opencv dnn模块 示例(16) 目标检测 object_detection 之 yolov4

博客【opencv dnn模块 示例(3) 目标检测 object_detection (2) YOLO object detection】 测试了yolov3 及之前系列的模型,有在博客【opencv dnn模块 示例(15) opencv4.2版本dnn支持cuda加速(vs2015异常解决)】 说明了如何使用dnn模块进行cuda加速推理。
本文说明yolo v4的网络改进和测试情况。

文章目录

  • 1、前言
  • 2、Yolo v4
    • 2.1、网络结构
      • 2.1.1、跨阶段部分网络(Cross Stage Partial Networks,CSPNet)
      • 2.1.2、空间金字塔池化网络(Spatial Pyramid Pooling Network,SPPNet)
      • 2.1.3、空间注意力机制(Spatial Attention Module,SAM)
      • 2.1.4、路径聚合网络(Path Aggregation Network,PANet)
      • 2.1.5、Mish激活函数
    • 2.2、改进之处
      • 2.2.1、马赛克(Mosaic)数据增强 + CutMix数据增强
      • 2.2.2、自对抗训练(Self-Adversarial Training,SAT)
      • 2.2.3、改进的Dropout(DropBlock)
      • 2.2.4、标签平滑(Label Smoothing)
      • 2.2.5、CIoU Loss损失函数
      • 2.2.6、DIoU-NMS
  • 3、测试
    • 3.1、训练
    • 3.2、测试代码

1、前言

yolo v1~v3 的作者Joseph Redmon于2020年初宣布停止一切CV研究,原因是自己的开源算法已经用在军事和隐私问题上,对他的道德造成了巨大的考验。他的退出是学术界对于AI道德问题一记警钟。salute…

俄罗斯大神AlexAB作为YOLO系列的继任者,在Redmon宣发放弃更新Yolo后两个月,发布了YOLOv4。我们以前在windows上测试YOLO算法时,使用的就是AlexAB 的 darknet开源项目 版本。

首先回顾下Yolo v3网络,整个主干网络Backbone为Darkent53,包含53个卷积层(全连接fc层用于图像分类,这里已移除);输出head包含三个尺度,输入为608*608时,分别为19*19,38*38,76*76。

在这里插入图片描述

CBL 是Yolov3网络结构中的最小组件;
Res Unit 借鉴Resnet中残差结构,让网络构建更深;
ResX 是Yolov3的大组件,每个Res模块前CBL起到下采样过程,输入60*608的图像,经过5次Res模块后,得到的特征图是608->304->152->76->38->19。

Concat:张量拼接,会扩充两个张量的维度,例如26*26*256和26*26*512两个张量拼接,结果是26*26*768。Concat和cfg文件中的route功能一样。将大感受野的特征图进行上采样,得到于小感受野特征图相同的大小,进行维度拼接,达到多尺度特征融合的目的,从而加强小目标检测能力

add:张量相加,张量直接相加,不会扩充维度,例如104*104*128和104*104*128相加,结果还是104*104*128。add和cfg文件中的shortcut功能一样。

2、Yolo v4

核心思想
yolov4筛选了一些从yolov3发布至今,被用在各式各样检测器上,能够提高检测精度的tricks,并加以组合及适当创新的算法,实现了速度和精度的完美平衡。虽然有许多技巧可以提高卷积神经网络CNN的准确性,但是某些技巧仅适合在某些模型上运行,或者仅在某些问题上运行,或者仅在小型数据集上运行。

主要调优手段
加权残差连接(WRC)、跨阶段部分连接(CSP)、跨小批量标准化(CmBN)、自对抗训练(SAT)、Mish激活、马赛克数据增强、CmBN、DropBlock正则化、CIoU Loss等等。经过一系列的堆料,终于实现了目前最优的实验结果:43.5%的AP(在Tesla V100上,MS COCO数据集的实时速度约为 65FPS)。

