索引
- 定积分的详细定义与可积条件
- Riemann可积
- 定义3.1 Riemann和
- 定义3.2 Riemann可积
- 定积分定义
- 定义3.3 定积分
- 定积分定义的扩展
- 定义3.4 Darboux上(下)和
- 引理3.1
- 引理3.2
- 定理3.1 Darboux定理
- 定理3.2
定积分的详细定义与可积条件
Riemann可积
定义3.1 Riemann和
若函数 f ( x ) f\left ( x \right ) f(x)是闭区间 [ a , b ] \left [ a,b \right ] [a,b]上的有界函数,对闭区间 [ a , b ] \left [ a,b \right ] [a,b]作划分 P = { [ x i − 1 , x i ] ∣ x 0 = a ≤ x i − 1 < x i ≤ x n = b , 1 ≤ i ≤ n , i ∈ N } P =\left \{ \left [ x_{i-1},x_{i} \right ]\mid x_{0}=a\le x_{i-1}<x_{i} \le x_{n}=b,1\le i \le n,i\in \mathbb{N}\right \} P={[xi−1,xi]∣x0=a≤xi−1<xi≤xn=b,1≤i≤n,i∈N},也就是选取包含闭区间 [ a , b ] \left [ a,b \right ] [a,b]左端点a和右端点b在内的 n + 1 n+1 n+1个点 x i x_{i} xi将闭区间 [ a , b ] \left [ a,b \right ] [a,b]分为 n − 1 n-1 n−1段,划分后每个闭区间 [ x i − 1 , x i ] \left [ x_{i-1},x_{i} \right ] [xi−1,xi]的长度为 Δ x i = x i − x i − 1 \Delta x_{i}=x_{i}-x_{i-1} Δxi=xi−xi−1, ∑ i = 1 n ( f ( ξ i ) Δ x i ) \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right ) ∑i=1n(f(ξi)Δxi)称为Riemann和。
定义3.2 Riemann可积
记 λ = max 1 ≤ i ≤ n { Δ x i } \lambda =\underset{1\le i\le n}{\max} \left \{ \Delta x_{i} \right \} λ=1≤i≤nmax{Δxi}, λ → 0 \lambda \to 0 λ→0代表 ∀ i ∈ [ 1 , n ] \forall i \in \left [ 1,n \right ] ∀i∈[1,n], Δ x i → 0 \Delta x_{i} \to 0 Δxi→0,在每个闭区间 [ x i , x i + 1 ] \left [ x_{i},x_{i+1} \right ] [xi,xi+1]任意选取点 ξ i \xi _{i} ξi,若Riemann和的极限 lim λ → 0 ∑ i = 1 n ( f ( ξ i ) Δ x i ) = I ∈ R \lim _{\lambda \to 0} \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right )=I \in \mathbb{R} limλ→0∑i=1n(f(ξi)Δxi)=I∈R存在且有限,并且与划分 P P P和取点 ξ i \xi _{i} ξi无关,则称函数 f ( x ) f\left ( x \right ) f(x)Riemann可积。
定积分定义
定义3.3 定积分
若函数 f ( x ) f\left ( x \right ) f(x)满足Riemann可积的条件,且Riemann和的极限 lim λ → 0 ∑ i = 1 n ( f ( ξ i ) Δ x i ) = I \lim _{\lambda \to 0} \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right )=I limλ→0∑i=1n(f(ξi)Δxi)=I, I ∈ R I \in \mathbb{R} I∈R,则称 I I I为闭区间 [ x i , x i + 1 ] \left [ x_{i},x_{i+1} \right ] [xi,xi+1]上的定积分,记为 lim λ → 0 ∑ i = 1 n ( f ( ξ i ) Δ x i ) = I = ∫ a b f ( x ) d x \lim _{\lambda \to 0} \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right )=I=\int_{a}^{b} f\left ( x \right ) dx limλ→0∑i=1n(f(ξi)Δxi)=I=∫abf(x)dx。
另有 ε − δ \varepsilon -\delta ε−δ语言表述如下:
∀ ε > 0 \forall \varepsilon >0 ∀ε>0, ∃ δ > 0 \exists \delta >0 ∃δ>0: ∀ P = { [ x i − 1 , x i ] ∣ x 0 = a ≤ x i − 1 < x i ≤ x n = b , 1 ≤ i ≤ n } \forall P=\left \{ \left [ x_{i-1},x_{i} \right ]\mid x_{0}=a\le x_{i-1}<x_{i} \le x_{n}=b,1\le i \le n\right \} ∀P={[xi−1,xi]∣x0=a≤xi−1<xi≤xn=b,1≤i≤n}, ∀ ξ i ∈ [ x i − 1 , x i ] \forall \xi_{i} \in \left [ x_{i-1},x_{i}\right ] ∀ξi∈[xi−1,xi], ∀ λ ∈ ( 0 , δ ) \forall \lambda \in \left ( 0,\delta \right ) ∀λ∈(0,δ), ∣ ∑ i = 1 n ( f ( ξ i ) Δ x i ) − I ∣ < ε \left | \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right ) -I\right |< \varepsilon ∣∑i=1n(f(ξi)Δxi)−I∣<ε。
定积分定义的扩展
定义3.4 Darboux上(下)和
若函数 f ( x ) f\left ( x \right ) f(x)是闭区间 [ a , b ] \left [ a,b \right ] [a,b]上的有界函数, M = sup a ≤ x ≤ b f ( x ) M=\underset{a\le x \le b}{\sup} f\left ( x \right ) M=a≤x≤bsupf(x), m = inf a ≤ x ≤ b f ( x ) m=\underset{a\le x \le b}{\inf} f\left ( x \right ) m=a≤x≤binff(x),对闭区间 [ a , b ] \left [ a,b \right ] [a,b]作划分 P = { [ x i − 1 , x i ] ∣ x 0 = a ≤ x i − 1 < x i ≤ x n = b , 1 ≤ i ≤ n , i ∈ N } P =\left \{ \left [ x_{i-1},x_{i} \right ]\mid x_{0}=a\le x_{i-1}<x_{i} \le x_{n}=b,1\le i \le n,i\in \mathbb{N}\right \} P={[xi−1,xi]∣x0=a≤xi−1<xi≤xn=b,1≤i≤n,i∈N},划分后每个闭区间 [ x i − 1 , x i ] \left [ x_{i-1},x_{i} \right ] [xi−1,xi]又有对应的 M i = sup x i − 1 ≤ x ≤ x i f ( x i ) M_{i} =\underset{x_{i-1} \le x \le x_{i} }{\sup} f\left ( x_{i} \right ) Mi=xi−1≤x≤xisupf(xi), m i = inf x i − 1 ≤ x ≤ x i f ( x i ) m_{i} =\underset{x_{i-1} \le x \le x_{i}}{\inf} f\left ( x_{i} \right ) mi=xi−1≤x≤xiinff(xi),
定义Darboux上和 S ‾ ( P ) = ∑ i = 1 n ( M i Δ x i ) \overline{S}\left ( P \right ) = \sum_{i=1}^{n}\left ( M_{i} \Delta x_{i} \right ) S(P)=∑i=1n(MiΔxi),Darboux下和 S ‾ ( P ) = ∑ i = 1 n ( m i Δ x i ) \underline{S}\left (P \right ) = \sum_{i=1}^{n}\left ( m_{i} \Delta x_{i} \right ) S(P)=∑i=1n(miΔxi)。
引理3.1
在划分 P P P中增加新分点,则新的Darboux上和不增加,新的Darboux下和不减少。
不妨设只在其中一个闭区间增加一个分点,增加多个分点可以分解为每次只增加一个分点的递归问题。
以Darboux上和为例,设在闭区间 [ x i − 1 , x i ] \left [ x_{i-1} ,x_{i} \right ] [xi−1,xi]内增加新分点 x k x_{k} xk,旧划分记为 P 0 P_{0} P0,新划分记为 P 1 P_{1} P1。
比较 S ‾ ( P 0 ) \overline{S}\left ( P_{0} \right ) S(P0)与 S ‾ ( P 1 ) \overline{S}\left ( P_{1} \right ) S(P1),除闭区间 [ x i − 1 , x i ] \left [ x_{i-1} ,x_{i} \right ] [xi−1,xi]外的其余闭区间不受影响,
