【深度学习】深度学习md笔记总结第4篇:TensorFlow介绍,学习目标【附代码文档】

深度学习笔记完整教程(附代码资料)主要内容讲述:深度学习课程,深度学习介绍要求,目标,学习目标,1.1.1 区别,学习目标,学习目标。TensorFlow介绍,2.4 张量学习目标,2.4.1 张量(Tensor),2.4.2 创建张量的指令,2.4.3 张量的变换,2.4.4 张量的数学运算,学习目标。TensorFlow介绍,1.2 神经网络基础学习目标。TensorFlow介绍,总结学习目标,1.3.1 神经网络,1.3.2 playground使用,学习目标,1.4.1 softmax回归,1.4.2 交叉熵损失。神经网络与tf.keras,1.3 Tensorflow实现神经网络学习目标,1.3.1 TensorFlow keras介绍,1.3.2 案例:实现多层神经网络进行时装分类。神经网络与tf.keras,1.4 深层神经网络学习目标。卷积神经网络,3.1 卷积神经网络(CNN)原理学习目标。卷积神经网络,3.1 卷积神经网络(CNN)原理学习目标。卷积神经网络,2.2案例:CIFAR100类别分类学习目标,2.2.1 CIFAR100数据集介绍,2.2.2 API 使用,2.2.3 步骤分析以及代码实现(缩减版LeNet5),学习目标。卷积神经网络,2.4 BN与神经网络调优学习目标。卷积神经网络,2.4 经典分类网络结构学习目标,2.4.6 案例:使用pre_trained模型进行VGG预测,2.4.7 总结。卷积神经网络,2.5 CNN网络实战技巧学习目标,3.1.1 案例:基于VGG对五种图片类别识别的迁移学习,3.1.2 数据增强的作用。卷积神经网络,总结学习目标,1.1.1 项目演示,1.1.2 项目结构,1.1.3 项目知识点,学习目标,1.2.1 安装。商品物体检测项目介绍,3.4 Fast R-CNN。YOLO与SSD,4.3 案例:SSD进行物体检测4.3.1 案例效果,4.3.2 案例需求,4.3.3 步骤分析以及代码,2.1.1 常用目标检测数据集,2.1.2 pascal voc数据集介绍,2.1.3 XML。商品检测数据集训练,5.2 标注数据读取与存储5.2.1 案例:xml读取本地文件存储到pkl,5.3.1 案例训练结果,5.3.2 案例思路,5.3.3 多GPU训练代码修改,5.4.1 预测代码,5.4.1 keras 模型进行TensorFlow导出。

全套笔记资料代码移步: 前往gitee仓库查看

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~


全套教程部分目录:


部分文件图片:

TensorFlow介绍

说明TensorFlow的数据流图结构
应用TensorFlow操作图
说明会话在TensorFlow程序中的作用
应用TensorFlow实现张量的创建、形状类型修改操作
应用Variable实现变量op的创建
应用Tensorboard实现图结构以及张量值的显示
应用tf.train.saver实现TensorFlow的模型保存以及加载
应用tf.app.flags实现命令行参数添加和使用
应用TensorFlow实现线性回归

总结

每日作业

神经网络与tf.keras

1.3 神经网络基础

学习目标

  • 目标

  • 了解感知机结构、作用以及优缺点

  • 了解tensorflow playground的使用
  • 说明感知机与神经网络的联系
  • 说明神经网络的组成

  • 应用

1.3.1 神经网络

人工神经网络( Artificial Neural Network, 简写为ANN)也简称为神经网络(NN)。是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)结构和功能的 计算模型。经典的神经网络结构包含三个层次的神经网络。分别输入层,输出层以及隐藏层。

网络结构

其中每层的圆圈代表一个神经元,隐藏层和输出层的神经元有输入的数据计算后输出,输入层的神经元只是输入。

  • 神经网络的特点

  • 每个连接都有个权值

  • 同一层神经元之间没有连接
  • 最后的输出结果对应的层也称之为全连接层

神经网络是深度学习的重要算法,用途在图像(如图像的分类、检测)和自然语言处理(如文本分类、聊天等)

那么为什么设计这样的结构呢?首先从一个最基础的结构说起,神经元。以前也称之为感知机。神经元就是要模拟人的神经元结构。

神经元

一个神经元通常具有多个树突,主要用来接受传入信息;而轴突只有一条,轴突尾端有许多轴突末梢可以给其他多个神经元传递信息。轴突末梢跟其他神经元的树突产生连接,从而传递信号。这个连接的位置在生物学上叫做“突触”。

要理解神经网络,其实要从感知机开始。

1.3.1.1 感知机(PLA: Perceptron Learning Algorithm))