2.1、网络结构

相较于Darknet53网络,YoloV4的骨干网络使用CSPDarknet53,如下图

在这里插入图片描述
主要区别:
(1)将原来的Darknet53与CSPNet进行结合,形成Backbone网络。
(2)采用SPPNet适应不同尺寸的输入图像大小,且可以增大感受野;
(3)采用SAM引入空间注意力机制;
(4)采用PANet充分利用了特征融合;
(5)激活函数由MIsh替换Leaky ReLU; 在yolov3中,每个卷积层之后包含一个批归一化层和一个Leaky ReLU。而在yolov4的主干网络CSPDarknet53中,使用Mish替换原来的Leak ReLU。

2.1.1、跨阶段部分网络(Cross Stage Partial Networks,CSPNet)

2019年提出用来解决网络优化中的重复梯度信息问题,在ImageNet dataset和MS COCO数据集上有很好的测试效果。且易于实现,在ResNet、ResNeXt和DenseNet网络结构上都能通用。

CSPNet结构实现更丰富的梯度组合,同时减少计算量:将基本层的特征图分成两部分:(1)主干部分继续堆叠原来的残差块;(2)、支路部分则相当于一个残差边,经过少量处理直接连接到最后。
在这里插入图片描述

2.1.2、空间金字塔池化网络(Spatial Pyramid Pooling Network,SPPNet)

yolov1背景:yolov1训练时的分辨率:224×224;测试时:448×448。
yolov2背景:yolov2保持yolov1的操作不变,但在原训练的基础上又加上了(10个epoch)的448×448高分辨率样本进行微调,使网络特征逐渐适应 448×448 的分辨率;然后再使用 448×448 的样本进行测试,缓解了分辨率突然切换造成的影响。

目的:使得网络模型的输入图像不再有固定尺寸的大小限制。通过最大池化将不同尺寸的输入图像变得尺寸一致。
优点:增大感受野。
如图是SPP中经典的空间金字塔池化层。

2.1.3、空间注意力机制(Spatial Attention Module,SAM)

yolov4采用改进的SAM方法:Channel attention module(CAM) -> SAM(Spatial Attention Module) -> CBAM(Convolutional Block AM) -> 改进的SAM

  • 特征图注意力机制(Channel Attention Module):在Channel维度上,对每一个特征图(channel)加一个权重,然后通过sigmoid得到对应的概率值,最后乘上输入图像,相当于对输入图像的特征图进行加权,即注意力。如:32×32×256,对256个通道进行加权。

  • 空间注意力机制(Spatial Attention Module):在Spatial维度上,对每一个空间位置(Spatial)加一个权重,然后通过sigmoid得到对应的概率值,最后乘上输入图像,相当于对输入图像的所有位置特征进行加权,即注意力。如:32×32×256,对任意空间位置进行

在这里插入图片描述
优化原因:
(1)由于CBAM计算比较复杂且耗时,而yolo的出发点是速度,故只计算空间位置的注意力机制。
(2)常规的SAM最大值池化层和平均池化层分别作用于输入的feature map,得到两组shape相同的feature map,再将结果输入到一个卷积层。 过程过于复杂,yolo采取直接卷积进行简化。

2.1.4、路径聚合网络(Path Aggregation Network,PANet)

背景: PANet发表于CVPR2018,其是COCO2017实例分割比赛的冠军,也是目标检测比赛的第二名。
具体方式: yolov4采用改进的PANet方法
优化历程: FPNet(Feature Pyramid Networks) -> PANet(Path Aggregation Network) -> 改进的PAN

优化原因:
(1)FPNet网络采取自上而下的方式,将高层特征逐层与中高层、中层、中底层、低层特征进行融合。缺点是无法自下而上融合,而PANet的优化了该部分不足,详见示意图的(b)部分。
(2)FANet采用特征相加的融合方式,而yolo采用特征拼接的融合方式。加法可以得到一个加强版的特征图,但特征权重不大于1,而拼接可能得到大于1的特征图。

在这里插入图片描述
(a)FPNet:通过 融合高层特征 来提升目标检测的效果。
(b)Bottom-up Path Augmentation:通过 融合低层特征(边缘形状等)来提升目标检测的效果。
(c)Adaptive Feature Pooling:采用 拼接特征融合。拼接相比加法,特征更明显,可以提高检测效果。
(d)Box branch:类别和定位分支。
(e)Fully-connected Fusion:用于分割中像素级的预测。

