深度学习在三维点云处理与三维重建中的应用探索

目录

点云数据处理

数据清洗

数据降噪和简化

数据配准

特征提取

数据增强

数据组织

性能考量

PointNet

PointNet++

​编辑

算法问题

改进方法 

三维重建

重建算法

架构模块

流程步骤

标记说明

优点和挑战


点云数据处理

数据清洗

  1. 去噪:点云数据通常包含噪声。可以使用统计滤波、半径滤波或其他噪声移除算法来清除噪点。

  2. 异常值移除:通过分析点云数据的统计特性,移除偏离平均值或中位数特别远的点,这些通常是由于传感器误差造成的。

数据降噪和简化

  1. 体素化:用体素网格(3D像素)代替大量的点,这可以大幅减少数据量,同时保持空间结构。

  2. 下采样:使用均匀采样、随机采样或远点采样等方法来减少点数,提高处理速度。

数据配准

  1. 预对齐:如果数据来自不同的传感器或不同的时间点,可能需要进行粗配准,以确保它们在同一坐标系中。

  2. 标准化:对点云数据进行缩放和旋转,使其拥有统一的尺度和方向。

特征提取

  1. 曲面特征:提取曲率、法线等几何特征,这对于后续的分割和识别工作非常有帮助。

  2. 颜色特征:如果点云带有RGB信息,可以将颜色特征和几何特征结合起来使用。

数据增强

  1. 仿真数据:使用仿真生成的点云数据来增强训练集,特别是对于难以在现实世界中收集的情况。

  2. 数据插值:对于稀疏区域,可以使用插值算法来估计缺失的点,但要小心保持数据的真实性。

数据组织

  1. 空间索引:使用KD-Tree、八叉树等数据结构来优化查询和检索操作,对于大规模数据来说尤为重要。

  2. 分批处理:如果点云数据量非常大,需要分批次处理,以避免内存溢出。

性能考量

  1. 计算资源:预处理步骤可能需要大量计算资源。优化算法和使用GPU加速是提高效率的关键。

  2. 内存管理:在处理大规模点云数据时,有效的内存管理至关重要,以避免延迟和程序崩溃。

通过以上预处理步骤,可以确保点云数据质量和一致性,为SLAM和语义分割任务打下坚实基础。这些步骤对于处理大规模数据集来说是通用的,而对于具体的实现细节,可能还需要根据具体情况进行调整和优化。

PointNet

PointNet是一个深度学习算法,它用于三维点云的处理和分析。它的主要创新是能够直接从点云数据中学习特征,而不需要将数据转换成其他格式,比如体素(Voxel)或图像。PointNet能够处理无序的点集,并且对于点的输入顺序不敏感。这使得PointNet在三维对象识别和分类、场景语义分割和其他三维数据处理任务中非常有效。

PointNet通过使用多层感知器(MLP)网络,学习点的空间编码,并通过一个对称函数(例如最大池化函数)来确保对输入点的置换不变性。这是处理点云数据的一个重要特性,因为点云通常是无序的,并且相同的3D形状可以以任何顺序表示其点。

PointNet整体网络架构

PointNet++

PointNet++的核心思想,包括分层特征学习、基于区域的处理、最远点采样选择区域中心、以及半径参数控制局部区域大小等。PointNet++在各种3D点云理解任务上,如物体分类和部件分割,都取得了比原始PointNet更好的性能表现。

  • 分组(gouping)

例如:输入为batch*1024*6(1024个点,每个点对应3个坐标3个法向量信息)
分组后输出为:batch*128*16*6(128个中心点,每个簇16个样本)
实际计算时是选择多种半径,多种样本点个数,目的是特征更丰富PointNet++
例如:半径=(0.1,0.2,0.4);对应簇的样本个数(16,32,64)

  • 对各组进行特征提取

先进行维度变换(b*npoints*nsample*features,8*128*16*6->8*6*16*128)
进行卷积操作(例如:in=6,out=64)就得到提取的特征(8*64*16*128)
注意当前每个簇都是16个样本点,我们要每一个簇对应一个特征
按照pointnet,做MAX操作,得到8*64*128

  • 继续做多次采样,分组,卷积:

例如:采样中心点(1024->512->128)
每一次操作时,都要进行特征拼接(无论半径为0.1,0.2,0.4;以及簇采样点个数)
最终都得到batch*中心点个数*特征(但是特征个数可能不同)
执行拼接操作(b*512*128,b*512*256,b*512*512)->(b*512*896)

  • 经过多次采样,分组,pointnet得到最终整体特征,再进行分类

整个过程是一个典型的深度学习中的特征层次化提取过程,用于从原始数据中自动学习到有用的特征。在三维点云的处理中,这种方法特别有效,因为它能处理原始点云数据的无序性,并能从不同的尺度捕捉到形状和结构的特征。通过这样的处理,神经网络能够学习到复杂的模式,从而在各种任务上达到很好的性能。 