感知机就是模拟这样的大脑神经网络处理数据的过程。感知机模型如下图:

感知机

感知机是一种最基础的分类模型,前半部分类似于回归模型。感知机最基础是这样的函数,而逻辑回归用的sigmoid。这个感知机具有连接的权重和偏置

感知机公式

我们通过一个平台去演示,就是tensorflow playground

1.3.2 playground使用

playground

网址:[

那么在这整个分类过程当中,是怎么做到这样的效果那要受益于神经网络的一些特点

两类数据分类

要区分一个数据点是橙色的还是蓝色的,你该如何编写代码?也许你会像下面一样任意画一条对角线来分隔两组数据点,定义一个阈值以确定每个数据点属于哪一个组。

其中 b 是确定线的位置的阈值。通过分别为 x1 和 x2 赋予权重 w1 和 w2,你可以使你的代码的复用性更强。

直线方程

此外,如果你调整 w1 和 w2 的值,你可以按你喜欢的方式调整线的角度。你也可以调整 b 的值来移动线的位置。所以你可以重复使用这个条件来分类任何可以被一条直线分类的数据集。但问题的关键是程序员必须为 w1、w2 和 b 找到合适的值——即所谓的参数值,然后指示计算机如何分类这些数据点。

1.3.2.1 playground简单两类分类结果

playground两类

但是这种结构的线性的二分类器,但不能对非线性的数据并不能进行有效的分类。

感知机结构,能够很好去解决与、或等问题,但是并不能很好的解决异或等问题。我们通过一张图来看,有四个样本数据

与问题:每个样本的两个特征同时为1,结果为1

或问题:每个样本的两个特征一个为1,结果为1

异或:每个样本的两个特征相同为0, 不同为1

根据上述的规则来进行划分,我们很容易建立一个线性模型

与或问题

相当于给出这样的数据

复杂数据1

复杂数据2

1.3.2.2 单神经元复杂的两类-playground演示

复杂两类数据分类1

那么怎么解决这种问题呢?其实我们多增加几个感知机即可解决?也就是下图这样的结构,组成一层的结构?

单层感知机

1.3.2.3 多个神经元效果演示

复杂两类数据分类

神经网络与tf.keras

1.4 神经网络原理

学习目标

  • 目标

  • 说明神经网络的分类原理

  • 说明softmax回归
  • 说明交叉熵损失

  • 应用

神经网络的主要用途在于分类,那么整个神经网络分类的原理是怎么样的?我们还是围绕着损失、优化这两块去说。神经网络输出结果如何分类?

神经网络如何分类

神经网络解决多分类问题最常用的方法是设置n个输出节点,其中n为类别的个数。

任意事件发生的概率都在0和1之间,且总有某一个事件发生(概率的和为1)。如果将分类问题中“一个样例属于某一个类别”看成一个概率事件,那么训练数据的正确答案就符合一个概率分布。如何将神经网络前向传播得到的结果也变成概率分布呢?Softmax回归就是一个常用的方法。

1.4.1 softmax回归

Softmax回归将神经网络输出转换成概率结果

softmax公式

softmax回归

softmax展开

  • softmax特点

如何理解这个公式的作用呢?看一下计算案例

假设输出结果为:2.3, 4.1, 5.6
softmax的计算输出结果为:
y1_p = e^2.3/(e^2.3+e^4.1+e^5.6)
y1_p = e^4.1/(e^2.3+e^4.1+e^5.6)
y1_p = e^5.6/(e^2.3+e^4.1+e^5.6)

这样就把神经网络的输出也变成了一个概率输出

识别输出概率

那么如何去衡量神经网络预测的概率分布和真实答案的概率分布之间的距离?

1.4.2 交叉熵损失

1.4.2.1 公式

交叉熵损失公式

为了能够衡量距离,目标值需要进行one-hot编码,能与概率值一一对应,如下图

交叉损失理解

它的损失如何计算?

0log(0.10)+0log(0.05)+0log(0.15)+0log(0.10)+0log(0.05)+0log(0.20)+1log(0.10)+0log(0.05)+0log(0.10)+0log(0.10)

上述的结果为1log(0.10),那么为了减少这一个样本的损失。神经网络应该怎么做?所以会提高对应目标值为1的位置输出概率大小,由于softmax公式影响,其它的概率必定会减少。只要这样进行调整这样是不是就预测成功了!!!!!

