatrix} 1& 1&-1\\ 3 & 2&-2\\ 5& -2&1\\ \end{pmatrix} A33= 135122121

= > ( 1 1 − 1 ∣ 1 0 0 3 2 − 2 ∣ 0 1 0 5 − 2 1 ∣ 0 0 1 ) =>\begin{pmatrix} 1& 1&-1&| & 1&0&0\\ 3 & 2&-2&|&0&1&0\\ 5& -2&1&|&0&0&1\\ \end{pmatrix} => 135122121100010001

= > ( 1 0 0 ∣ − 2 1 0 0 1 0 ∣ − 13 6 − 1 0 0 1 ∣ − 16 7 − 1 ) =>\begin{pmatrix} 1& 0&0&| & -2&1&0\\ 0 & 1&0&|&-13&6&-1\\ 0& 0&1&|&-16&7&-1\\ \end{pmatrix} => 10001000121316167011

3.初等矩阵的性质

性质:

  • 初等矩阵都可逆,逆矩阵仍是初等矩阵
  • 初等矩阵的转置还是初等矩阵

十六、矩阵的秩

1.k阶子式

在矩阵A中,任取K个行K个列,交叉处的元素不改变相对位置形成的新的k阶行列式

2.矩阵的秩

  • 有一个不等于0的 r 阶子式
  • 所有 r+1 阶子式等于0
    满足这两个条件的子式叫做最高阶非零子式r称为矩阵的秩

性质:

R ( A ) = R ( A T ) = R ( k A ) ( 常数 k ≠ 0 ) 存在 x 阶子式不为 0 , R ( A ) > = s 所有 t 阶子式为 0 , R ( A ) < t A 为 n 阶方阵, A 为奇异矩阵的充要条件 R ( A ) = n R(A) = R(A^T) = R(kA) (常数k \not=0)\\ 存在x阶子式不为0,R(A)>=s\\ 所有t阶子式为0,R(A)<t\\ A为n阶方阵,A为奇异矩阵的充要条件R(A) = n RA=R(AT)=R(kA)(常数k=0)存在x阶子式不为0R(A)>=s所有t阶子式为0R(A)<tAn阶方阵,A为奇异矩阵的充要条件R(A)=n

3.满秩矩阵、降秩矩阵

R(A) = min(m , n) 称为满秩矩阵,否则为降秩矩阵

4.求矩阵的秩

  1. 按定义
  2. 初等行变换到行阶梯矩阵,非零行的个数为R的值

5.矩阵秩的性质

A为mn阶矩阵,B为nk阶矩阵

(1).性质1

C ( m + k ) ∗ ( n + l ) = ( A O O B ) C_{(m+k)*(n+l)} =\begin{pmatrix} A& O\\ O & B\\ \end{pmatrix} C(m+k)(n+l=(AOOB)
R ( C ) = R ( A ) + R ( B ) R(C) = R(A) + R(B) R(C)=R(A)+R(B)

(2).性质2

C ( m + k ) ∗ ( n + l ) = ( A O C B ) C_{(m+k)*(n+l)} =\begin{pmatrix} A& O\\ C & B\\ \end{pmatrix} C(m+k)(n+l=(ACOB)
Q ( m + k ) ∗ ( n + l ) = ( A D O B ) Q_{(m+k)*(n+l)} =\begin{pmatrix} A& D\\ O & B\\ \end{pmatrix} Q(m+k)(n+l=(AODB)
R ( C ) > = R ( A ) + R ( B ) R ( Q ) > = R ( A ) + R ( B ) R(C) >=R(A) + R(B)\\ R(Q) >=R(A) + R(B) R(C)>=R(A)+R(B)R(Q)>=R(A)+R(B)

(3).性质3

R ( A ) + R ( B ) < = R ( A + B ) R(A)+R(B)<=R(A+B) RA+RB<=R(A+B)

(4).性质4

R ( A B ) < = m i n { R ( A ) , R ( b ) } R(AB)<=min\{R(A),R(b)\} R(AB)<=min{R(A),R(b)}

