计算机视觉 | 基于二值图像数字矩阵的距离变换算法

Hi,大家好,我是半亩花海。本实验基于 OpenCV 实现了二值图像数字矩阵的距离变换算法。首先生成一个 480x480 的黑色背景图像(定义黑色为0,白色为1),在其中随机选择了三个白色像素点作为距离变换的原点,利用 OpenCV 中 distanceTransform 等相关函数计算并输出这些原点到其他像素点的欧氏距离、D4 距离和 D8 距离及其相应的距离矩阵,并将距离变换结果可视化

文章目录

  • 一、导入必要库
  • 二、初始化输入图像和变换结果图像
  • 三、根据二值图计算并输出距离矩阵
  • 四、将距离矩阵转换为可视化图片

一、导入必要库

导入必要的库(cv2、numpy、matplotlib.pyplot),为后续的图像处理任务做准备。

#!/usr/bin/env python
# coding: utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt# 用来设置字体样式(黑体)以正常显示中文标签
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

二、初始化输入图像和变换结果图像

自定义 480x480 二值图,随机生成图案,初始值都是 0(黑色),并显示原始图像。

  • 图像数字化:
    通过传感器获得的图像是平面坐标 ( x , y ) (x,y) (x,y) 的连续函数 f ( x , y ) f(x,y) f(x,y),它的值图像对应位置的亮度。为了能够让计算机来处理,需要对图像进行采样,并且对亮度值进行量化。

    • 采样: 对连续函数 f ( x , y ) f(x,y) f(x,y) 进行采样,就是分别对 x x x 轴和 y y y 轴,按照固定间隔取值,得到平面坐标上的 M × N M×N M×N 个点,将其函数值作为元素生成 M M M N N N 列的矩阵。

    • 量化亮度值。 f ( x , y ) f(x,y) f(x,y) 的值转化为等价的整数值的过程称为量化,量化的级别越高,图像越细致。通常将亮度值表示为 0~255 之间的整数。

# 创建一个大小为 480x480 的全黑图像(确保数据类型为 8 位无符号整数)
mat = np.zeros((480, 480), dtype=np.uint8)
# 给输入图像指定三个像素点设置为白色像素,作为距离变换原点(区域块)
mat[100, 200] = 1
mat[200, 100] = 1
mat[300, 300] = 1# 显示原始图像和距离变换结果
plt.figure(figsize=(15, 5))
plt.scatter([100, 200, 300], [200, 100, 300], color='white', marker='o')  # 添加三个白点表示出三个像素点的坐标
plt.imshow(mat, cmap='gray')
plt.title('原始图像', fontsize=16)
# 将输入图像中 1(白色)和 0(黑色)调换,使得原点距离为 0
mat = 1 - mat

三、根据二值图计算并输出距离矩阵

  • 距离: 距离是描述图像两点像素之间的远近关系的度量,常见的度量距离有欧式距离(Euchildean distance)、城市街区距离(City block distance)、棋盘距离(Chessboard distance)。以下以两坐标点 a = ( i , j ) a = (i, j) a=(i,j) b = ( k , l ) b = (k, l) b=(k,l) 的距离为例,来说明各种距离的定义方式。

(1)欧式距离 D e D_e De 欧式距离的定义源于经典的几何学,与我们数学中所学的简单几何的两点之间的距离一致,为两个像素点坐标值的平方根。欧式距离的优点在于其定义非常地直观,是显而易见的,但缺点在于平方根的计算是非常耗时的。

D e ( a , b ) = ( ( i − k ) 2 ) + ( j − l ) 2 D_e(a, b)=\sqrt{\left((i-k)^2\right)+(j-l)^2} De(a,b)=((ik)2)+(jl)2

(2)城市街区距离 D 4 D_4 D4 距离描述的是只允许像素坐标系平面中横向和纵向的移动距离,4表示在这种定义下,像素点是 4 邻接的,即每个点只与它的上、下、左、右相邻的 4 个点之间的距离为 1。