而对于原来的 [ x i − 1 , x i ] \left [ x_{i-1} ,x_{i} \right ] [xi−1,xi],重新划分后,闭区间 [ x i − 1 , x k ] \left [ x_{i-1},x_{k} \right ] [xi−1,xk]的上确界为 sup x i − 1 ≤ x ≤ x k [ x i − 1 , x k ] = c 1 \underset{x_{i-1}\le x \le x_{k} }{\sup} \left [ x_{i-1},x_{k} \right ]=c_{1} xi−1≤x≤xksup[xi−1,xk]=c1,闭区间 [ x k , x i ] \left [ x_{k},x_{i} \right ] [xk,xi]的上确界为 sup x k ≤ x ≤ x i [ x k , x i ] = c 2 \underset{x_{k}\le x \le x_{i} }{\sup} \left [ x_{k},x_{i} \right ]=c_{2} xk≤x≤xisup[xk,xi]=c2,且 c 1 ≤ M i c_{1}\le M_{i} c1≤Mi, c 2 ≤ M i c_{2}\le M_{i} c2≤Mi,
则 c 1 ( x i − 1 − x k ) + c 2 ( x k − x i ) ≤ M i ( x i − 1 − x k ) + M i ( x k − x i ) = M i ( x i − 1 − x i ) = M i Δ x i c_{1}\left ( x_{i-1}-x_{k} \right ) +c_{2} \left ( x_{k}-x_{i} \right ) \le M_{i}\left ( x_{i-1}-x_{k} \right )+M_{i}\left ( x_{k}-x_{i} \right ) =M_{i} \left ( x_{i-1}-x_{i} \right ) =M_{i}\Delta x_{i} c1(xi−1−xk)+c2(xk−xi)≤Mi(xi−1−xk)+Mi(xk−xi)=Mi(xi−1−xi)=MiΔxi,即 S ‾ ( P 0 ) ≥ S ‾ ( P 1 ) \overline{S}\left ( P_{0} \right )\ge \overline{S}\left ( P_{1} \right ) S(P0)≥S(P1)。
同理可得 S ‾ ( P 0 ) ≤ S ‾ ( P 1 ) \underline{S}\left ( P_{0} \right )\le \underline{S}\left ( P_{1} \right ) S(P0)≤S(P1)。
引理3.2
对任意划分 P 1 P_{1} P1, P 2 P_{2} P2,有 m ( b − a ) ≤ S ‾ ( P 1 ) ≤ S ‾ ( P 2 ) ≤ M ( b − a ) m\left ( b-a \right )\le \underline{S} \left ( P_{1} \right )\le \overline{S} \left ( P_{2} \right ) \le M\left ( b-a \right ) m(b−a)≤S(P1)≤S(P2)≤M(b−a)。
构造特殊划分 P 0 = { [ a , b ] } P_{0} =\left \{ \left [ a,b \right ] \right \} P0={[a,b]}, S ‾ ( P 0 ) = m ( b − a ) \underline{S} \left ( P_{0} \right ) =m\left ( b-a \right ) S(P0)=m(b−a), S ‾ ( P 0 ) = M ( b − a ) \overline{S} \left ( P_{0} \right ) =M\left ( b-a \right ) S(P0)=M(b−a)。
根据引理3.1, S ‾ ( P 0 ) = m ( b − a ) ≤ S ‾ ( P 1 ) \underline{S} \left ( P_{0} \right ) =m\left ( b-a \right )\le \underline{S} \left ( P_{1} \right ) S(P0)=m(b−a)≤S(P1), S ‾ ( P 2 ) ≤ S ‾ ( P 0 ) = M ( b − a ) \overline{S} \left ( P_{2} \right ) \le \overline{S} \left ( P_{0} \right ) =M\left ( b-a \right ) S(P2)≤S(P0)=M(b−a);
构造特殊划分 P ∗ P^{\ast } P∗,其为划分 P 1 P_{1} P1与划分 P 2 P_{2} P2的积划分 P 1 ⋅ P 2 P_{1} \cdot P_{2} P1⋅P2,其分点也就是划分 P 1 P_{1} P1与划分 P 2 P_{2} P2的所有分点的并集。
根据引理3.1, S ‾ ( P 1 ) ≤ S ‾ ( P ∗ ) ≤ S ‾ ( P ∗ ) ≤ S ‾ ( P 2 ) \underline{S} \left ( P_{1} \right )\le \underline{S}\left ( P^{\ast } \right )\le \overline{S} \left ( P^{\ast } \right ) \le \overline{S} \left ( P_{2} \right ) S(P1)≤S(P∗)≤S(P∗)≤S(P2)。
定理3.1 Darboux定理