(5).性质5

R ( A ) + R ( B ) − n < = R ( A B ) R(A)+R(B)-n<=R(AB) R(A)+R(B)n<=R(AB)

(6).性质6

A B = O , R ( A ) + R ( B ) < n AB = O,R(A)+R(B)<n AB=O,RA+RB<n

十七、分块矩阵

在这里插入图片描述
分块矩阵就是随意切成n块,然后再算
它把子矩阵作为元素,运算性质和矩阵相同

分块对角矩阵:若 A i A_i Ai都是方阵,则A称为对角分块矩阵
A 3 ∗ 3 = ( A 1 A 2 . . . A s ) A_{3*3} =\begin{pmatrix} A_1& &\\ & A_2&\\ & &...&\\ & &&A_s\\ \end{pmatrix} A33= A1A2...As

尽量选择良好的分块,可以提高效率
A 3 ∗ 3 = ( 9 0 0 0 2 1 0 0 0 0 3 4 0 0 0 2 ) = ( 9 0 ∣ 0 0 2 1 ∣ 0 0 − − − − − 0 0 ∣ 3 4 0 0 ∣ 0 2 ) A_{3*3} =\begin{pmatrix} 9& 0&0&0\\ 2&1&0&0\\ 0&0 &3&4\\ 0& 0&0&2\\ \end{pmatrix} = \begin{pmatrix} 9& 0&|&0&0\\ 2&1&|&0&0\\ -&-&-&-&-\\ 0&0 &|&3&4\\ 0& 0&|&0&2\\ \end{pmatrix} A33= 9200010000300042 = 9200010000300042

十八、线性方程组

1.非齐次线性方程组

{ a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = b 2 . . . a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + . . . + a n n x n = b n \begin{cases} a_{11}x_1 + a_{12}x_2+a_{13}x_3 +... +a_{1n}x_n= b_1 \\ a_{21}x_1 + a_{22}x_2+a_{23}x_3 +... +a_{2n}x_n= b_2 \\ ...\\ a_{n1}x_1 + a_{n2}x_2+a_{n3}x_3 +... +a_{nn}x_n= b_n \end{cases} a11x1+a12x2+a13x3+...+a1nxn=b1a21x1+a22x2+a23x3+...+a2nxn=b2...an1x1+an2x2+an3x3+...+annxn=bn

2.齐次线性方程组

{ a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = 0 . . . a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + . . . + a n n x n = 0 \begin{cases} a_{11}x_1 + a_{12}x_2+a_{13}x_3 +... +a_{1n}x_n= 0 \\ a_{21}x_1 + a_{22}x_2+a_{23}x_3 +... +a_{2n}x_n= 0 \\ ...\\ a_{n1}x_1 + a_{n2}x_2+a_{n3}x_3 +... +a_{nn}x_n=0 \end{cases} a11x1+a12x2+a13x3+...+a1nxn=0a21x1+a22x2+a23x3+...+a2nxn=0...an1x1+an2x2+an3x3+...+annxn=0
简单来看就是b全是0的非齐次

3.系数矩阵与增广矩阵

A x = b x 称为未知数向量, b 为常数项向量 A x = b\\ x称为未知数向量,b为常数项向量 Ax=bx称为未知数向量,b为常数项向量
有一个方程组,如下
{ a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = b 2 . . . a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + . . . + a n n x n = b n \begin{cases} a_{11}x_1 + a_{12}x_2+a_{13}x_3 +... +a_{1n}x_n= b_1 \\ a_{21}x_1 + a_{22}x_2+a_{23}x_3 +... +a_{2n}x_n= b_2 \\ ...\\ a_{n1}x_1 + a_{n2}x_2+a_{n3}x_3 +... +a_{nn}x_n= b_n \end{cases} a11x1+a12x2+a13x3+...+a1nxn=b1a21x1+a22x2+a23x3+...+a2nxn=b2...an1x1+an2x2+an3x3+...+annxn=bn
该方程组的系数矩阵为:
A m ∗ n = ( a 11 a 12 a 13 . . . a 1 n a 21 a 22 a 23 . . . a 2 n a 31 a 32 a 33 . . . a 3 n . . . . . . . . . . . . . . . . . . . . . . . . . . . a ( n − 1 ) n a n 1 a n 2 . . . a n ( n − 1 ) a n n ) A_{m*n} =\begin{pmatrix} a_{11} & a_{12} &a_{13}&...&a_{1n}\\ a_{21} & a_{22}&a_{23}&...&a_{2n}\\ a_{31}&a_{32}&a_{33}&...&a_{3n}\\ ...&...&...&...&...\\ ...&...&...&...&a_{(n-1)n}\\ a_{n1}&a_{n2}&...&a_{n(n-1)}&a_{nn}\\ \end{pmatrix} Amn= a11a21a31......an1a12a22a32......an2a13a23a33........................an(n1)a1na2na3n...a(n1)nann

