第十三届蓝桥杯真题:x进制减法,数组切分,gcd,青蛙过河

目录

x进制减法

数组切分

gcd

青蛙过河


        

        

x进制减法

其实就是一道观察规律的题。你发现如果a这个位置上的数x,b这个位置上的数是y,那么此位置至少是max(x,y)+1进制。一定要把位置找对啊 

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=1e5+10,mod=1000000007;
int len1,len2;
ll tmp,ans,a[N],b[N],c[N],n;
int main(){cin>>n;cin>>len1;for(int i=len1;i>=1;i--)cin>>a[i];cin>>len2;for(int i=len2;i>=1;i--)cin>>b[i];for(int i=len1;i>=1;i--){c[i]=max(max(a[i]+1,b[i]+1),2*1ll);a[i]=a[i]-b[i];}tmp=1;for(int i=1;i<=len1;i++){ans=(tmp*a[i]+ans)%mod;tmp=(tmp*c[i])%mod;}cout<<ans;return 0;
}
/*错解
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=1e5+10,mod=1000000007;
int len1,len2;
ll tmp,ans,a[N],b[N],c[N],n;
int main(){cin>>n;cin>>len1;for(int i=1;i<=len1;i++)cin>>a[i];cin>>len2;for(int i=1;i<=len2;i++)cin>>b[i];for(int i=1;i<=len1;i++){c[i]=max(max(a[i]+1,b[i]+1),2*1ll);a[i]=a[i]-b[i];//这个bug我找了两个小时,不能从高位开始减,}tmp=1;for(int i=len1;i>=1;i--){ans=(tmp*a[i]+ans)%mod;tmp=(tmp*c[i])%mod;}
cout<<ans;return 0;
}*/

        

        

数组切分

一道动态规划题,

我们设置f[i]表示从1到i区间的切法。那么可以从任意区间[j,i]转移,只要这个区间[j,i]也是满足题意的就行。那么如果判断[j,i]是否满足题意呢?

首先要注意到题上给出的是连续的的1~n的某个排列,然后我们只需要判断区间的极值和区间长度是否一样就行,如果相等,就说明此区间一定是连续的自然数。 

#include <bits/stdc++.h>
using namespace std;
long long f[10010],mod =1000000007;
int a[10010],n;
int main(){cin>>n;for(int i=1;i<=n;i++)cin>>a[i];f[0]=1;for(int i=1;i<=n;i++){int ma=a[i],mi=a[i];for(int j=i;j>=1;j--){ma=max(ma,a[j]);mi=min(mi,a[j]);if(i-j==ma-mi){f[i]=(f[i]+f[j-1])%mod;}}}cout<<f[n];return 0;
}

        

        

gcd

这道题本以为很麻烦,但是做着做着就发现了个不可思议的规律。

观察5和7,它们的最大gcd一定是2,为什么呢?因为你5+k和7+k始终保持差2,所以它们不可能有比2更大的gcd(因为它们两个一定是不等的)

对于一组a和b(假设b大于a),不妨另c=b-a。最终的a+k和b+k一定是差c,而且c必是它们的公因数。所以如果b+k是m*c的话,那么此时a+k必然也是c的倍数(因为它们两个差c啊),所以只需要枚举到b的下一个c的倍数即可,也就是(b/c+1)*c 

验证5和9,它们差值为4,我们枚举到8和12时候发现gcd已经是4了,那么k就确定了

验证2和9,它们差值为7,我们一直枚举到7和14时发现gcd为7,那么此时k也确定了

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a,b,s,c;
int main(){cin>>a>>b;c=abs(a-b);if(a>b)swap(a,b);s=b/c;cout<<(s+1)*c-b;return 0;
}

        

        

青蛙过河

二分做法:

我们对跳跃距离二分,然后去判断这个距离能不能跑2x次即可,既然我们都已经确定了区间长度了。

那么不妨我们把这整个长度分成等长的mid区间,只需要保证所有的mid长度区间和都是大于2x的就行。

证明:(我只会反证法)

假设存在一组mid长度的区间和小于2x,那么经过x次来回,必然要经过此区间2x次,所以不成立。故原假设成立。

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10;
typedef long long ll;
int s[N];
ll n,x;
bool check(int m){for(int i=1;i+m<=n;i++){if(s[i+m-1]-s[i-1]<2*x) return false;}return true;
}
int main(){cin>>n>>x;int a;for(int i=1;i<n;i++)cin>>a,s[i]=s[i-1]+a;int l=1,r=n;while(l<=r){int mid=(l+r)>>1;if(check(mid)) r=mid-1;else l=mid+1;}cout<<l;return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/810928.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何卸载干净 IDEA(图文讲解)