若函数 f ( x ) f\left ( x \right ) f(x)是闭区间 [ a , b ] \left [ a,b \right ] [a,b]上的有界函数,记函数 f ( x ) f\left ( x \right ) f(x)对一切划分 P P P的全体Darboux上和构成的集合为 S ‾ = { S ‾ ( P ) } \overline{S}=\left \{ \overline{S} \left ( P \right ) \right \} S={S(P)}, L = inf S ‾ L=\inf \overline{S} L=infS,函数 f ( x ) f\left ( x \right ) f(x)对一切划分 P P P的全体Darboux下和构成的集合为 S ‾ = { S ‾ ( P ) } \underline{S}=\left \{ \underline{S} \left ( P \right ) \right \} S={S(P)}, l = sup S ‾ l=\sup \underline{S} l=supS,则有 lim λ → 0 S ‾ ( P ) = L \lim_{\lambda \to 0}\overline{S}\left ( P \right )=L limλ→0S(P)=L, lim λ → 0 S ‾ ( P ) = l \lim_{\lambda \to 0}\underline{S}\left ( P \right )=l limλ→0S(P)=l。
以Darboux上和的下确界 L L L为例,
记 P ′ = { [ x i − 1 ′ , x i ′ ] ∣ x 0 = a ≤ x i − 1 < x i ≤ x p = b , 1 ≤ i ≤ p } P^{\prime}=\left \{ \left [ x^{\prime }_{i-1},x^{\prime }_{i}\right ] \mid x_{0}=a\le x_{i-1} < x_{i} \le x_{p}=b,1\le i\le p \right \} P′={[xi−1′,xi′]∣x0=a≤xi−1<xi≤xp=b,1≤i≤p},
取 δ 1 = min 1 ≤ i ≤ p { Δ x i ′ } \delta_{1}= \underset{1\le i\le p}{\min}\left \{ \Delta x_{i}^{\prime } \right \} δ1=1≤i≤pmin{Δxi′},任取划分 P = { [ x j − 1 , x j ] ∣ x 0 = a ≤ x j − 1 < x j ≤ x q = b , 1 ≤ j ≤ q } P=\left \{ \left [ x_{j-1},x_{j} \right ] \mid x_{0}=a\le x_{j-1} < x_{j} \le x_{q}=b,1\le j\le q \right \} P={[xj−1,xj]∣x0=a≤xj−1<xj≤xq=b,1≤j≤q}, λ = max 1 ≤ j ≤ q { Δ x j } \lambda =\underset{1\le j\le q}{\max} \left \{ \Delta x_{j} \right \} λ=1≤j≤qmax{Δxj},
构造特殊划分 P ∗ P^{\ast } P∗,其为划分 P P P与划分 P ′ P^{\prime} P′的积划分 P ⋅ P ′ P \cdot P^{\prime} P⋅P′,其分点也就是划分 P P P与划分 P ′ P^{\prime} P′的所有分点的并集。
S ‾ ( P ) − L ≤ ( S ‾ ( P ) − S ‾ ( P ∗ ) ) + ( S ‾ ( P ∗ ) − S ‾ ( P ′ ) ) + ( S ‾ ( P ′ ) − L ) \overline{S}\left ( P \right )-L \le \left ( \overline{S}\left ( P \right )-\overline{S}\left ( P^{\ast } \right ) \right )+\left ( \overline{S}\left ( P^{\ast } \right )-\overline{S}\left ( P^{\prime } \right ) \right )+\left ( \overline{S}\left ( P^{\prime } \right ) -L \right ) S(P)−L≤(S(P)−S(P∗))+(S(P∗)−S(P′))+(S(P′)−L),
由下确界定义, ∀ ε > 0 \forall \varepsilon >0 ∀ε>0, ∃ P ′ \exists P^{\prime} ∃P′: ∣ S ‾ ( P ′ ) − L ∣ < ε 2 \left | \overline{S} \left ( P^{\prime } \right ) -L \right |<\frac{\varepsilon }{2} S(P′)−L <2ε( I \mathrm{I} I);
引用引理3.1, S ‾ ( P ∗ ) − S ‾ ( P ′ ) ≤ 0 \overline{S}\left ( P^{\ast } \right )- \overline{S}\left ( P^{\prime } \right )\le 0 S(P∗)−S(P′)≤0( I I \mathrm{II} II);
