文章目录
- 二叉树的遍历方式
- 深度优先遍历
- 广度优先遍历
- 二叉树属性(一般后序遍历求解)
- 深度问题
- 节点个数问题
- 其他问题
- 二叉树的修改与构造(一般前序遍历求解)
- 构造二叉树
- 二叉树与回溯
- 二叉搜索树的属性(一般中序遍历)
- 二叉树公共祖先问题
- 二叉搜索树的修改与构造(前序)
- 总结
二叉树的遍历方式
深度优先遍历
力扣相关题目:
144.二叉树的前序遍历
145.二叉树的后序遍历
94.二叉树的中序遍历
递归遍历(Java代码):
// 前序遍历·递归·LC144_二叉树的前序遍历
class Solution {public List<Integer> preorderTraversal(TreeNode root) {List<Integer> result = new ArrayList<Integer>();preorder(root, result);return result;}public void preorder(TreeNode root, List<Integer> result) {if (root == null) {return;}result.add(root.val);preorder(root.left, result);preorder(root.right, result);}
}
// 中序遍历·递归·LC94_二叉树的中序遍历
class Solution {public List<Integer> inorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();inorder(root, res);return res;}void inorder(TreeNode root, List<Integer> list) {if (root == null) {return;}inorder(root.left, list);list.add(root.val); // 注意这一句inorder(root.right, list);}
}
// 后序遍历·递归·LC145_二叉树的后序遍历
class Solution {public List<Integer> postorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();postorder(root, res);return res;}void postorder(TreeNode root, List<Integer> list) {if (root == null) {return;}postorder(root.left, list);postorder(root.right, list);list.add(root.val); // 注意这一句}
}
迭代遍历(Java代码统一):
class Solution {// 前序遍历·迭代·LC144_二叉树的前序遍历public List<Integer> preorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();Stack<TreeNode> stack = new Stack<>();if (root != null) stack.push(root);while(!stack.empty()){TreeNode node = stack.peek();if (node != null){stack.pop();if (node.right != null) stack.push(node.right);if (node.left != null) stack.push(node.left);// 待处理节点stack.push(node);stack.push(null);}else{// 在这里处理stack.pop();node = stack.peek();stack.pop();res.add(node.val);}}return res;}// 中序遍历·迭代·LC94_二叉树的中序遍历public List<Integer> inorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();Stack<TreeNode> stack = new Stack<>();if (root != null) stack.push(root);while(!stack.empty()){TreeNode node = stack.peek();if (node != null){stack.pop();if (node.right != null) stack.push(node.right);// 待处理节点stack.push(node);stack.push(null);if (node.left != null) stack.push(node.left);}else{stack.pop();node = stack.peek();stack.pop();res.add(node.val);}}return res;}// 后序遍历·迭代·LC145_二叉树的后序遍历public List<Integer> postorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();Stack<TreeNode> stack = new Stack<>();if (root != null) stack.push(root);while(!stack.empty()){TreeNode node = stack.peek();if (node != null){stack.pop();// 待处理节点stack.push(node);stack.push(null);if (node.right != null) stack.push(node.right);if (node.left != null) stack.push(node.left);}else{stack.pop();node = stack.peek();stack.pop();res.add(node.val);}}return res;}
}
广度优先遍历
力扣相关题目:
102.二叉树的层序遍历
199.二叉树的右视图
429.N叉树的层序遍历
java代码:
class Solution {public List<List<Integer>> res = new ArrayList<>();// 递归法public void level1(TreeNode node, int level){if (node == null) return;level++;if (res.size() < level){List<Integer> item = new ArrayList<>();res.add(item);}res.get(level - 1).add(node.val);level1(node.left,level);level1(node.right,level);}// 迭代法public void level2(TreeNode node){if (node == null) return;Queue<TreeNode> q = new LinkedList<>();q.offer(node);while(!q.isEmpty()){List<Integer> item = new ArrayList<>();int n = q.size();while(n > 0){TreeNode tmp = q.poll();item.add(tmp.val);if (tmp.left != null) q.offer(tmp.left);if (tmp.right != null) q.offer(tmp.right);n --;}res.add(item);}}// 102.二叉树的层序遍历public List<List<Integer>> levelOrder(TreeNode root) {// level2(root);level1(root,0);return res;}// 199.