提高对应目标值为1的位置输出概率大小

1.4.2.2 损失大小

神经网络最后的损失为平均每个样本的损失大小。对所有样本的损失求和取其平均值

1.4.3 梯度下降算法

目的:使损失函数的值找到最小值

方式:梯度下降

函数的梯度(gradient)指出了函数的最陡增长方向。梯度的方向走,函数增长得就越快。那么按梯度的负方向走,函数值自然就降低得最快了。模型的训练目标即是寻找合适的 w 与 b 以最小化代价函数值。假设 w 与 b 都是一维实数,那么可以得到如下的 J 关于 w 与 b 的图:

可以看到,此成本函数 J 是一个凸函数

参数w和b的更新公式为:

w : = w − α d J ( w , b ) d w w := w - \alpha\frac{dJ(w, b)}{dw} w:=wαdwdJ(w,b) b : = b − α d J ( w , b ) d b b := b - \alpha\frac{dJ(w, b)}{db} b:=bαdbdJ(w,b)

注:其中 α 表示学习速率,即每次更新的 w 的步伐长度。当 w 大于最优解 w′ 时,导数大于 0,那么 w 就会向更小的方向更新。反之当 w 小于最优解 w′ 时,导数小于 0,那么 w 就会向更大的方向更新。迭代直到收敛。

通过平面来理解梯度下降过程:

1.4.4 网络原理总结

我们不会详细地讨论可以如何使用反向传播和梯度下降等算法训练参数。训练过程中的计算机会尝试一点点增大或减小每个参数,看其能如何减少相比于训练数据集的误差,以望能找到最优的权重、偏置参数组合

传播算法演示

网络优化动态图

tf.keras介绍

未完待续, 同学们请等待下一期

全套笔记资料代码移步: 前往gitee仓库查看

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/811140.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

hbase基础shell用法

HBase中用create命令创建表,具体如下: create student,Sname,Ssex,Sage,Sdept,course 此时,即创建了一个“student”表,属性有:Sname,Ssex,Sage,Sdept,course。因为HBase的表中会有一个系统默认的属性作为行键&#x…

李彦宏放话:百度AI大模型绝不抢开发者饭碗

关注卢松松,会经常给你分享一些我的经验和观点。 昨晚,李彦宏内部讲话称:AI大模型开源意义不大,百度绝不抢开发者饭碗。 但你一定要说话算话哦,可千万别说:“我永远不做手机,谁再敢提做手机就给…

科技云报道:从“奇点”到“大爆炸”,生成式AI开启“十年周期”

科技云报道原创。 世界是复杂的,没有人知道未来会怎样,但如果单纯从技术的角度,我们总是能够沿着技术发展的路径,找到一些主导未来趋势的脉络。 从Sora到Suno,从OpenAI到Copilot、Blackwell,这些热词在大…

[温故] 红黑树算法

前言 最近在突然想起一些基础的东西, 向着温故知新, 有了些新的感悟和大家分享一下. 排序算法是数据结构的一个重要组成部分, 当时学习的时候没有少折腾, 这里来看看大佬们怎么运用这些数据结构来构建庞大的计算机体系的. 二叉树是排序算法的一个衍生, 基于二叉树的构建不同…

C语言--2048小游戏

需要用到EasyX图形库 #include <stdio.h> #include <stdlib.h> #include <time.h> #include<assert.h> #include <conio.h> #include <windows.h> #include<graphics.h> #include<string.h> #define ROW 4 /* 行数 */ #defin…

Rust面试宝典第2题:逆序输出整数

题目 写一个方法&#xff0c;将一个整数逆序打印输出到控制台。注意&#xff1a;当输入的数字含有结尾的0时&#xff0c;输出不应带有前导的0。比如&#xff1a;123的逆序输出为321&#xff0c;8600的逆序输出为68&#xff0c;-609的逆序输出为-906。 解析 这道题本身并没有什么…

PostgreSQL入门到实战-第二十一弹

PostgreSQL入门到实战 PostgreSQL中表连接操作(五)官网地址PostgreSQL概述PostgreSQL中RIGHT JOIN命令理论PostgreSQL中RIGHT JOIN命令实战更新计划 PostgreSQL中表连接操作(五) 使用PostgreSQL RIGHT JOIN连接两个表&#xff0c;并从右表返回行 官网地址 声明: 由于操作系统…

打印机共享设置助手

工作中经常设置共享打印机&#xff0c;为简化操作编写了此打印机设置助手运行环境&#xff1a; 支持Windows 7以上系统直接运行Windows 7 使用PrinterTool_NET20版本Windows 10以上 使用PrinterTool_NET452版本 软件功能&#xff1a; 设置默认打印机设置共享打印机快捷连接共…