算法问题

改进方法 

整体网络模型

三维重建

重建算法

GitHub - zju3dv/NeuralRecon: Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

这张图片描述了一个名为“NeuralRecon”的三维重建系统的架构,这个系统采用了一种粗到细(coarse-to-fine)的方法来处理图像,并生成预测的几何结构。

架构模块

  • 图像编码器: 该模块从输入视频帧中提取特征。
  • GRU: 该模块是一个循环神经网络,用于编码视频中的时间信息。
  • MLP: 该模块是一个全连接神经网络,用于预测场景中每个像素的深度。
  • 融合: 该模块结合了 MLP 和 GRU 模块的预测。
  • 上采样: 该模块将粗略深度预测上采样到所需分辨率。
  • 稀疏化: 该模块从深度图中移除异常预测。

流程步骤

  1. 图像编码器(Image Encoder)

    • 输入为多个片段的定位图像,这可能是由一个或多个视角拍摄的同一场景的序列图像。
    • 图像编码器提取每个图像的特征。
  2. 粗到细处理(Coarse-to-Fine)

    • 粗步骤:系统首先在一个较粗的尺度上建立场景的初步3D表示。
    • 细步骤:随后在更细的尺度上逐渐细化这个表示。
  3. 特征融合(GRU Fusion)

    • 在每个尺度上,都使用GRU来融合来自不同图像的特征。GRU能够在序列数据中有效地传递信息,并保留之前图像的状态信息。
  4. MLP

    • 每个尺度的融合特征都通过MLP进行进一步处理。
  5. 输出

    • 最终输出为预测的几何结构,使用稀疏的TSDF(Truncated Signed Distance Field)表示。

标记说明

  • 绿色箭头(C):表示特征在不同尺度间的串联(Concatenate)。
  • 黄色箭头(S):表示稀疏化操作(Sparsify),可能是为了减少计算复杂度。
  • 蓝色箭头(U):表示上采样(Upsample),在粗到细的策略中上采样是为了细化特征。
  • 粉色块(Extract/Replace):表示从大尺度特征中提取细节,并替换原有的粗尺度特征。

优点和挑战

  • 优点:高效灵活,因为该系统不依赖于传统的顺序RNN处理,同时它避免了GRU不稳定和计算成本高的问题。
  • 挑战:虽然该系统避免了传统逐帧处理的消耗,但处理速度慢和GRU不稳定仍然是需要解决的问题。系统需要维持一个全局隐藏状态,这可能会对计算资源造成压力。

这个系统的创新之处在于使用了多尺度的方法结合深度学习来处理SLAM问题,并利用GRU网络来维持时序信息,从而提高了三维重建的效率和准确性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/810389.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构—顺序表(如果想知道顺序表的全部基础知识点,那么只看这一篇就足够了!)

前言:学习完了C语言的基础知识点之后,我们就需要使用我们所学的知识来进一步对存储在内存中的数据进行操作,这时候我们就需要学习数据结构。而这篇文章为数据结构中顺序表的讲解。 ✨✨✨这里是秋刀鱼不做梦的BLOG ✨✨✨想要了解更多内容可以…

一、OpenCvSharp环境搭建

一、Visual Studio 创建新项目 二、选择Windows窗体应用(.NET Framework) 直接搜索模板:Windows窗体应用(.NET Framework) 记得是C#哈,别整成VB(Visual Basic)了 PS:若搜索搜不到,直接点击安装多个工具和…

MemoryAnalyzer分析OpenJ9上的phd格式文件

在做excel大数据写入时,发生内存泄漏 core.20240412.093703.1.0001.dmp heapdump.20240412.093703.1.0002.phd需要分析heap dump文件 mat本身不支持,需要我们下载插件 https://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/runtimes/tools…

同等学力申硕-计算机专业-历年真题及其他资料分享

同等学力申请硕士学位考试是比较适合在职人员的提升学位方式,了解过的人应该都知道,现在社会的竞争压力越来越大,为了提高职业生存能力,提升学位在所难免。 我将与大家分享一份珍贵的复习资料:这不仅是我个人备考的心…

Docker Desktop修改镜像存储路径 Docker Desktop Start ... 卡死

1、CMD执行wsl -l -v --all 2、Clean / Purge data 3、导出wsl子系统镜像: wsl --export docker-desktop D:\docker\wsl\distro\docker-desktop.tar wsl --export docker-desktop-data D:\docker\wsl\data\docker-desktop-data.tar4、删除现有的wsl子系统: wsl -…

Springboot集成RabbitMq+延时队列

1. 引入jar包 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-amqp</artifactId> </dependency> 2.配置yml 2.1 配置生产者yml spring:rabbitmq:host: localhostport: 5672virtual-host: …

主题换肤操作

有许多项目会遇见有light和dark多种颜色方案展示&#xff0c;如下&#xff1a; 这种是怎么实现的呢&#xff1f; 方案1&#xff1a;采用css变量来实现 /* 默认粉色主题 */ :root {--underline-dark: #000d8a;--gray-light: 229, 233, 240;--gray-dark: 34, 41, 57;--black: 1…