二叉树的右视图public List<Integer> rightSideView(TreeNode root) {List<Integer> res = new ArrayList<>();Queue<TreeNode> pq = new LinkedList<>();if (root == null) return res;pq.offer(root);while(! pq.isEmpty()){int n = pq.size();for (int i = 0; i < n; i ++){TreeNode tmp = pq.poll();if (i == n - 1) res.add(tmp.val);if (tmp.left != null) pq.offer(tmp.left);if (tmp.right != null) pq.offer(tmp.right);}}return res;}// 429.N叉树的层序遍历public List<List<Integer>> levelOrder(Node root) {List<List<Integer>> list = new ArrayList<>();Deque<Node> que = new LinkedList<>();if (root == null) {return list;}que.offerLast(root);while (!que.isEmpty()) {int levelSize = que.size();List<Integer> levelList = new ArrayList<>();for (int i = 0; i < levelSize; i++) {Node poll = que.pollFirst();levelList.add(poll.val);List<Node> children = poll.children;if (children == null || children.size() == 0) {continue;}for (Node child : children) {if (child != null) {que.offerLast(child);}}}list.add(levelList);}return list;}class Node {public int val;public List<Node> children;public Node() {}public Node(int _val) {val = _val;}public Node(int _val, List<Node> _children) {val = _val;children = _children;}}
}
二叉树属性(一般后序遍历求解)
深度问题
力扣相关题目:
104.二叉树的最大深度
111.二叉树的最小深度
110.平衡二叉树
513.找树左下角的值
java代码:
class Solution {// 104.二叉树的最大深度// 采用后序遍历回溯public int maxDepth(TreeNode root) {// 终止条件if (root == null) {return 0;}// 遍历左节点int leftDepth = maxDepth(root.left);// 遍历右节点int rightDepth = maxDepth(root.right);// 处理逻辑return Math.max(leftDepth, rightDepth) + 1;}// 111.二叉树的最小深度// 最小深度:从根节点到最近叶子节点的最短路径上的节点数量。注意是叶子节点。// 所以,如果左子树为空,右子树不为空,说明最小深度是 1 + 右子树的深度// 反之,右子树为空,左子树不为空,最小深度是 1 + 左子树的深度。 最后如果左右子树都不为空,返回左右子树深度最小值 + 1 。public int minDepth(TreeNode root) {if (root == null) return 0;int left = minDepth(root.left);int right = minDepth(root.right);if (root.left == null && root.right != null) return 1 + right;if (root.left != null && root.right == null) return 1 + left;return 1 + Math.min(left,right);}// 110.平衡二叉树// 一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1// public int getHeight(TreeNode root){if (root == null) return 0;int leftheight = getHeight(root.left); // 左if (leftheight == -1) return -1;int rightheight = getHeight(root.right); // 右if (rightheight == -1) return -1;// 如果左右子树高度差大于1,则赋值-1if (Math.abs(leftheight - rightheight) > 1){return -1;} // 如果不是,则返回以当前节点为根节点的树的最大高度return Math.max(leftheight,rightheight) + 1;}public boolean isBalanced(TreeNode root) {return getHeight(root) != -1;}// 513.找树左下角的值// 转化为求解二叉树深度问题,用到前序遍历int Depth = -1;int value = 0;public void findLeftvalue(TreeNode root, int depth){if (root == null) return;// 找到叶子节点// 前序遍历保证优先左边搜索if (root.left == null && root.right == null){if (depth > Depth){value = root.val;Depth = depth;}}if (root.left != null) findLeftvalue(root.left, depth + 1);if (root.right != null) findLeftvalue(root.right, depth + 1); }public int findBottomLeftValue(TreeNode root) {value = root.val;findLeftvalue(root,0);return value;}
}
节点个数问题
力扣相关题目:
222.完全二叉树的节点个数
java代码:
class Solution {// 222.完全二叉树的节点个数// 完全二叉树:除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。// 若最底层为第 h 层,则该层包含1~ 2^(h-1) 个节点// 完全二叉树只有两种情况,情况一:就是满二叉树,情况二:最后一层叶子节点没有满// 对于情况一,可以直接用 2^树深度 - 1 来计算,注意这里根节点深度为1// 对于情况二,分别递归左孩子,和右孩子,递归到某一深度一定会有左孩子或者右孩子为满二叉树,然后依然可以按照情况1来计算。// 如何判断满二叉树?// 在完全二叉树中,如果递归向左遍历的深度等于递归向右遍历的深度,那说明就是满二叉树// 在完全二叉树中,如果递归向左遍历的深度不等于递归向右遍历的深度,则说明不是满二叉树public int countNodes(TreeNode root) {if (root == null) return 0;// 终止条件写法// 开始根据左深度和右深度是否相同来判断该子树是不是满二叉树TreeNode l = root.left;TreeNode r = root.right;int lcount = 0, rcount = 0;while(l != null){lcount ++; // 求左子树深度l = l.left;}while(r != null){rcount ++; // 求右子树深度r = r.right;}if (lcount == rcount){return (2 << lcount) - 1;}// 后序遍历return countNodes(root.left) + countNodes(root.right) + 1;}}