D 4 ( a , b ) = ∣ i − k ∣ + ∣ j − l ∣ D_4(a, b)=|i-k|+|j-l| D4(a,b)=ik+jl

(3)棋盘距离 D 8 D_8 D8 如果允许在图像坐标系中像素点的对角线方向的移动,就可以得到棋盘距离,8 表示在这种定义下,像素点是 8 邻接的,即每个点只与它的上、下、左、右、四个对角线方向相邻的 8 个点之间的距离为 1。

D 8 ( a , b ) = max ⁡ { ∣ i − k ∣ , ∣ j − l ∣ } D_8(a, b)=\max \{|i-k|,|j-l|\} D8(a,b)=max{ik,jl}

  • 距离变换

距离变换也叫作距离函数或者斜切算法。它是距离概念的一个应用,图像处理的一些算法以距离变换为基础。距离变换描述的是图像中像素点与某个区域块的距离,区域块中的像素点值为 0,临近区域块的像素点有较小的值,离它越远值越大。

以二值图像为例,其中区域块内部的像素值为 1,其他像素值为 0。距离变换给出每个像素点到最近的区域块边界的距离,区域块内部的距离变换结果为0。输入图像如图 1 所示, D 4 D_4 D4 距离的距离变换结果如图 2 所示。

下面来讨论距离变换算法,其核心是利用两个小的局部掩膜遍历图像。第一遍利用掩模1,左上角开始,从左往右,从上往下。第二遍利用第二个掩模,右下角开始,从右往左,从下往上。掩模形状如下图所示:

按照某种距离(如: D 4 D_4 D4 距离或 D 8 D_8 D8 距离)对大小为 M × N M×N M×N 的图像中的区域块作距离变换,算法过程如下:

(1) 建立一个大小为 M × N M×N M×N 的数组 F F F,作如下的初始化:将区域块中的元素设置为 0,其余元素设置为无穷;

(2) 利用掩模1(mask1),左上角开始,从左往右,从上往下遍历数组,将掩模中P点对应的元素的值作如下更新:

F ( P ) = min ⁡ q ∈ mask1 ⁡ { F ( P ) , D ( P , q ) + F ( q ) } F(P)=\min _{q \in \operatorname{mask1}}\{F(P), D(P, q)+F(q)\} F(P)=qmask1min{F(P),D(P,q)+F(q)}

(3) 利用掩模2(mask2),右下角开始,从右往左,从下往上遍历数组,将掩模中P点对应的元素的值作如下更新:

F ( P ) = min ⁡ q ∈ mask2 ⁡ { F ( P ) , D ( P , q ) + F ( q ) } F(P)=\min _{q \in \operatorname{mask2}}\{F(P), D(P, q)+F(q)\} F(P)=qmask2min{F(P),D(P,q)+F(q)}

最终得到的更新后的数组即为距离变换的结果。

这个算法过程在图像的边界处需要做出调整,因为在边界处,掩模不能全部覆盖图像,这时可以将掩模中没有对应元素的位置的值当作 0 来处理,即maskSize=0

在 OpenCV 中,distanceTransform 函数是用于计算二进制图像中每个非零像素到最近零像素的距离的函数。这个函数通常用于图像处理中的形态学操作和特征提取。下面是 distanceTransform 函数的一般形式:

dist_transform = cv2.distanceTransform(src, distanceType, maskSize)

  • src: 是输入的二进制图像(该图像应该是一个 8 位单通道图像)。

  • distanceType: 是指定距离度量的类型。

  • maskSize: 是指定计算距离时使用的卷积核的大小。

# 分别利用欧式距离、D4 距离和 D8 距离作距离变换
transMatE = cv2.distanceTransform(mat, distanceType=cv2.DIST_L2, maskSize=0)  # 计算欧氏距离变换
transMatD4 = cv2.distanceTransform(mat, distanceType=cv2.DIST_L1, maskSize=0)  # 计算 D4 距离变换
transMatD8 = cv2.distanceTransform(mat, distanceType=cv2.DIST_C, maskSize=0)  # 计算 D8 距离变换
# 输出欧式、D4 和 D8 的距离矩阵
print("欧氏距离的变换矩阵:\n", transMatE)
print("城区距离-D4的变换矩阵:\n", transMatD4)
print("棋盘距离-D8的变换矩阵:\n", transMatD8)