更新时间 2022-12-20 11:一则或许对你有用的小广告 星球 内第一个项目&#xff1a;全栈前后端分离博客项目&#xff0c;演示地址&#xff1a;Weblog 前后端分离博客, 1.0 版本已经更新完毕&#xff0c;正在更新 2.0 版本。采用技术栈 Spring Boot Mybatis Plus Vue 3.x Vit…

如何开辟动态二维数组(C语言)

1. 开辟动态二维数组 C语言标准库中并没有可以直接开辟动态二维数组的函数&#xff0c;但我们可以通过动态一维数组来模拟动态二维数组。 二维数组其实可以看作是一个存着"DataType []"类型数据的一维数组&#xff0c;也就是存放着一维数组地址的一维数组。 所以&…

【C++成长记】C++入门 | 命名空间、输入输出、缺省参数

&#x1f40c;博主主页&#xff1a;&#x1f40c;​倔强的大蜗牛&#x1f40c;​ &#x1f4da;专栏分类&#xff1a;C​​​​​​​❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 目录 一、C和C语言的区别和联系 二、命名空间 1、命名空间定义 2、命名空间使用 三、C输…

基于yolov9来训练人脸检测

YOLOv9是一个在目标检测领域内具有突破性进展的深度学习模型&#xff0c;尤其以其在实时性与准确性上的优秀表现而受到广泛关注。针对人脸检测这一特定任务&#xff0c;YOLOv9通过其架构创新和算法优化提供了强大的支持。 YOLOv9在继承了YOLO系列&#xff08;如YOLOv7、YOLOv8&…

二叉树--相同的树

给你两棵二叉树的根节点 p 和 q &#xff0c;编写一个函数来检验这两棵树是否相同。 如果两个树在结构上相同&#xff0c;并且节点具有相同的值&#xff0c;则认为它们是相同的。 示例 1&#xff1a; 输入&#xff1a;p [1,2,3], q [1,2,3] 输出&#xff1a;true 思路 一、…

JavaEE 初阶篇-深入了解 CAS 机制与12种锁的特征(如乐观锁和悲观锁、轻量级锁与重量级锁、自旋锁与挂起等待锁、可重入锁与不可重入锁等等)

&#x1f525;博客主页&#xff1a; 【小扳_-CSDN博客】 ❤感谢大家点赞&#x1f44d;收藏⭐评论✍ 文章目录 1.0 乐观锁与悲观锁概述 1.1 悲观锁&#xff08;Pessimistic Locking&#xff09; 1.2 乐观锁&#xff08;Optimistic Locking&#xff09; 1.3 区别与适用场景 2.0 轻…

C++高级特性:柯里化过程与std::bind(六)

1、柯里化过程 1.1、operator()的引入 现在需要完成这样一个需求&#xff1a;有一个函数每次调用返回的结果不一样。例如&#xff1a;两次调用的返回值都不一样那么就可以达到这种目的 1.1.1、简单点的写法 可以给一个全局的变量&#xff08;静态变量&#xff09;&#xff…

深入理解JVM垃圾收集器

相关系列 深入理解JVM垃圾收集算法-CSDN博客 目前市面常见的垃圾收集器有Serial、ParNew、Parallel、CMS、Serial Old、Parallel Old、G1、ZGC以及有二种不常见的Epsilon、Shenandoah的&#xff0c;从上图可以看到有连线的的垃圾收集器是可以组合使用&#xff0c;是年轻代老年代…

Input DropDown 拼接成 select组件(基于antd和react)

前言&#xff1a;为什么不直接用select&#xff0c;还要舍近求远搞inputdropdown这种缝合怪&#xff0c;是因为antd的select不支持选中项再编辑&#xff0c;效果如图 比如&#xff1a;选中的lucy文案变成了placeholder不能再编辑了 封装此组件虽然比较简单&#xff0c;但还是有…

PLC互连全攻略:Profinet和EthernetIP实操演示

在今日的技术分享中&#xff0c;将详细探讨实现Profinet和Ethernet/IP的通信配置&#xff0c;以连接西门子PLC&#xff08;Profinet&#xff09;和罗克韦尔PLC&#xff08;Ethernet/IP&#xff09;。本篇将重点介绍专为通信而设计的Profinet转Ethernet/IP网关&#xff0c;在联接…