该方程组的增广矩阵为:
A ~ m ∗ n = ( a 11 a 12 a 13 . . . a 1 n b 1 a 21 a 22 a 23 . . . a 2 n b 2 a 31 a 32 a 33 . . . a 3 n b 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . a ( n − 1 ) n b n − 1 a n 1 a n 2 . . . a n ( n − 1 ) a n n b n ) \widetilde{A}_{m*n} =\begin{pmatrix} a_{11} & a_{12} &a_{13}&...&a_{1n}&b_1\\ a_{21} & a_{22}&a_{23}&...&a_{2n}&b_2\\ a_{31}&a_{32}&a_{33}&...&a_{3n}&b_3\\ ...&...&...&...&...\\ ...&...&...&...&a_{(n-1)n}&b_{n-1}\\ a_{n1}&a_{n2}&...&a_{n(n-1)}&a_{nn}&b_n\\ \end{pmatrix} A mn= a11a21a31......an1a12a22a32......an2a13a23a33........................an(n1)a1na2na3n...a(n1)nannb1b2b3bn1bn

4.线性方程组的解

满足线性方程组的一组数x1 =k1,x2 = k2…,叫做线性方程组的解或者特解
写成向量形式,叫做线性方程组的解向量,记作
x = ( k 1 , k 2 , . . . k n ) T x = (k_1,k_2,...k_n)^T x=(k1,k2,...kn)T

全体解向量的集合叫做解集,求解集的过程叫解线性方程组
如果两个线性方程组结集相同,称他们为同解线性方程组
表达线性方程组全部解的表达式,称为通解

5.高斯消元法解线性方程组

求解非齐次线性方程组 { x 1 − 2 x 2 + 3 x 3 − x 4 = 1 3 x 1 − x 2 + 5 x 3 − 3 x 4 = 2 2 x 1 + x 2 + 2 x 3 − 2 x 4 = 3 求解非齐次线性方程组\begin{cases} x_1 -2 x_2+3x_3 -x_4= 1 \\ 3x_1 - x_2+5x_3 -3x_4= 2 \\ 2x_1 +x_2+2x_3 -2x_4=3 \end{cases} 求解非齐次线性方程组 x12x2+3x3x4=13x1x2+5x33x4=22x1+x2+2x32x4=3

A ~ = ( 1 − 2 3 − 1 ∣ 1 3 − 1 5 − 3 ∣ − 1 2 1 2 − 2 ∣ − 2 ) = > ( 1 − 2 3 − 1 ∣ 1 0 5 − 4 0 ∣ − 1 0 0 0 0 ∣ − 2 ) = B ~ \widetilde A =\begin{pmatrix} 1 & -2&3&-1&|&1\\ 3 & -1&5&-3&|&-1\\ 2&1&2&-2&|&-2\\ \end{pmatrix} = >\begin{pmatrix} 1 & -2&3&-1&|&1\\ 0& 5&-4&0&|&-1\\ 0&0&0&0&|&-2\\ \end{pmatrix} = \widetilde B A = 132211352132112 => 100250340100112 =B

{ x 1 = 1 + 2 x 2 − 3 x 3 + x 4 x 2 = ( 2 + 4 x 3 ) / 5 0 = − 2 \begin{cases} x_1 = 1+2 x_2-3x_3 +x_4 \\ x_2=( 2 +4x_3)/5\\ 0=-2 \end{cases} x1=1+2x23x3+x4x2=2+4x3/50=2

