家里有一条狗🐶,很喜欢乘人不备睡沙发🛋️,恰好最近刚搬家 + 狗迎来了掉毛期 不想让沙发上很多毛。所以希望能识别到狗,然后播放“gun 下去”的音频📣。
需求分析
-
需要一个摄像头📷
-
利用 chrome 浏览器可以调用手机摄像头,获取权限,然后利用 video 将摄像头的内容绘制到 video 上。
-
-
通过摄像头实时识别画面中的狗🐶
-
利用 tensorflow 和预训练的 COCO-SSD MobileNet V2 模型进行对象检测。
-
将摄像头的视频流转化成视频帧图像传给模型进行识别
-
-
录制一个音频
-
识别到目标(狗)后播放音频📣
-
-
需要部署在一个设备上
-
找一个不用的旧手机📱,Android 系统
-
安装 termux 来实现开启本地 http 服务🌐
-
技术要点
-
利用浏览器 API 调用手机摄像头,将视频流推给 video
const stream = await navigator.mediaDevices.getUserMedia({// video: { facingMode: "environment" }, // 摄像头后置video: { facingMode: "user" },});const videoElement = document.getElementById("camera-stream");videoElement.srcObject = stream;
2.加载模型,实现识别
let dogDetector;async function loadDogDetector() {// 加载预训练的SSD MobileNet V2模型const model = await cocoSsd.load();dogDetector = model; // 将加载好的模型赋值给dogDetector变量}
3.监听 video 的播放,将视频流转换成图像传入模型检测
videoElement.addEventListener("play", async () => {requestAnimationFrame(processVideoFrame);});async function processVideoFrame() {if (!videoElement.paused && !videoElement.ended) {canvas.width = videoElement.videoWidth;canvas.height = videoElement.videoHeight;ctx.drawImage(videoElement, 0, 0, canvas.width, canvas.height);// 获取当前帧图像数据const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);// 对帧执行预测let predictionClasses = "";const predictions = await dogDetector.detect(imageData);// 处理预测结果,比如检查是否有狗被检测到for (const prediction of predictions) {predictionClasses += `${prediction.class}\n`; // 组装识别的物体名称if (prediction.class === "dog") {// 播放声音playDogBarkSound();}}nameContainer.innerText = predictionClasses.trim(); // 移除末尾的换行符requestAnimationFrame(processVideoFrame);}}
4. 播放音频
async function playDogBarkSound() {if (playing) return;playing = true;const audio = new Audio(dogBarkSound);audio.addEventListener("ended", () => {playing = false;});audio.volume = 0.5; // 调整音量大小await audio.play();}
-
手机开启本地 http 服务
-
安装 termux
-
安装 python3
-
运行 python3 -m http.server 8000
-
-
将项目上传到 termux 的目录
-
直接用 termux 打开文件
-
访问 http://localhost:8000
-
项目代码(改为 html 文件后)
<!DOCTYPE html>
<html lang="en"><head><meta charset="UTF-8" /><meta name="viewport" content="width=device-width, initial-scale=1.0" /><title>Mobile Dog Detector</title><script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@4.17.0/dist/tf.min.js"></script><script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/coco-ssd@2.2.3/dist/coco-ssd.min.js"></script><style>#camera-stream {width: 200px;height: auto;}#name {height: 200px;overflow-y: auto;font-family: Arial, sans-serif;}</style></head><body><video id="camera-stream" autoplay playsinline></video><div id="name" style="height: 200px"></div><script>let playing = false;let dogDetector;async function loadDogDetector() {// 加载预训练的SSD MobileNet V2模型const model = await cocoSsd.load();dogDetector = model; // 将加载好的模型赋值给dogDetector变量console.log("dogDetector", dogDetector);startCamera();}// 调用函数加载模型loadDogDetector();async function startCamera() {const stream = await navigator.mediaDevices.getUserMedia({// video: { facingMode: "environment" }, // 摄像头后置video: { facingMode: "user" },});const nameContainer = document.getElementById("name");const videoElement = document.getElementById("camera-stream");videoElement.srcObject = stream;const canvas = document.createElement("canvas");const ctx = canvas.getContext("2d");videoElement.addEventListener("play", async () => {requestAnimationFrame(processVideoFrame);});async function processVideoFrame() {if (!videoElement.paused && !videoElement.ended) {canvas.width = videoElement.videoWidth;canvas.height = videoElement.videoHeight;ctx.drawImage(videoElement, 0, 0, canvas.width, canvas.height);const imageData = ctx.getImageData(0,0,canvas.width,canvas.height);let predictionClasses = "";const predictions = await dogDetector.detect(imageData);for (const prediction of predictions) {predictionClasses += `${prediction.class}\n`;if (prediction.class === "dog") {// 修改为检测到狗时播放声音playDogBarkSound();}}nameContainer.innerText = predictionClasses.trim();requestAnimationFrame(processVideoFrame);}}async function playDogBarkSound() {if (playing) return;playing = true;const audio = new Audio("./getout.mp3");audio.addEventListener("ended", () => {playing = false;});audio.volume = 0.5; // 调整音量大小await audio.play();}}</script></body>
</html>
实现效果
效果很好👍,用旧手机开启摄像头后,检测到狗就播放声音了。
实现总结
该方案通过以下步骤实现了一个基于网页的实时物体检测系统,专门用于识别画面中的狗并播放特定音频以驱赶它离开沙发。具体实现过程包括以下几个核心部分:
-
调用摄像头:
使用浏览器提供的 navigator.mediaDevices.getUserMedia API 获取用户授权后调用手机摄像头,并将视频流设置给 video 元素展示。
-
加载物体检测模型:
使用 TensorFlow.js 和预训练的 COCO-SSD MobileNet V2 模型进行对象检测,加载模型后赋值给 dogDetector 变量。处理视频流与图像识别:
监听 video 元素的播放事件,通过 requestAnimationFrame 循环逐帧处理视频。将当前视频帧绘制到 canvas 上,然后从 canvas 中提取图像数据传入模型进行预测。在模型返回的预测结果中,如果检测到“dog”,则触发播放音频函数。
-
播放音频反馈:
定义一个异步函数 playDogBarkSound 来播放指定的音频文件,确保音频只在前一次播放结束后才开始新的播放。
-
部署环境准备:
使用旧 Android 手机安装 Termux,创建本地 HTTP 服务器运行项目代码。上传项目文件至 Termux 目录下并通过访问 localhost:8000 启动应用。
通过以上技术整合,最终实现了在旧手机上部署一个能够实时检测画面中狗的网页应用,并在检测到狗时播放指定音频。