其他问题
力扣相关题目:
101. 对称二叉树
404.左叶子之和
java代码:
class Solution {// 101. 对称二叉树public boolean isSymmetric(TreeNode l, TreeNode r){// 首先排除空节点的情况if (l == null && r == null) return true;else if (l != null && r == null) return false;else if (l == null && r != null) return false;// 排除了空节点,再排除数值不相同的情况else if (l.val != r.val) return false;// 后序遍历return isSymmetric(l.left,r.right) && isSymmetric(l.right, r.left);}public boolean isSymmetric(TreeNode root) {if (root == null) return false;return isSymmetric(root.left, root.right);}// 404.左叶子之和public int sumOfLeftLeaves(TreeNode root) {if (root == null) return 0;int sum = 0;int left = sumOfLeftLeaves(root.left);int right = sumOfLeftLeaves(root.right);int mid = 0;if (root.left != null && root.left.left == null && root.left.right == null){mid = root.left.val;}sum = mid + left + right;return sum;}}
二叉树的修改与构造(一般前序遍历求解)
力扣相关题目:
226.翻转二叉树
654.最大二叉树
617.合并二叉树
java代码:
class Solution {// 226.翻转二叉树public TreeNode invertTree(TreeNode root) {if (root == null) return null;// 执行操作TreeNode tmp = root.left;root.left = root.right;root.right = tmp;invertTree(root.left); // 左invertTree(root.right); // 右return root;}// 654.最大二叉树public TreeNode constructMaximumBinaryTree(int[] nums, int start, int end){if (end - start < 1) return null;if (end - start == 1) return new TreeNode(nums[start]);// 最大值所在位置int maxValue = nums[start];int maxID = start;for (int i = start; i < end; i ++){if (nums[i] > maxValue){maxValue = nums[i];maxID = i;}}TreeNode root = new TreeNode(maxValue);// 根据maxIndex划分左右子树root.left = constructMaximumBinaryTree(nums,start,maxID);root.right = constructMaximumBinaryTree(nums,maxID + 1, end);return root;}// 617.合并二叉树public TreeNode constructMaximumBinaryTree(int[] nums) {return constructMaximumBinaryTree(nums,0,nums.length);}public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {if (root1 == null) return root2; // 如果root1为空,合并之后就应该是root2if (root2 == null) return root1;// 以root1为基础root1.val += root2.val;root1.left = mergeTrees(root1.left,root2.left);root1.right = mergeTrees(root1.right,root2.right);return root1;}
}
构造二叉树
力扣相关题目:
106.从中序与后序遍历序列构造二叉树
105.从前序与中序遍历序列构造二叉树
java代码:
class Solution {// 106.从中序与后序遍历序列构造二叉树Map<Integer,Integer> map;public TreeNode findNode(int[] inorder, int inBegin, int inEnd, int[] postorder, int postBegin, int postEnd){if (inBegin >= inEnd || postBegin >= postEnd) return null;int rootIndex = map.get(postorder[postEnd - 1]);int leftLen = rootIndex - inBegin;TreeNode root = new TreeNode(postorder[postEnd - 1]);root.left = findNode(inorder,inBegin,rootIndex,postorder,postBegin,postBegin + leftLen);root.right = findNode(inorder, rootIndex + 1, inEnd, postorder, postBegin + leftLen, postEnd - 1);return root;}public TreeNode buildTree(int[] inorder, int[] postorder) {map = new HashMap<Integer,Integer> ();for (int i = 0; i < inorder.length; i ++){map.put(inorder[i],i);}return findNode(inorder,0,inorder.length, postorder, 0, postorder.length);}// 105.从前序与中序遍历序列构造二叉树public Map<Integer,Integer> map;public TreeNode findNode(int[] preorder, int preBegin, int preEnd, int[] inorder, int inBegin, int inEnd){if (preBegin >= preEnd || inBegin >= inEnd) return null;int rootIndex = map.get(preorder[preBegin]);int leftLen = rootIndex - inBegin;TreeNode root = new TreeNode(inorder[rootIndex]);root.left = findNode(preorder,preBegin + 1, preBegin + 1 + leftLen, inorder, inBegin, rootIndex);root.right = findNode(preorder, preBegin + 1 + leftLen, preEnd, inorder, rootIndex + 1,inEnd);return root;}public TreeNode buildTree(int[] preorder, int[] inorder) {map = new HashMap<>();for (int i = 0; i < inorder.length; i ++){map.put(inorder[i],i);}return findNode(preorder, 0, preorder.length, inorder,0,inorder.length);}