显然第三个方程矛盾,该方程组无解
步骤如下:

  • 写出增广矩阵
  • 初等行变换为行阶梯矩阵
  • 取每行首个非零元素对应x作为因变量

6.线性方程组解与秩的关系

(1)对于齐次/非齐次方程组

R ( A ) < R ( A ~ ) = > 无解 R ( A ) = R = n ( A ~ ) = > 有唯一解 R ( A ) = R < n ( A ~ ) = > 有无穷多解 R(A)<R(\widetilde A)=>无解\\ R(A)=R =n(\widetilde A)=>有唯一解\\ R(A)=R <n(\widetilde A)=>有无穷多解 RA<RA =>无解RA=R=nA =>有唯一解RA=R<nA =>有无穷多解

(2)对于齐次方程组

R ( A ) = n = > 有唯一解,只有零解 R ( A ) < n = > 有无穷多解,有非零解 R(A) =n \space \space =>有唯一解,只有零解\\ R(A)<n \space \space =>有无穷多解,有非零解 R(A)=n  =>有唯一解,只有零解R(A)<n  =>有无穷多解,有非零解

当齐次方程组的系数矩阵为方阵时,行列式为0说明R(A)<n

1. 任何方阵都可以通过初等行变换转化为上三角阵.
2. 当且仅当主对角线上的元素中有0,上三角阵的行列式为0.
3. n阶上三角阵(行阶梯矩阵)的秩 = n - 主对角线上0的个数.

十九、向量与线性

1.向量

只有一行的矩阵称为行向量,一列的矩阵称为列向量
α = ( 1 2 3 ) , β = ( 1 2 3 ) \alpha = \begin{pmatrix} 1 \\ 2\\ 3 \end{pmatrix},\beta = \begin{pmatrix} 1 &2&3\\ \end{pmatrix} α= 123 ,β=(123)
元素个数n称为维数,而第i个元素称为向量的第i个分量

2.向量组

若干个同维的列(行)向量所组成的集合称为向量组
A n ∗ m = ( α 1 , α 2 , . . . α m ) A_{n*m}=(\alpha_1,\alpha_2,...\alpha_m) Anm=(α1,α2,...αm)

3.线性组合

对于 A n ∗ m = ( α 1 , α 2 , . . . α m ) ,实数 ( k 1 , k 2 . . . k m ) k 1 α 1 + k 2 α 2 + . . . + k m α m 称为向量组 A 的线性组合 ( k 1 , k 2 . . . k m ) 称为这个向量组的系数 对于A_{n*m}=(\alpha_1,\alpha_2,...\alpha_m),实数(k_1,k_2...k_m)\\ k_1\alpha_1 + k_2\alpha_2 +...+k_m\alpha_m称为向量组A的线性组合\\ (k_1,k_2...k_m)称为这个向量组的系数 对于Anm=(α1,α2,...αm),实数(k1,k2...km)k1α1+k2α2+...+kmαm称为向量组A的线性组合(k1,k2...km)称为这个向量组的系数

简单来说,就是把里面的向量随便乘一堆非线性的常量系数加一起,就是线性组合

4.线性表示

如果A的通过线性组合,能表示出β,我们称β是向量组A的线性组合,或者β可以被A线性表示
如果有A,B两个向量组,B中每个向量都能被A线性表示,称向量组B可以被A线性表示
A,B可以相互线性表示,则记作A~B,AB等价

β 可以被 A 线性表示 < = > R ( A ) = R ( A β ) = m B 可以被 A 表示 < = > R ( A B ) = R ( A ) = > R ( A ) > = R ( B ) A 等价于 B < = > R ( A ) = R ( B ) = R ( A B ) β可以被A线性表示<=>R(A) = R(A \space \space β) = m\\ B可以被A表示 <=> R(A\space \space B) = R(A)=>R(A)>=R(B)\\ A 等价于B <=> R(A) = R(B) = R(A\space \space B) β可以被A线性表示<=>R(A)=R(A  β)=mB可以被A表示<=>R(A  B)=R(A)=>R(A)>=R(B)A等价于B<=>R(A)=R(B)=R(A  B)