ActiveMQ介绍及linux下安装ActiveMQ

ActiveMQ介绍 概述 ActiveMQ是Apache软件基金下的一个开源软件&#xff0c;它遵循JMS1.1规范&#xff08;Java Message Service&#xff09;&#xff0c;是消息队列服务&#xff0c;是面向消息中间件&#xff08;MOM&#xff09;的最终实现&#xff0c;它为企业消息传递提供高…

【R语言从0到精通】-3-R统计分析(列联表、独立性检验、相关性检验、t检验)

上两次教程集中学习了R语言的基本知识&#xff0c;那么我们很多时候使用R语言是进行统计分析&#xff0c;因此对于生物信息学和统计科学来说&#xff0c;R语言提供了简单优雅的方式进行统计分析。教程参考《Rlearning》 3.1 描述性统计分析 3.1.1 载入数据集及summary函数 我…

【力扣题】关于单链表和数组习题

&#x1f308; 个人主页&#xff1a;白子寰 &#x1f525; 分类专栏&#xff1a;python从入门到精通&#xff0c;魔法指针&#xff0c;进阶C&#xff0c;C语言&#xff0c;C语言题集&#xff0c;C语言实现游戏&#x1f448; 希望得到您的订阅和支持~ &#x1f4a1; 坚持创作博文…

(Java)数据结构——图(第五节)Kruskal的实现最小生成树(MST)

前言 本博客是博主用于复习数据结构以及算法的博客&#xff0c;如果疏忽出现错误&#xff0c;还望各位指正。 Kruskal算法&#xff08;Kruskal的实现原理&#xff09; Kruskal算法的原理&#xff1a; 就是每次取最小的边&#xff0c;看看是不是与已经选择的构成回路&#x…

金融机构面临的主要AI威胁:身份伪造统与社会工程攻击

目录 攻击者利用AI威胁的过程 金融机构如何防范AI攻击 针对AI欺诈的解决方案 2023年11月&#xff0c;诈骗分子伪装成某科技公司郭先生的好友&#xff0c;骗取430万元&#xff1b;2023年12月&#xff0c;一名留学生父母收到孩子“被绑架”的勒索视频&#xff0c;被索要500万元赎…

ISTQB选择国内版,还是国际版呢

1, ISTQB简介 ISTQB&#xff08;International Software Testing Qualifications Board&#xff09;是一个国际软件测试资格认证机构&#xff0c;旨在提供一个统一的软件测试认证标准。ISTQB成立于2002年&#xff0c;是非盈利性的组织&#xff0c;由世界各地的国家或地区软件测…

Qt5 编译oracle数据库

库文件 1、Qt源码目录&#xff1a;D:\Qt5\5.15.2\Src\qtbase\src\plugins\sqldrivers\oci 2、oracle客户端SDK: https://www.oracle.com/database/technologies/instant-client/winx64-64-downloads.html 下载各版本中的如下压缩包&#xff0c;一定要版本相同的 将两个压缩包…

事务,MySQL函数和索引详解

文章目录 事务简介提交方式手动提交事务 事务执行流程修改事务的默认提交方式 事务原理四大特性隔离级别 MySQL函数常见的日期函数判断函数case when字符串函数数字函数 MySQL性能(了解)索引概念分类MySQL索引语法数据结构(了解)BTreeBTree好处 优缺点优势劣势 创建原则 事务简…

c++取经之路(其五)——类和对象拷贝构造函数

概念&#xff1a;拷贝构造函数&#xff0c;只有单个形参&#xff0c;该形参是对本类类型对象的引用(一般常用const修饰)&#xff0c;在用已存在的类类型对象创建新对象时由编译器自动调用。 特征&#xff1a; 1. 拷贝构造函数是构造函数的一个重载形式 如&#xff1a; 2. 拷贝…

基于springboot实现中小型医院网站管理系统【项目源码+论文说明】

基于springboot实现中小型医院网站管理系统演示 摘要 本基于Spring Boot的中小型医院网站设计目标是实现用户网络预约挂号的功能&#xff0c;同时提高医院管理效率&#xff0c;更好的为广大用户服务。 本文重点阐述了中小型医院网站的开发过程&#xff0c;以实际运用为开发背…