}
二叉树与回溯
力扣相关题目:
257. 二叉树的所有路径
112. 路径总和
113.路径总和ii
java代码:
class Solution {// 257. 二叉树的所有路径// 前序遍历// 如果需要搜索整棵二叉树且不用处理递归返回值,递归函数就不要返回值public void traveral(TreeNode root, List<Integer> path, List<String> res){path.add(root.val);if (root.left == null && root.right == null){StringBuffer sb = new StringBuffer();for (int i = 0; i < path.size() - 1; i ++){sb.append(path.get(i));sb.append("->");}sb.append(path.get(path.size() - 1));res.add(sb.toString());return;}if (root.left != null){traveral(root.left,path,res);path.remove(path.size() - 1);}if (root.right != null){traveral(root.right,path,res);path.remove(path.size() - 1);}}public List<String> binaryTreePaths(TreeNode root) {List<String> res = new ArrayList<>();List<Integer> path = new ArrayList<>();if (root == null) return res;traveral(root,path,res);return res;}// 112. 路径总和// 如果要搜索其中一条符合条件的路径,那么递归一定需要返回值,因为遇到符合条件的路径了就要及时返回public boolean traveral(TreeNode root, int count){if(root.left == null && root.right == null && count == 0) return true;if(root.left == null && root.right == null) return false;if (root.left != null){count -= root.left.val;if (traveral(root.left,count)) return true;count += root.left.val;}if (root.right != null){count -= root.right.val;if (traveral(root.right,count)) return true;count += root.right.val;}return false;}public boolean hasPathSum(TreeNode root, int targetSum) {if (root == null) return false;return traveral(root,targetSum - root.val);}// 113.路径总和ii// 如果需要搜索整棵二叉树且不用处理递归返回值,递归函数就不要返回值public void traversal(TreeNode root, int targetSum, List<Integer> path, List<List<Integer>> res){path.add(root.val);if (root.left == null && root.right == null){if (targetSum - root.val == 0) res.add(new ArrayList<>(path));else return;}if (root.left != null){traversal(root.left,targetSum - root.val,path,res);path.remove(path.size() - 1);}if (root.right != null){traversal(root.right,targetSum - root.val,path,res);path.remove(path.size() - 1);}}public List<List<Integer>> pathSum(TreeNode root, int targetSum) {List<List<Integer>> res = new ArrayList<>();if (root == null) return res;List<Integer> path = new ArrayList<>();traversal(root,targetSum,path,res);return res;}}
二叉搜索树的属性(一般中序遍历)
力扣相关题目:
700.二叉搜索树中的搜索
98.验证二叉搜索树
530.二叉搜索树的最小绝对差
501.二叉搜索树中的众数
538.把二叉搜索树转换为累加树
java代码:
class Solution {// 700.二叉搜索树中的搜索public TreeNode searchBST(TreeNode root, int val) {if (root == null) return null;if (root.val == val) return root;if (val < root.val) return searchBST(root.left,val);if (val > root.val) return searchBST(root.right,val);return null;}// 98.验证二叉搜索树TreeNode max; // 用于标记上一遍历的节点public boolean isValidBST(TreeNode root) {if (root == null) return true;boolean left = isValidBST(root.left);if (!left) return false;// 处理逻辑if (max != null && root.val <= max.val) {return false;}max = root;boolean right = isValidBST(root.right);return right;}// 530.二叉搜索树的最小绝对差int result = Integer.MAX_VALUE;TreeNode pre;public void traversal(TreeNode root){if (root == null) return;traversal(root.left);if (pre != null){result = Math.min(result, root.val - pre.val);}pre = root;traversal(root.right);}public int getMinimumDifference(TreeNode root) {if (root == null) return 0;traversal(root);return result;}// 501.二叉搜索树中的众数List<Integer> ans;int maxCount;int count;TreeNode pre;public void traversal(TreeNode root){if (root == null) return;traversal(root.left);if (pre == null || pre.val != root.val){count = 1;}else{count ++;}if (count > maxCount){ans.clear();ans.add(root.val);maxCount = count;}else if (count == maxCount){ans.add(root.val);}pre = root;traversal(root.right);}public int[] findMode(TreeNode root) {ans = new ArrayList<>();maxCount = 0;count = 0;pre = null;traversal(root);int[] res = new int[ans.size()];for (int i = 0; i < ans.size(); i ++){res[i] = ans.get(i);}return res;}// 538.把二叉搜索树转换为累加树// 反中序遍历进行累加int sum;public void traversal(TreeNode root){if (root == null) return;traversal(root.right);sum += root.val;root.val = sum;traversal(root.left);}public TreeNode convertBST(TreeNode root) {sum = 0;traversal(root);return root;}}