考虑将 P P P的分点逐个插入原划分 P ′ P^{\prime} P′中,为保证前提条件 ∀ 1 ≤ j ≤ q \forall 1\le j\le q ∀1≤j≤q, ∀ 1 ≤ i ≤ p \forall 1\le i\le p ∀1≤i≤p, Δ x j ≤ λ < δ 1 ≤ Δ x i ′ \Delta x_{j}\le \lambda <\delta _{1}\le \Delta x_{i}^{\prime } Δxj≤λ<δ1≤Δxi′仍然成立,则 p − 1 p-1 p−1闭区间 [ x i − 1 ′ , x i ′ ] \left [ x^{\prime }_{i-1},x^{\prime }_{i}\right ] [xi−1′,xi′]中每个只能插入一个 P P P的分点,否则, ∃ j \exists j ∃j: Δ x j = x j − x j − 1 > δ 1 \Delta x_{j}=x_{j}-x_{j-1}>\delta _{1} Δxj=xj−xj−1>δ1,违反前提条件,
取 δ 2 = ε 2 ( p − 1 ) ( M − m ) > 0 \delta_{2}=\frac{\varepsilon }{2\left ( p-1 \right )\left ( M-m \right ) }>0 δ2=2(p−1)(M−m)ε>0,则 ∀ ε > 0 \forall \varepsilon >0 ∀ε>0, ∃ δ = min { δ 1 , δ 2 } > 0 \exists \delta =\min\left \{\delta_{1},\delta_{2} \right \}>0 ∃δ=min{δ1,δ2}>0: ∀ P \forall P ∀P, ∀ λ ∈ ( 0 , δ ) \forall \lambda \in \left ( 0,\delta \right ) ∀λ∈(0,δ), S ‾ ( P ) − S ‾ ( P ∗ ) < ( p − 1 ) ( M − m ) δ < ε 2 \overline{S}\left ( P \right )-\overline{S}\left ( P^{\ast } \right )< \left ( p-1 \right ) \left ( M-m \right )\delta<\frac{\varepsilon }{2} S(P)−S(P∗)<(p−1)(M−m)δ<2ε( I I I \mathrm{III} III),
综合( I \mathrm{I} I),( I I \mathrm{II} II),( I I I \mathrm{III} III), ∀ ε > 0 \forall \varepsilon >0 ∀ε>0, ∃ δ = min { δ 1 , δ 2 } > 0 \exists \delta =\min\left \{\delta_{1},\delta_{2} \right \}>0 ∃δ=min{δ1,δ2}>0: ∀ P \forall P ∀P, ∀ λ ∈ ( 0 , δ ) \forall \lambda \in \left ( 0,\delta \right ) ∀λ∈(0,δ), ∣ S ‾ ( P ) − L ∣ < ε 2 \left | \overline{S}\left ( P \right )-L \right | <\frac{\varepsilon }{2} S(P)−L <2ε,即 lim λ → 0 S ‾ ( P ) = L \lim_{\lambda \to 0}\overline{S}\left ( P \right )=L limλ→0S(P)=L。
定理3.2
函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]可积的充要条件为 lim λ → 0 S ‾ ( P ) = L = l = lim λ → 0 S ‾ ( P ) \lim _{\lambda \to 0}\overline{S}\left ( P \right ) =L=l=\lim _{\lambda \to 0}\underline{S}\left ( P \right ) limλ→0S(P)=L=l=limλ→0S(P)。
<1>必要性
根据Riemann可积的条件, ∀ ε > 0 \forall \varepsilon >0 ∀ε>0, ∃ δ > 0 \exists \delta >0 ∃δ>0: ∀ P = { [ x i − 1 , x i ] ∣ x 0 = a ≤ x i − 1 < x i ≤ x n = b , 1 ≤ i ≤ n } \forall P=\left \{ \left [ x_{i-1},x_{i} \right ]\mid x_{0}=a\le x_{i-1}<x_{i} \le x_{n}=b,1\le i \le n\right \} ∀P={[xi−1,xi]∣x0=a≤xi−1<xi≤xn=b,1≤i≤n}, ∀ ξ i ∈ [ x i − 1 , x i ] \forall \xi_{i} \in \left [ x_{i-1},x_{i}\right ] ∀ξi∈[xi−1,xi], ∀ λ ∈ ( 0 , δ ) \forall \lambda \in \left ( 0,\delta \right ) ∀λ∈(0,δ), ∣ ∑ i = 1 n ( f ( ξ i ) Δ x i ) − I ∣ < ε 2 \left | \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right ) -I\right |< \frac{\varepsilon }{2} ∣∑i=1n(f(ξi)Δxi)−I∣<2ε( I \mathrm{I } I);
