时间序列分析 #ARMA模型的识别与参数估计 #R语言

掌握ARMA模型的识别和参数估计。

原始数据在文末!!!

练习1、

根据某1915-2004年澳大利亚每年与枪支有关的凶杀案死亡率(每10万人)数据(题目1数据.txt),求:

第1小题:

(1)通过单位根检验,判断该序列的平稳性;判断该序列的纯随机性;

    (2) 绘制序列的样本自相关图(ACF)和偏自相关图(PACF),根据相关性特征,选择适当模型拟合该序列的发展;

    (3)利用auto.arima()函数,对该序列进行系统自动定阶。

data <- read.table("F:/时间序列分析/实验6/习题数据/题目1数据.txt",header = T)
x <- ts(data[,2],start=1915)
#第1小题
#原序列ADF检验
library(aTSA)
adf.test(x)
#原序列白噪声检验
for(i in 1:2) print(Box.test(x,type = "Ljung-Box",lag = 6*i))
#原序列绘制自相关图和偏自相关图
par(mfrow = c(1,2))
acf(x)
pacf(x)
#自动识别模型
library(zoo)
library(forecast)
#系统自动定阶
auto.arima(x)

结果分析:

第1小题:

(1)

单位根检验:检验结果显示该序列可认为是平稳序列(带漂移项无滞后模型和既有漂移项又有趋势项的无滞后模型的P值小于0.05)。

Augmented Dickey-Fuller Test

alternative: stationary

Type 1: no drift no trend

     lag    ADF p.value

[1,]   0 -1.473   0.149

[2,]   1 -1.037   0.306

[3,]   2 -0.896   0.357

[4,]   3 -0.835   0.379

Type 2: with drift no trend

     lag   ADF p.value

[1,]   0 -4.54  0.0100

[2,]   1 -2.88  0.0543

[3,]   2 -2.25  0.2309

[4,]   3 -1.46  0.5330

Type 3: with drift and trend

     lag   ADF p.value

[1,]   0 -4.53   0.010

[2,]   1 -2.86   0.219

[3,]   2 -2.22   0.480

[4,]   3 -1.40   0.823

----

Note: in fact, p.value = 0.01 means p.value <= 0.01

白噪声检验:延迟6阶和延迟12阶的LB统计量的P值都小于α=0.05,则拒绝原假设,认为序列不是白噪声序列。

    Box-Ljung test

data:  x

X-squared = 92.781, df = 6, p-value < 2.2e-16

    Box-Ljung test

data:  x

X-squared = 108.89, df = 12, p-value < 2.2e-16

(2)

①自相关图可以看出,自相关系数是以一种有规律的方式,按指数函数轨迹衰减的,说明自相关系数衰减到零不是一个突然截尾的过程,而是一个连续渐变的过程,判定自相关系数拖尾;

②偏自相关图可以看出,除了1阶偏自相关系数在2倍标准差范围之外,之后几乎95%的偏自相关系数都在2倍标准差范围内,判定偏自相关系数1阶截尾;

综上所述,序列呈现出自相关系数拖尾,偏自相关系数1阶截尾的特性,初步确定拟合模型为AR(1)模型。

(3)系统自动定阶结果表明,该序列为ARMA(1,1)模型。

Series: x

ARIMA(1,0,1) with non-zero mean

Coefficients:

         ar1      ma1    mean

      0.9065  -0.5302  0.4616

s.e.  0.0682   0.1278  0.0591

sigma^2 = 0.01433:  log likelihood = 64.48

AIC=-120.97   AICc=-120.5   BIC=-110.97

第2小题:

(1)绘制序列的时序图,判断该序列的平稳性;

    (2)如果判断该序列非平稳,选择适当阶数(或步长)的差分运算。对差分后序列:做出时序图、白噪声检验、自相关图(ACF)和偏自相关图(PACF),选择适当模型拟合该差分后序列的发展(此处不要依赖系统自动定阶)