二叉树公共祖先问题
力扣相关题目:
236. 二叉树的最近公共祖先
235. 二叉搜索树的最近公共祖先
java代码:
class Solution {// 搜索一条边:遇到递归函数的返回值,如果不为空,立刻返回// 236. 二叉树的最近公共祖先public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {if (root == null || root == p || root == q) return root;TreeNode left = lowestCommonAncestor(root.left,p,q);TreeNode right = lowestCommonAncestor(root.right,p,q);// 如果left 和 right都不为空,说明此时root就是最近公共节点// 如果left为空,right不为空,就返回right,说明目标节点是通过right返回的if (left == null && right == null) return null;if (left == null && right != null) return right;if (left != null && right == null) return left;return root;}// 235. 二叉搜索树的最近公共祖先public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {if (root == null) return root;if (root.val > p.val && root.val > q.val){TreeNode left = lowestCommonAncestor(root.left,p,q);if (left != null) return left;}// 如果 cur->val 小于 p->val,同时 cur->val 小于 q->val,那么就应该向右遍历if (root.val < p.val && root.val < q.val){TreeNode right = lowestCommonAncestor(root.right,p,q);if (right != null) return right;}return root;} }
二叉搜索树的修改与构造(前序)
力扣相关题目:
701.二叉搜索树中的插入操作
450.删除二叉搜索树中的节点
669. 修剪二叉搜索树
108.将有序数组转换为二叉搜索树
java代码:
class Solution {// 701.二叉搜索树中的插入操作public TreeNode insertIntoBST(TreeNode root, int val) {// 终止条件就是找到遍历的节点为null的时候,就是要插入节点的位置了,并把插入的节点返回if (root == null) return new TreeNode(val);if (root.val > val) root.left = insertIntoBST(root.left,val);if (root.val < val) root.right = insertIntoBST(root.right,val);return root;}// 450.删除二叉搜索树中的节点public TreeNode deleteNode(TreeNode root, int key) {if (root == null) return root;if (root.val == key){// 1.左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点// 2.删除节点的左孩子为空,右孩子不为空,删除节点,右孩子补位,返回右孩子为根节点// 3.删除节点的右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点// 4.左右孩子节点都不为空,则将删除节点的左子树头结点(左孩子)放到删除节点的右子树的最左面节点的左孩子上,返回删除节点右孩子为新的根节点if (root.left == null) return root.right;else if (root.right == null) return root.left;else{TreeNode curr = root.right;while(curr.left != null){curr = curr.left;}curr.left = root.left;root = root.right;return root;}}if (root.val > key) root.left = deleteNode(root.left,key);if (root.val < key) root.right = deleteNode(root.right,key);return root;}// 669. 修剪二叉搜索树public TreeNode trimBST(TreeNode root, int low, int high) {if (root == null) return root;// 如果root(当前节点)的元素小于low的数值,那么应该递归右子树,并返回右子树符合条件的头结点if (root.val < low) return trimBST(root.right,low,high);// 如果root(当前节点)的元素大于high的,那么应该递归左子树,并返回左子树符合条件的头结点if (root.val > high) return trimBST(root.left,low,high);// 接下来要将下一层处理完左子树的结果赋给root->left,处理完右子树的结果赋给root->rightroot.left = trimBST(root.left,low,high);root.right = trimBST(root.right,low,high);return root;}// 108.将有序数组转换为二叉搜索树// 以mid作为分割点,然后递归左区间和右区间public TreeNode sortedArrayToBST(int[] nums, int start, int end){if (start >= end) return null;if (end - start == 1) return new TreeNode(nums[start]);int mid = start + (end - start) / 2;TreeNode root = new TreeNode(nums[mid]);root.left = sortedArrayToBST(nums,start,mid);root.right = sortedArrayToBST(nums,mid + 1, end);return root;}public TreeNode sortedArrayToBST(int[] nums) {return sortedArrayToBST(nums,0,nums.length);}}
总结
- 涉及到二叉树的构造,无论普通二叉树还是二叉搜索树一定前序,都是先构造中节点
- 求普通二叉树的属性,一般是后序,一般要通过递归函数的返回值做计算
- 求二叉搜索树的属性,一定是中序了,要不白瞎了有序性了。(可以用一个变量存放前一节点状态)