5.线性相关

对于 A n ∗ m = ( α 1 , α 2 , . . . α m ) ,存在实数 ( k 1 , k 2 . . . k m ) 使 k 1 α 1 + k 2 α 2 + . . . + k m α m = 0 则称 A 线性相关,否则称 A 线性无关 对于A_{n*m}=(\alpha_1,\alpha_2,...\alpha_m),存在实数(k_1,k_2...k_m)\\ 使k_1\alpha_1 + k_2\alpha_2 +...+k_m\alpha_m = 0\\ 则称A线性相关,否则称A线性无关 对于Anm=(α1,α2,...αm),存在实数(k1,k2...km)使k1α1+k2α2+...+kmαm=0则称A线性相关,否则称A线性无关

对于向量组 A A A而言
A 线性无关 < = > R ( A ) = m A 线性相关 < = > R ( A ) < m A线性无关<=>R(A) = m\\ A线性相关<=>R(A)<m A线性无关<=>R(A)=mA线性相关<=>R(A)<m

  • 推论:m个n维向量组成向量组,n<m时一定线性相关,n+1个n维向量一定相关

  • 推论:包含零向量的向量组一定线性相关

    • 注意:若向量组只有一个向量,向量线性相关的充要条件是这个向量为0向量
    • 注意:若向量组只有两个向量,线性相关的充要条件是共线,三个共面
  • 定理6:若A中至少有一个向量可以由其他向量表示<=>A线性相关

  • 定理7:A线性无关,而向量组(A β)线性相关,则β可以被A唯一表示

  • 定理8:A中有部分向量线性相关,则A线性相关,A线性无关,任意部分向量线性无关

  • 定理9:若A能被B线性表示,且A的向量数量比B多,A线性相关

    • 推论:A可由B线性表示,A线性无关,则A的元素数不多于B

6.极大无关组

(1)定义:

在向量组A中,能找出r个向量,满足

  • r个向量线性无关
  • 任意r+1个向量线性相关

简单理解就是找一组元素数量最多的线性无关的向量,能表示A中任意向量,我们称这个向量组为 A 0 A_0 A0

A 0 A_0 A0就是向量组A的一个最大的无关向量组称极大无关组向量个数r称为向量组A的秩
注意:

  • 只含零向量的向量组没用极大无关组,规定秩为0

  • 线性无关向量组的极大无关组是本身

  • 一般向量组的极大无关组不唯一,元素个数相等,相互等价

  • 定理10:向量组与它的极大无关组等价

  • 定理11:若A中存在r阶子式不等于0,则这个子式所在r个列向量线性无关
    若所有r阶子式为0,则任意r个向量线性相关

  • 定理12:向量组的秩等于向量组组成的矩阵的秩,某个r阶子式非零,则这个子式所在r个列向量是A的极大无关组

二十、方程组解的结构

1.齐次方程

性质: β 1 , β 2 β1 ,β2 β1β2 A x = 0 Ax = 0 Ax=0的两个解,那么 k 1 β 1 + k 2 β 2 k1β1 + k2β2 k1β1+k2β2也是它的解
定义:
β 1 , β 2 , . . . β n β1,β2,...βn β1β2...βn线性无关
Ax=0的任意解可以被 β 1 , β 2 , . . . β n β1,β2,...βn β1β2...βn表示出来
我们称 β 1 , β 2 , . . . β n β1,β2,...βn β1β2...βn A x = 0 Ax =0 Ax=0基础解系
定理13:
如果齐次方程有非零解,一定有基础解系,且基础解系解向量个数=n-r
r为系数矩阵A的秩,n为未知量个数,n-r是自由未知量个数
通解 x = k 1 + β 1 + k 2 β 2 + . . . + k n β n x = k1+β1+k2β2+...+knβn x=k1+β1+k2β2+...+knβn