四、将距离矩阵转换为可视化图片

因为经过距离矩阵变换之后,变换结果的数据类型为 float32(32 位浮点数),而在 OpenCV 中,采用 imshow 函数显示图像时需要使用 uint8 数据类型(8 位无符号整数),使得像素值的范围是从 0~255,可以表示灰度图像中的所有可能像素值。而 Matplotlib 可以直接处理 float32 类型的图像数据,因此并不需要将图像数据类型转换为 uint8 类型。

plt.figure(figsize=(15, 5))plt.subplot(1, 3, 1)
plt.imshow(transMatE, cmap='gray')
plt.title('欧氏距离', fontsize=16)
plt.colorbar(shrink=0.8)plt.subplot(1, 3, 2)
plt.imshow(transMatD4, cmap='gray')
plt.title('城区距离-D4', fontsize=16)
plt.colorbar(shrink=0.8)plt.subplot(1, 3, 3)
plt.imshow(transMatD8, cmap='gray')
plt.title('棋盘距离-D8', fontsize=16)
plt.colorbar(shrink=0.8)plt.tight_layout()
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/807664.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MicroPython with LVGL

官方博客:Micropython LittlevGL | LVGL’s Blog github:GitHub - lvgl/lv_micropython: Micropython bindings to LVGL for Embedded devices, Unix and JavaScript 官方在线模拟器:https://sim.lvgl.io/(需要电脑能访问外网才能使用) 电脑不能访问外网会出现以下错误&…

JVM内存区域

类加载 将class文件加载到方法区中 验证:验证待加载的class文件是否正确,比如验证文件的格式 准备:为static变量分配内存并赋零值 解析:将符号引用解析为直接引用 类加载器 双亲委派 总结就是,向上查找有没有加载过…

面试算法-170-二叉树的最大深度

题目 给定一个二叉树 root ,返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:3 解 class Solution {public int maxDepth(TreeNod…

参与 PenPad Season 2 获得勋章,还有海量 Scroll 生态稀缺权益

PenPad 是 Scroll 生态中的首个 LaunchPad 平台,该平台继承了 Scroll 生态的技术优势,具备包括隐私在内的系列特点,同时且也被认为是 Scroll 生态最重要的价值入口之一。Penpad 与 Scroll 官方始终保持着合作,同时该项目自启动以来…

车载摄像头图像及画质增强解决方案

车载摄像头作为汽车智能化、安全化的关键组件,其图像质量直接影响着驾驶者的视觉感知和行车安全。美摄科技凭借其在图像处理和AI算法领域的深厚积累,推出了一款专为车载摄像头打造的图像及画质增强解决方案,助力企业实现摄像头画面的实时优化…

PKI:构建数字安全基石的关键技术

在数字化时代,网络安全已成为我们日常生活和工作的重要组成部分。为了确保数据的完整性、机密性和身份的真实性,公钥基础设施(Public Key Infrastructure,简称PKI)技术应运而生,为构建数字安全基石提供了重…

C++11 设计模式0. 设计模式的基本概念,设计模式的准则,如何学习设计模式,24种设计模式的分为3大类

一 设计模式的基本概念: 模式:指事物的标准样式 或者 理解成 针对特定问题的可重用解决方案。 设计模式,是在特定问题发生时的可重用解决方案。 设计模式一般用于大型项目中。 大型项目中,设计模式保证所设计的模块之间代码的灵…

【软考---系统架构设计师】计算机网络章节

目录 一、TCP/IP协议族 (1)基本介绍 (2)TCP和UDP的区别 (3)DNS协议 (4)DHCP协议 二、网络规划与设计 (1)需求分析 (2)通信规范…