(3)选用适当估计方法确定上述拟合模型的口径。

#第2小题
#原序列时序图
plot(x)
#1阶差分
dif_x <- diff(x)
#绘制差分后序列的时序图
plot(dif_x)
#差分后序列的白噪声检验
for (i in 1:2) print(Box.test(dif_x,type = "Ljung-Box",lag = 6*i))
#绘制差分后序列的自相关图和偏自相关图
par(mfrow = c(1,2))
acf(dif_x)
pacf(dif_x)
#模型参数估计,确定模型的口径
#①选择AR(1)模型时模型的口径
arima(dif_x,order = c(1,0,0),method = "ML")
#③选择MA(3)模型时模型的口径
arima(dif_x,order = c(0,0,3),method = "ML")

结果分析:

第2小题:

  1. 从时序图可以看出,该序列存在明显的线性趋势,认为该序列是非平稳序列。

时序图:

  1. 选择1阶差分运算。

1阶差分后的时序图:从1阶差分后序列的时序图可以看出1阶差分运算后,序列在常数0附近波动,且波动有界。认为1阶差分后的序列是平稳序列。

1阶差分后序列的白噪声检验:延迟6阶和延迟12阶的LB统计量的P值为都小于α=0.05,则拒绝原假设,认为1阶差分后的序列不是白噪声序列。

    Box-Ljung test

data:  dif_x

X-squared = 21.986, df = 6, p-value = 0.001218

    Box-Ljung test

data:  dif_x

X-squared = 40.071, df = 12, p-value = 6.998e-05

ACF图和PACF图:

  • 从自相关图看出,除了1阶自相关系数在2倍标准差范围之外,之后几乎95%的自相关系数都突然衰减到2倍标准差范围之内。判定为1阶截尾;
  • 从偏自相关图看出,除了1-3阶偏自相关系数在2倍标准差范围之外,之后几乎95%的自相关系数都突然衰减到2倍标准差范围之内。判定为3阶截尾;

综上所述,序列呈现出自相关系数1阶截尾的特性,偏自相关系数3阶截尾的特性,初步确定拟合模型为AR(1)模型或MA(3)模型。

(3)

①选择AR(1)模型时模型的口径为:

x_{t}+0.0037=\frac{\varepsilon _{t}}{1+0.4033B}Var(\varepsilon _{t})=0.01589

该AR(1)模型的等价表达为:

x_{t}=-0.00519221-0.4033x_{t-1}+\varepsilon _{t}Var(\varepsilon _{t})=0.01589

Call:

arima(x = dif_x, order = c(1, 0, 0), method = "ML")

Coefficients:

          ar1  intercept

      -0.4033    -0.0037

s.e.   0.0964     0.0096

sigma^2 estimated as 0.01589:  log likelihood = 57.94,  aic = -109.87

  • 选择MA(3)模型时模型的口径为:

x_{t}=-0.0033+\varepsilon _{t}-0.5734\varepsilon _{t-1}-0.0495\varepsilon _{t-2}-0.0109\varepsilon _{t-3}Var(\varepsilon _{t})=0.01421

Call:

arima(x = dif_x, order = c(0, 0, 3), method = "ML")

Coefficients:

          ma1      ma2      ma3  intercept

      -0.5734  -0.0495  -0.0109    -0.0033

s.e.   0.1103   0.1069   0.1067     0.0047

sigma^2 estimated as 0.01421:  log likelihood = 62.79,  aic = -115.58

练习2、

根据1860-1955年密歇根湖每月平均水位的最高值序列(题目2数据.csv),求:

第1小题:

(1)通过单位根检验,判断该序列的平稳性;判断该序列的纯随机性;

    (2) 绘制序列的样本自相关图(ACF)和偏自相关图(PACF),根据相关性特征,选择适当模型拟合该序列的发展;

    (3)利用auto.arima()函数,对该序列进行系统自动定阶。

data <- read.csv("F:/时间序列分析/实验6/习题数据/题目2数据.csv",sep = ",",header = T)
x <- ts(data[,2],start=1860)
#第1小题
#原序列ADF检验
adf.test(x)
#原序列白噪声检验
for(i in 1:2) print(Box.test(x,type = "Ljung-Box",lag = 6*i))
#原序列绘制自相关图和偏自相关图
par(mfrow = c(1,2))
acf(x)
pacf(x)
#系统自动定阶
auto.arima(x)

结果分析:

第1小题:

  1. 单位根检验:检验结果显示该序列可认为是平稳序列(带漂移项1阶滞后模型和既有漂移项又有趋势项的1阶滞后模型的P值小于0.05)。

Augmented Dickey-Fuller Test

alternative: stationary

Type 1: no drift no trend

     lag    ADF p.value

[1,]   0 -0.312   0.553

[2,]   1 -0.320   0.551

[3,]   2 -0.307   0.555

[4,]   3 -0.245   0.573

Type 2: with drift no trend

     lag   ADF p.value

[1,]   0 -2.88  0.0535

[2,]   1 -3.39  0.0154

[3,]   2 -2.73  0.0776

[4,]   3 -2.34  0.1973

Type 3: with drift and trend

     lag   ADF p.value

[1,]   0 -3.22  0.0891

[2,]   1 -4.03  0.0113

[3,]   2 -3.10  0.1204

[4,]   3 -2.60  0.3258

----

Note: in fact, p.value = 0.01 means p.value <= 0.01

白噪声检验:延迟6阶和延迟12阶的LB统计量的P值为都小于α=0.05,则拒绝原假设,认为序列不是白噪声序列。

    Box-Ljung test

data:  x

X-squared = 215.96, df = 6, p-value < 2.2e-16

    Box-Ljung test

data:  x

X-squared = 329.2, df = 12, p-value < 2.2e-16

(2)①自相关图可以看出,自相关系数是以一种有规律的方式,按指数函数轨迹衰减的,说明自相关系数衰减到零不是一个突然截尾的过程,而是一个连续渐变的过程,判定自相关系数拖尾;

②偏自相关图可以看出,除了1阶偏自相关系数在2倍标准差范围之外,之后几乎95%的偏自相关系数都在2倍标准差范围内,判定偏自相关系数1阶截尾;

综上所述,序列呈现出自相关系数拖尾,偏自相关系数1阶截尾的特性,初步确定拟合模型为AR(1)模型。

(3)利用auto.arima()函数,对该序列进行系统自动定阶:

Series: x

ARIMA(0,1,0)

sigma^2 = 0.4751:  log likelihood = -99.44

AIC=200.87   AICc=200.92   BIC=203.43

第2小题:

(1)绘制序列的时序图,判断该序列的平稳性;

    (2)如果判断该序列非平稳,选择适当阶数(或步长)的差分运算。对差分后序列:做出时序图、白噪声检验(延迟3阶和6阶)、自相关图(ACF)和偏自相关图(PACF),选择适当模型拟合该差分后序列的发展(此处不要依赖系统自动定阶)

(3)选用适当估计方法确定上述拟合模型的口径。

#第2小题
#原序列时序图
plot(x)
#1阶差分
dif_x <- diff(x)
#绘制差分后序列的时序图
plot(dif_x)
#差分后序列的白噪声检验
for (i in 1:2) print(Box.test(dif_x,type = "Ljung-Box",lag = 3*i))
#绘制差分后序列的自相关图和偏自相关图
par(mfrow = c(1,2))
acf(dif_x)
pacf(dif_x)
#模型参数估计,确定模型的口径
arima(dif_x,order = c(2,0,2),method = "ML")

第2小题:

(1)从时序图可以看出,该序列存在明显的线性趋势,认为该序列是非平稳序列。

时序图:

(2)选择1阶差分运算。

1阶差分后的时序图:从1阶差分后序列的时序图可以看出1阶差分运算后,序列在常数0附近波动,且波动有界。认为1阶差分后的序列是平稳序列。

1阶差分后序列的白噪声检验:延迟3阶的LB统计量的P值为0.01051小于α=0.05,但延迟6阶的LB统计量P值为0.0648,大于α=0.05,则拒绝原假设,认为1阶差分后的序列不是白噪声序列。

    Box-Ljung test

data:  dif_x

X-squared = 11.236, df = 3, p-value = 0.01051

    Box-Ljung test

data:  dif_x

X-squared = 11.876, df = 6, p-value = 0.0648

ACF图和PACF图:

  • 从自相关图看出,自相关系数呈现不规则地衰减到零值附近。判定为拖尾;
  • 从偏自相关图看出,偏自相关系数呈现出对数函数单调收敛到零值附近。判定为拖尾特性;