2.非齐次方程

性质2:β1 ,β2 是 A x = b Ax = b Ax=b的两个解,那么β1 - β2是Ax=0的解
性质3: η是 A x = b Ax=b Ax=b的解,β是 A x = 0 Ax=0 Ax=0的解,则 η + β η+β η+β A x = b Ax=b Ax=b的解
定理14:若 η ∗ η* η A x = b Ax=b Ax=b的一个特解, A x = 0 Ax=0 Ax=0的基础解为 β 1 , . . . β n − r β1,...βn-r β1...βnr
则通解 x = η ∗ + β 1 + β n − r x = η* + β1+βn-r x=η+β1+βnr

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/81268.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C#】【源码】直接可用的远程桌面应用

【背景】 封闭环境无法拷贝外来的远程桌面软件&#xff0c;所以就直接自己用C#写一个。 【效果】 【说明】 本篇会给出完整的编程步骤&#xff0c;照着写就能拥有你自己的远程桌面应用&#xff0c;直接可以运行在局域网。 如果不想自己敲代码&#xff0c;也可以选择直接下载…

Redis环境配置

【Redis解压即可】链接&#xff1a;https://pan.baidu.com/s/1y4xVLF8-8PI8qrczbxde9w?pwd0122 提取码&#xff1a;0122 【Redis桌面工具】 链接&#xff1a;https://pan.baidu.com/s/1IlsUy9sMfh95dQPeeM_1Qg?pwd0122 提取码&#xff1a;0122 Redis安装步骤 1.先打开Redis…

OPENCV实现DNN图像分类

使用步骤1 使用步骤2 使用步骤3 使用步骤4 使用步骤5 使用步骤6 完整代码如下: import numpy as np

线程的方法(未完成)

线程的方法 1、sleep(long millis) 线程休眠&#xff1a;让执行的线程暂停一段时间&#xff0c;进入计时等待状态。 static void sleep(long millis):调用此方法后&#xff0c;当前线程放弃 CPU 资源&#xff0c;在指定的时间内&#xff0c;sleep 所在的线程不会获得可运行的机…

解决MySQL8.0本地计算机上的MySQL服务启动后停止没有报告任何错误

1.启动MySQL的错误信息如下 &#xff08;1&#xff09;“本地计算机上的MySQL服务启动后停止。某些服务在未由其他服务或程序使用时将自动停止。” &#xff08;2&#xff09;又在PowerShell中运行"net start MySQL"&#xff0c;服务启动失败。“MySQL 服务无法启…

MyBatis初级

文章目录 一、mybatis1、概念2、JDBC缺点2.1、之前jdbc操作2.2 、原始jdbc操作的分析 3、mybatis的使用3.1、导入maven依赖3.2、新建表3.3、实体类3.4、编写mybatis的配置文件3.5、编写接口 和 映射文件3.6、编写测试类3.7、注意事项 4、代理方式开发5、mybatis和spring整合5.1…

二进制 Deploy Kubernetes v1.23.17 超级详细部署

文章目录 1. 预备条件2. 基础配置2.1 配置root远程登录2.2 配置主机名2.3 安装 ansible2.4 配置互信2.5 配置hosts文件2.6 关闭防firewalld火墙2.7 关闭 selinux2.8 关闭交换分区swap2.9 修改内核参数2.10 安装iptables2.11 开启ipvs2.12 配置limits参数2.13 配置 yum2.14 配置…

什么是 BSD 协议?

BSD开源协议是一个给于使用者很大自由的协议。可以自由的使用&#xff0c;修改源代码&#xff0c;也可以将修改后的代码作为开源或者专有软件再发布。当你发布使用了BSD协议的代码&#xff0c;或者以BSD协议代码为基础做二次开发自己的产品时&#xff0c;需要满足三个条件&…

Git的ssh方式如何配置,如何通过ssh方式拉取和提交代码

git的ssh配置 HTTPS和SSH的区别设置SSH方式配置单个仓库配置账户公钥 大家通过git拉取代码的时候&#xff0c;一般都是通过http的方式&#xff0c;简单方便。但是细心的童鞋肯定也注意到Git也是支持ssh方式的。可能很多人也试过使用这个方式&#xff0c;但是好像没有那么简单。…