取 ξ i ∈ [ x i − 1 , x i ] \xi _{i}\in \left [ x_{i-1} ,x_{i} \right ] ξi∈[xi−1,xi]: ∣ M i − f ( ξ i ) ∣ < ε 2 ( b − a ) \left | M_{i}-f\left ( \xi _{i} \right ) \right | < \frac{\varepsilon }{2\left ( b-a \right ) } ∣Mi−f(ξi)∣<2(b−a)ε,
则有 ∣ S ‾ ( P ) − ∑ i = 1 n ( f ( ξ i ) Δ x i ) ∣ = ∣ ∑ i = 1 n [ ( M i − f ( ξ i ) ) Δ x i ] ∣ < ( b − a ) ⋅ ε 2 ( b − a ) = ε 2 \left | \overline{S}\left ( P \right )-\sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right ) \right |=\left | \sum_{i=1}^{n} \left [ \left ( M_{i}-f\left ( \xi _{i} \right ) \right )\Delta x_{i} \right ] \right |<\left ( b-a \right ) \cdot \frac{\varepsilon }{2\left ( b-a \right ) } =\frac{\varepsilon }{2} S(P)−∑i=1n(f(ξi)Δxi) =∣∑i=1n[(Mi−f(ξi))Δxi]∣<(b−a)⋅2(b−a)ε=2ε( I I \mathrm{II} II);
综合( I \mathrm{I} I),( I I \mathrm{II} II)可知, ∀ ε > 0 \forall \varepsilon >0 ∀ε>0, ∃ δ > 0 \exists \delta >0 ∃δ>0: ∀ P = { [ x i − 1 , x i ] ∣ x 0 = a ≤ x i − 1 < x i ≤ x n = b , 1 ≤ i ≤ n } \forall P=\left \{ \left [ x_{i-1},x_{i} \right ]\mid x_{0}=a\le x_{i-1}<x_{i} \le x_{n}=b,1\le i \le n\right \} ∀P={[xi−1,xi]∣x0=a≤xi−1<xi≤xn=b,1≤i≤n}, ∀ ξ i ∈ [ x i − 1 , x i ] \forall \xi_{i} \in \left [ x_{i-1},x_{i}\right ] ∀ξi∈[xi−1,xi], ∀ λ ∈ ( 0 , δ ) \forall \lambda \in \left ( 0,\delta \right ) ∀λ∈(0,δ), ∣ S ‾ ( P ) − I ∣ ≤ ∣ S ‾ ( P ) − ∑ i = 1 n ( f ( ξ i ) Δ x i ) ∣ + ∣ ∑ i = 1 n ( f ( ξ i ) Δ x i ) − I ∣ < ε \left | \overline{S}\left ( P \right )-I \right |\le \left | \overline{S}\left ( P \right )-\sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right ) \right |+\left | \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right ) -I\right |<\varepsilon S(P)−I ≤ S(P)−∑i=1n(f(ξi)Δxi) +∣∑i=1n(f(ξi)Δxi)−I∣<ε,即 lim λ → 0 S ‾ ( P ) = I \lim _{\lambda \to 0}\overline{S}\left ( P \right ) =I limλ→0S(P)=I。
<2>充分性
由定义易得 S ‾ ( P ) ≤ ∑ i = 1 n ( f ( ξ i ) Δ x i ) ≤ S ‾ ( P ) \overline{S}\left ( P \right ) \le \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right )\le \underline{S}\left ( P \right ) S(P)≤∑i=1n(f(ξi)Δxi)≤S(P)。
由两边夹原理, L = lim λ → 0 S ‾ ( P ) = lim λ → 0 [ ∑ i = 1 n ( f ( ξ i ) Δ x i ) ] = lim λ → 0 S ‾ ( P ) = l L=\lim _{\lambda \to 0} \overline{S}\left ( P \right ) = \lim _{\lambda \to 0}\left [ \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right ) \right ] = \lim _{\lambda \to 0}\underline{S}\left ( P \right )=l L=limλ→0S(P)=limλ→0[∑i=1n(f(ξi)Δxi)]=limλ→0S(P)=l,满足Riemann可积的条件。