华为远程登陆管理配置:轻松掌握核心要点

实验拓扑及需求 实验步骤 A、配置相关地址及连通性测试 R1&#xff1a; [R1]int GigabitEthernet 0/0/0 [R1-GigabitEthernet0/0/0]ip address 192.168.12.1 24 R2&#xff1a; [R2]int gi 0/0/0 [R2-GigabitEthernet0/0/0]ip add 192.168.12.2 24 [R2]int gi 0/0/1 […

如何将对象转换成json字符串,以json格式输出,并获取到其中的特定字段

小王学习录 Json格式示例 1&#xff1a;简单的 JSON 对象示例 2&#xff1a;JSON 对象嵌套示例 3&#xff1a;JSON 数组示例 4&#xff1a;混合使用对象和数组 使用Gson将java对象转换成json字符串哪些数据类型的对象可以使用Gson转换为json字符串如何使用Gson将java对象转换成…

go语言学习--3.常用语句

目录 1.条件语句 1.1 if语句 1.2 if-else语句 1.3 switch语句 1.4 select语句 2.循环语句 2.1循环处理语句 2.2循环控制语句 3.go语言关键字 1.条件语句 和c语言类似&#xff0c;相关的条件语句如下表所示&#xff1a; 1.1 if语句 if 布尔表达式 {/* 在布尔表达式为 t…

小红的白色字符串

题目描述 小红拿到了一个字符串&#xff0c;她准备将一些字母变成白色&#xff0c;变成白色的字母看上去就和空格一样&#xff0c;这样字符串就变成了一些单词。 现在小红希望&#xff0c;每个单词都满足以下两种情况中的一种&#xff1a; 1.开头第一个大写&#xff0c;其余为…

echarts折线图自定义打点标记小工具

由于没研究明白echarts怎么用label和lableLine实现自定义打点标记&#xff0c;索性用markPoint把长方形压扁成线模拟了一番自定义打点标记&#xff0c;记录下来备用。&#xff08;markLine同理也能实现&#xff09; 实现代码如下&#xff1a; <!DOCTYPE html> <html…

C#基础--之数据类型

C#基础–之数据类型 在第一章我们了解了C#的输入、输出语句后&#xff0c;我这一节主要是介绍C#的基础知识&#xff0c;本节的内容也是后续章节的基础&#xff0c;好的开端等于成功的一半。在你阅读完本章后&#xff0c;你就有足够的C#知识编写简单的程序了。但还不能使用封装、…

电视盒子哪个好?2024口碑网络电视盒子排行榜

多年来电视盒子始终占据重要地位&#xff0c;功能上并没有受到影响。在这么多品牌中哪些电视盒子的评价是最好的呢&#xff1f;小编根据各大电商平台的用户评价情况整理了口碑最好的网络电视盒子排行榜&#xff0c;跟着小编一起看看市面上的电视盒子哪个好吧。 TOP 1&#xff1…

OpenHarmony 资源调度之内存管理源码分析

作者&#xff1a;张守忠 1 内存管理简介 内存管理部件位于全局资源调度管控子系统中&#xff0c;基于应用的生命周期状态&#xff0c;更新进程回收优先级列表&#xff0c;通过内存回收、查杀等手段管理系统内存&#xff0c;保障内存供给。 1.1 内存管理框架 内存管理部件主要…

外贸开发信必知技巧:高回复率不再是梦

外贸行业在Zoho的客户群体中占比较高。因为我们的国际化背景、丰富的产品组合、多语言多币种跨时区、高性价比等特点&#xff0c;成为外贸企业开展业务的选择。在和外贸客户沟通中&#xff0c;发现无论是外贸大拿还是新手小白&#xff0c;大家遇到一个共同的问题——发出去的开…

抖音上阳哥的视频号带货推荐靠谱吗?

在抖音这个短视频平台的广阔天地里&#xff0c;阳哥以其独到的眼光和精准的推荐&#xff0c;成为了众多粉丝心中的带货指南。不同于一些网红直接进行视频号带货&#xff0c;阳哥更多地是以一个推荐人的身份出现&#xff0c;为粉丝们筛选并推荐优质的带货内容。那么&#xff0c;…

python——列表(list)

概念 列表一般使用在一次性存储多个数据 语法 lst[数据1&#xff0c;数据2&#xff0c;.....]方法 #mermaid-svg-flVxgVdpSqFaZyrF {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-flVxgVdpSqFaZyrF .error-icon{…

图像版PDF文件OCR识别转换为文本的3款免费工具软件

图像版PDF文件里面都是图片&#xff0c;要先通过OCR技术识别出文本&#xff0c;然后才能进行进一步处理编辑。下面是3个免费的PDF文件OCR识别软件工具&#xff1a; ●简可信PDF批量识别工具 简可信PDF批量识别工具是一款专门用于将PDF文件进行批量OCR&#xff08;光学字符识别…