Python爬虫实战案例——第五例

文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff01;严禁将文中内容用于任何商业与非法用途&#xff0c;由此产生的一切后果与作者无关。若有侵权&#xff0c;请联系删除。 目标&#xff1a;采集三国杀官网的精美壁纸 地址&#xff1a;aHR0cHM6Ly93d3…

IDEA2023.2.1中创建第一个Tomcat的web项目

首先&#xff0c;创建一个普通的java项目。点击【file】-【new】-【project】 创建一个TomcatDemo项目 创建如下图 添加web部门。点击【file】-【project structure】 选择【modules】-选中项目“TomcatDemo” 点击项目名上的加号【】&#xff0c;添加【web】模块 我们就会发现…

网络协议学习地图分享

最近在回顾网络知识点的时候&#xff0c;发现华为数通有关报文格式及网络协议地图神仙网站&#xff0c;这里涵盖了各个协议层及每个协议层对应的协议内容&#xff0c;最人性的化的一点是点击每个单独的协议可以跳转到该协议详细报文格式页面&#xff0c;有对应的说明和解释&…

单片机内存管理

源码说明 源码包含memory.h 和 memory.c 两个文件&#xff08;嵌入式C/C代码的“标配”&#xff09;&#xff0c;其源码中包含重要的注释。 memory.h文件包含结构体等定义&#xff0c;函数API申明等&#xff1b; memory.c文件是实现内存管理相关API函数的原型。 memory.h …

【JAVA-Day22】深度解析 Java 的包机制

深度解析 Java 的包机制 深度解析 Java 的包机制摘要引言一、什么是包机制1.1 包的定义1.2 包的命名规范1.3 包的声明1.4 包的导入1.5 包的访问权限1.6 包的层次结构1.7 包的目录结构 二、包的命名冲突问题三、总结参考资料 博主 默语带您 Go to New World. ✍ 个人主页—— 默…

​全球人类读书会《乡村振兴战略下传统村落文化旅游设计》中国建筑出版传媒许少辉博士著作

​全球人类读书会《乡村振兴战略下传统村落文化旅游设计》中国建筑出版传媒许少辉博士著作

【小吉送书—第二期】阿里后端开发:抽象建模经典案例

文章目录 0.引言1.抽象思维2.软件世界中的抽象2.1 命名抽象2.2 分层抽象2.3 原则抽象 3. 经典抽象案例3.1 方案一&#xff1a;战术抽象&#xff0c;多快好省&#xff0c;跑步前进3.2 方案二&#xff1a;深入分析&#xff0c;透过表象&#xff0c;探寻本质 5. 推荐一本书&#x…

Mac专用投屏工具AirServer 7 .27 for Mac中文免费激活版

AirServer 7 .27 for Mac中文免费激活版是一款Mac专用投屏工具&#xff0c;能够通过本地网络将音频、照片、视频以及支持AirPlay功能的第三方App&#xff0c;从 iOS 设备无线传送到 Mac 电脑的屏幕上&#xff0c;把Mac变成一个AirPlay终端的实用工具。 目前最新的AirServer 7.2…

Redis:分布式锁误删原因分析

一、线程阻塞 例如&#xff0c;线程一获取分布式锁&#xff0c;但是线程一阻塞时间过长&#xff0c;导致锁超时释放。此时线程二获取分布式锁。当线程一阻塞结束后&#xff0c;释放分布式锁&#xff0c;但是释放的却是线程二的锁。此时线程二就不安全了&#xff0c;线程三也可…

destoon关于archiver归档的性能优化

今天在处理一个项目时候发现archiver单个模块归档超过百万数据&#xff0c;打开速度就特慢&#xff0c;所以打开archiver下index.php文件进行分析&#xff0c;发现有句sql作怪&#xff0c;查询需要三四分钟&#xff0c;所以要修改这个。 $result $db->query("SELECT …

【Linux】Linux工具

Yan-英杰的主页 悟已往之不谏 知来者之可追 C程序员&#xff0c;2024届电子信息研究生 目录 一、Linux安装软件&#xff1a; 1.yum安装 2.Linux和Windows文件互传 问题: 3.yum卸载软件 二、vim编辑器 1.命令模式 2.vim配置项说明 3.vim操作总结 一、Linux安装软件&#…