VUE3的有关知识

学习vue3的原因 在vue2当中的组件的实例,都是data一块,computed一块,当我们去找某一变量相关的则十分麻烦,vue3是组合式API,vue2是选项式, vue3的优点: 1)组合式更易维护 2)更快的速度 3)更小的体积 4)更好的响应式proxy 使用vue3相关脚手架创建项目 步骤: 1)node -v node版…

Linux查看系统配置信息的命令【lscpu】【free】【df】【uname】【lsblk】【top】

目录 1.查看CPU信息【lscpu】 2.查看内存信息【free】 3.查看文件系统信息【df】 4.查看系统信息【uname】 知识扩展:Red Hat Enterprise Linux 和 Debian GNU/Linux 两者的发展介绍 知识扩展:Centos 和 ubuntu的区别 知识扩展:更多 …

【简单讲解下Tauri】

🌈个人主页:程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…

“JavaScript数组:使用与实践“

目录 引言 1. 数组简介 2. 数组方法API 添加和删除元素 修改和访问元素 数组遍历 数组转换和连接 数组排序和搜索 其他常用方法 3. 数组属性 4. 实现数组API 实现添加和删除元素的方法 实现修改和访问元素的方法 实现数组遍历的方法 实现数组转换和连接的方法 …

【Python】FANUC机器人OPC UA通信并记录数据

目录 引言机器人仿真环境准备代码实现1. 导入库2. 设置参数3. 日志配置4. OPC UA通信5. 备份旧CSV文件6. 主函数 总结 引言 OPC UA(Open Platform Communications Unified Architecture)是一种跨平台的、开放的数据交换标准,常用于工业自动化…

从挑战到机遇:HubSpot如何帮助企业化解出海过程中的难题

企业出海挑战与对策 随着全球化的加速推进,越来越多的企业开始将目光投向海外市场,以寻求更广阔的发展空间。然而,在出海的过程中,企业往往面临着诸多挑战,其中文化差异、法律限制等问题尤为突出。今天运营坛将对这些…

创意解决方案:如何将作品集视频集中于一个二维码或链接中?

引言:随着面试环节的进一步数字化,展示自己的作品集成为了求职过程中的重要一环。但除了使用传统的方式,如百度网盘或直接发送多个视频链接,有没有更便捷的方法将作品集的多个视频放在一个链接中呢? 本文将介绍一种创意解决方案…

RocketMQ 之 IoT 消息解析:物联网需要什么样的消息技术?

作者:林清山(隆基) 前言: 从初代开源消息队列崛起,到 PC 互联网、移动互联网爆发式发展,再到如今 IoT、云计算、云原生引领了新的技术趋势,消息中间件的发展已经走过了 30 多个年头。 目前&a…

数据库被rmallox勒索病毒加密,如何还原?

近年来,网络安全问题日益严峻,勒索病毒作为其中的一种恶意软件,已成为网络安全领域的一大难题。其中,rmallox勒索病毒以其高度的隐蔽性和破坏性,给不少企业和个人带来了严重损失。本文将从rmallox勒索病毒的特点、传播…

一个简单的UI自动化框架应用介绍

项目框架介绍 该数据自动校验小程序采用POM模型,基于Javaseleniumtestngextentsreportexcel POI开发。 框架核心功能 基于PMO模型将页面封装成java对象,并通过selenuim驱动浏览器进行操作。通过excel POI对excel文件进行操作,通过对比导出…

通过网络api获取日期对应的节假日信息

网络接口获取链接&#xff1a;免费节假日API_原百度节假日API HolidayJudge.h #pragma once#include <QtWidgets/QWidget> #include "ui_HolidayJudge.h"enum DATESTATE {WORK0,//工作日DAYOFF,//休息日HOLIDAY//节假日 };class HolidayJudge : public QWidg…

Linux之线程互斥与同步

1.线程互斥相关概念 临界资源&#xff1a;多线程执行流共享的资源就叫做临界资源 。 临界区&#xff1a;每个线程内部&#xff0c;访问临界自娱的代码&#xff0c;就叫做临界区。 互斥&#xff1a;任何时刻&#xff0c;互斥保证有且只有一个执行流进入临界区&#xff0c;访问临…