综上所述,序列呈现出自相关系数拖尾的特性,偏自相关系数拖尾的特性,初步确定拟合模型为ARMA(2,2)模型。

(3)选择ARMA(2,2)模型时模型的口径为:

x_{t}+0.0189=\frac{1-0.6746B-0.1715B^{2}}{1-0.7210B+0.1642B^{2}}\varepsilon _{t}Var(\varepsilon _{t})=0.4081

该ARMA(2,2)模型的等价表达为:

Call:

arima(x = dif_x, order = c(2, 0, 2), method = "ML")

Coefficients:

         ar1      ar2      ma1      ma2  intercept

      0.7210  -0.1642  -0.6746  -0.1715    -0.0189

s.e.  0.3128   0.4113   0.3091   0.4237     0.0281

sigma^2 estimated as 0.4081:  log likelihood = -92.51,  aic = 197.02

需要本训练原始数据请自行跳转下载:

博文:‘ARMA模型的识别与参数估计’训练数据资源-CSDN文库

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/811740.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C# Solidworks二次开发:模型中实体Entity相关操作API详解

大家好&#xff0c;今天要讲的一些API是关于实体的相关API。 在开发的过程&#xff0c;很多地方会涉及到实体的相关操作&#xff0c;比如通过实体选中节点。下面就直接开始介绍API&#xff1a; &#xff08;1&#xff09;第一个API为Select4&#xff0c;这个API的含义为选中一…

微信小程序中调取小程序实现报错:提示 开发版小程序已过期,请在开发者工具中重新扫码的 解决方案

出现的问题&#xff1a; 解决方法&#xff1a; 将envVersion: develop,开发版切换为正式版 envVersion: release,wx.navigateToMiniProgram({appId:res.data.appId,path: res.data.prePayTn,extraData: {foo: bar,miniProgramOrgId:res.data.miniProgramOrgId,orderId: res.d…

css设置文字撑满盒子

效果如上&#xff1a; <div style"width: 250px;background-color:red;text-align-last:justify;word-break: keep-all;">为中国崛起而读书</div>

Python编写一个抽奖小程序,新手入门案例,简单易上手!

“ 本篇文章将以简明易懂的方式引导小白通过Python编写一个简单的抽奖小程序&#xff0c;无需太多的编程经验。通过本文&#xff0c;将学习如何使用Python内置的随机模块实现随机抽奖&#xff0c;以及如何利用列表等基本数据结构来管理和操作参与抽奖的人员名单。无论你是Pytho…

贪心算法:柠檬水找零

题目链接&#xff1a;860. 柠檬水找零 - 力扣&#xff08;LeetCode&#xff09; 收的钱只能是5、10、20美元&#xff0c;分类讨论&#xff1a;收5美元无需找零&#xff1b;收10美元找零5元&#xff1b;收20美元找零15美元。其中对于找零15美元的方案有两种&#xff0c;此处涉及…

设计模式-外观模式(Facade)

1. 概念 外观模式&#xff08;Facade Pattern&#xff09;是一种结构型设计模式&#xff0c;它提供了一个统一的接口&#xff0c;用于访问子系统中的一群接口。外观模式的主要目的是隐藏系统的复杂性&#xff0c;通过定义一个高层级的接口&#xff0c;使得子系统更容易被使用。…

房屋鉴定研究院报告系统

一、项目背景与意义 随着城市化进程的加速和房地产市场的蓬勃发展&#xff0c;房屋安全问题日益受到社会各界的广泛关注。房屋鉴定作为确保房屋安全的重要手段&#xff0c;对于保障人民群众生命财产安全、维护社会稳定具有重要意义。然而&#xff0c;传统的房屋鉴定方式存在诸…

webpack-loader的使用

引入css后执行打包命令 "build": "npx webpack --config wk.config.js"发现报错&#xff1a; webpack默认只能处理js其他的像css,图片都需要借助loader来处理 css-loader loader可以用于对模块的源代码进行转换&#xff0c;可以把css看成一个模块&…