微软Office吊打WPS ?不一定,WPS未来被它“拿捏”了

微软Office Plus吊打WPS Office&#xff1f; 微软的Office套件在全球范围内内享有盛誉&#xff0c;其强大的功能和广泛的应用场景使其在办公、娱乐乃至生活的各个角落都显得不可或缺。 而与之相对&#xff0c;WPS Office作为国内办公软件的佼佼者&#xff0c;与微软的较量已历…

探新路建“枢纽” 湖南深耕中非经贸合作“试验田”

湖南作为中国与非洲经贸合作的重要窗口&#xff0c;积极推动中非经贸关系的发展和深化。通过构建覆盖全产业链的高效运作模式&#xff0c;湖南企业能够在一周内将肯尼亚干制鳀鱼加工成为麻辣鲜香的劲仔深海小鱼并投入中国市场。此外&#xff0c;湖南还致力于推动非洲优质农产品…

gitee和idea集成

1 集成插件 2 配置账号密码 3 直接将项目传到仓库 4直接从gitee下载项目

题目:斤斤计较得小Z(蓝桥OJ 2047)

问题描述&#xff1a; 题解&#xff1a; 做法一&#xff08;kmp模板&#xff09;&#xff1a; #include <bits/stdc.h> using namespace std;const int N 1e6 9; char s[N], p[N]; int nex[N];int main() {ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);// p: 子…

Stable Diffusion——SDXL Turbo让 AI 出图速度提高10倍

摘要 在本研究中&#xff0c;我们提出了一种名为对抗扩散蒸馏&#xff08;ADD&#xff09;的创新训练技术&#xff0c;它能够在1至4步的采样过程中&#xff0c;高效地对大规模基础图像扩散模型进行处理&#xff0c;同时保持图像的高质量。该方法巧妙地结合了分数蒸馏技术&…

记录linux从0部署java项目(宝塔)

目录 一、安装宝塔可视化界面 二、部署前端 三、部署后端 1、配置并连接Mysql数据库 2、配置并连接redis 3、安装jdk 这里先记录一个安装后遇到的问题 安装openJDK 四、检查 一、安装宝塔可视化界面 宝塔面板下载&#xff0c;免费全能的服务器运维软件 运行安装脚本 安…

【爬虫开发】爬虫从0到1全知识md笔记第5篇:Selenium课程概要,selenium的其它使用方法【附代码文档】

爬虫开发从0到1全知识教程完整教程&#xff08;附代码资料&#xff09;主要内容讲述&#xff1a;爬虫课程概要&#xff0c;爬虫基础爬虫概述,,http协议复习。requests模块&#xff0c;requests模块1. requests模块介绍,2. response响应对象,3. requests模块发送请求,4. request…

【JAVA基础篇教学】第一篇:Java基础数据类型

博主打算从0-1讲解下java基础教学&#xff0c;今天教学第一篇&#xff1a; Java基础数据类型。 在Java中&#xff0c;数据类型是用来指定变量存储数据的类型。Java的数据类型可以分为两大类&#xff1a;原始数据类型&#xff08;Primitive Data Types&#xff09;和引用数据类型…

黄金基金和黄金有什么区别?

黄金基金本质上是一种投资工具&#xff0c;它通过间接投资黄金或与其紧密相关的金融衍生品来反映黄金市场的表现。不同于直接持有实物黄金&#xff0c;投资者购买黄金基金并不涉及实体黄金的保管问题&#xff0c;而是将资金交由专业的基金管理人管理&#xff0c;由他们代表投资…

流程图的新语法-mermaid的快速使用--推荐

chatgpt或者现在的大数据采用的流程图给出的代码如下&#xff1a; graph TD;A[接收客户请求] --> B[问题分类];B --> C[技术支持];B --> D[维修服务];C --> E[远程解决];C --> F[现场支持];D --> G[维修完成];G --> H[服务反馈];style A fill:#f9f,strok…

IO流(字节流、字符流)

一、IO概述 1&#xff0e;什么是IO流? 存储和读取数据的解决方案l: inputo: output流∶像水流一样传输数据 2.IO流的作用? 用于读写数据&#xff08;本地文件&#xff0c;网络) 3.IO流按照流向可以分类哪两种流? 输出流:程序 - > 文件 输入流:文件 - > 程…

【解决】安装模块时报错:ERROR: *.whl is not a valid wheel filename.

其实错误信息已经告诉你了&#xff0c;就是你的文件名有问题。在你下载whl文件时一定要注意原文件的文件名&#xff0c;不要改动文件名。 以我安装pandas模块为例吧。 在我下载whl文件时&#xff0c;因为网速太慢&#xff0c;我就下载了多次&#xff0c;导致文件名变成了这个…