并发学习27--多线程 Tomcat 线程池

Tomcat连接器的线程池 socketProcessor也是个线程 Executor处理线程是按照JDK线程池方法处理&#xff0c;优先选用核心线程&#xff0c;再用救急线程&#xff0c;再去阻塞队列&#xff0c;最后采用拒绝策略。 Tomcat线程池与ThreadExecutorPool的区别 Tomcat中的配置 Tomcat …

kafka快速入门+应用

Kafka, 构建TB级异步消息系统 1.快速入门 1.1 阻塞队列 在生产线程 和 消费线程 之间起到了 &#xff0c; 缓冲作用&#xff0c;即避免CPU 资源被浪费掉 BlockingQueue 解决 线程通信 的问题阻塞方法 put 、 take生产者、消费者 模式 生产者&#xff1a;产生数据的线程…

Word中图表题注样式自动编号

需求 在写论文的时候&#xff0c;希望图表题注是下面的样子&#xff0c;其中图号表示为&#xff1a;章的编号-本章中图的序号&#xff0c;而且都是小写数字。 网上找的方法大多是使用 “插入题注” 来插入&#xff0c;此时章的编号是大写的&#xff0c;如“图一-1”。然后再通…

Web前端-HTML

黑马程序员JavaWeb开发教程 一、初识web前端 1、 标准也称为网页标准&#xff0c;由一系列的标准组成&#xff0c;大部分由W3C负责指定 2、 三个部分组成 HTML&#xff1a;负责网页的结构&#xff08;页面元素和内容&#xff09;CSS&#xff1a;负责网页的表现&#xff08;页…

STL--pair 数对

pair 数对&#x1f357; pair是一个模板类,使用时需要引用文件 #include <utility>//通用工具pair可将两个value处理为一个元素。C标准库内多处用到了这个结构。尤其容器 map、unordered_map和unordered_multimap就是使用pair来管理其内部元素(key_value),任何函数如果…

ppt技巧:如何将Word文档大纲中导入到幻灯片中?

在PowerPoint中&#xff0c;将Word文档的大纲导入到新的幻灯片是一种非常实用的技巧。以下是详细的步骤&#xff1a; 首先&#xff0c;需要打开PowerPoint软件并打开原始的幻灯片文件。 在PowerPoint的顶部【开始】菜单栏中&#xff0c;找到并点击“新建幻灯片”按钮&#xff0…

【力扣】142. 环形链表 II

142. 环形链表 II 题目描述 给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返回 null。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&am…

微信小程序全屏开屏广告

效果图 代码 <template><view><!-- 自定义头部 --><u-navbar title" " :bgColor"bgColor"><view class"u-nav-slot" slot"left"><view class"leftCon"><view class"countDown…

u盘为什么一插上电脑就蓝屏,u盘一插电脑就蓝屏

u盘之前还好好的&#xff0c;可以传输文件&#xff0c;使用正常&#xff0c;但是最近使用时却出现问题了。只要将u盘一插入电脑&#xff0c;电脑就显示蓝屏。u盘为什么一插上电脑就蓝屏呢?一般&#xff0c;导致的原因有以下几种。一&#xff0c;主板的SATA或IDE控制器驱动损坏…

C语言处理文本模板:格式信函编程

开篇 本篇文章的问题来源为《编程珠玑》第3章其中一个问题&#xff0c;格式信函编程。说白了就是先在文件中定义一个文本模版&#xff0c;然后使用数据库中的数据去填充这个模版&#xff0c;最后得到填充后的文本&#xff0c;并输出。 问题概要 在常去的网店键入你的名字和密码…

Harmony鸿蒙南向驱动开发-SPI接口使用

功能简介 SPI指串行外设接口&#xff08;Serial Peripheral Interface&#xff09;&#xff0c;是一种高速的&#xff0c;全双工&#xff0c;同步的通信总线。SPI是由Motorola公司开发&#xff0c;用于在主设备和从设备之间进行通信。 SPI接口定义了操作SPI设备的通用方法集合…

算法练习第16天|101. 对称二叉树

101. 对称二叉树 力扣链接https://leetcode.cn/problems/symmetric-tree/description/ 题目描述&#xff1a; 给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 示例 1&#xff1a; 输入&#xff1a;root [1,2,2,3,4,4,3] 输出&#xff1a;true示例 2&#x…