2.1.5、Mish激活函数

Mish在负值的时候并不是完全截断,允许比较小的负梯度流入。实验中,随着层深的增加,ReLU激活函数精度迅速下降,而Mish激活函数在训练稳定性、平均准确率(1%-2.8%)、峰值准确率(1.2% - 3.6%)等方面都有全面的提高。

2.2、改进之处

BackBone训练策略:数据增强、自对抗训练、DropBlock正则化、类标签平滑、CIoU损失函数、DIoU-NMS等。

2.2.1、马赛克(Mosaic)数据增强 + CutMix数据增强

最大特点:使得yolov4只通过单CPU就能完成训练,不用再担心设备问题。
具体方式:
11、采用常用的数据增强方法(如:亮度、饱和度、对比度;随机缩放、旋转、翻转等)对所有的图像进行数据增强;
22、采用CutMix数据增强方法。详细见下。
33、采取马赛克(Mosaic)数据增强方法,即随机取四张图像拼接为一张图像。
在这里插入图片描述

2.2.2、自对抗训练(Self-Adversarial Training,SAT)

在第一阶段:在原始图像的基础上,添加噪音并设置权重阈值,让神经网络对自身进行对抗性攻击训练。
在第二阶段:用正常的方法训练神经网络去检测目标。
备注:详细可参考对抗攻击的快速梯度符号法(FGSM)。

2.2.3、改进的Dropout(DropBlock)

之前的dropout是随机删除一些点,现在是整块删除。

b图:Dropout是随机删除一些神经元(如:a图的红点),但对于整张图来说,效果并不明显。比如:眼睛被删除,我们仍然可以通过眼睛的周边特征(眼角、眼圈等)去近似识别。
c图:DropBlock是随机删除一大块神经元。 如:将狗头的左耳全部删除。
在这里插入图片描述

2.2.4、标签平滑(Label Smoothing)

问题:标签绝对化:要么0要么1。该现象将导致神经网络在训练过程中,自我良好,从而过拟合。

具体方式:将绝对化标签进行平滑( 如:[0,0] ~ [0.05,0.95] ),即分类结果具有一定的模糊化,使得网络的抗过拟合能力增强。
在这里插入图片描述
使用前,分类结果相对不错,但各类别之间存在一定的误差;使用后,分类结果比较好,簇内距离变小,簇间距离变大。

2.2.5、CIoU Loss损失函数

效果:采用CIoU Loss损失函数,使得预测框回归的速度和精度更高一些。

loss优化历程:经典IOU损失 -> GIOU损失(Generalized IoU) -> DIOU损失(Distance IoU) -> CIOU损失。

Iou仅考虑有目标框有交集的重叠面积情况,GIou考虑边界框不重合的问题、可以在没有交集情况下继续训练,DIou在前面的基础上考虑了边界框的中心点的欧氏距离,CIou进一步考虑长宽比的尺度信息。

在这里插入图片描述

2.2.6、DIoU-NMS

在检测结果中,若存在多个检测框的IOU大于置信度阈值
(1)NMS非极大值抑制:只取IoU最大值对应的框。
(2)DIoU-NMS:只取公式计算得到的最大值对应的框。取最高置信度的IoU,并计算最高置信度候选框(M)与其余所有框(Bi)的中心点距离。优点:在有遮挡的情况下识别效果更好。
在这里插入图片描述
(3)SOFT-NMS:对于不满足要求,且与最大置信度对应的检测框高度重叠的检测框,不直接删除,而采取降低置信度的方式。优点:召回率更高
在这里插入图片描述

3、测试

yolov3 和 yolov4 使用相同代码即可测试。可以参看 【opencv dnn模块 示例(3) 目标检测 object_detection (2) YOLO object detection】。

项目介绍和下载地址 https://github.com/AlexeyAB/darknet#pre-trained-models

3.1、训练

yolo v4同样使用darknet框架,训练直接使用官方程序脚本(同yolov3)即可。

3.2、测试代码

#include <fstream>
#include <sstream>#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>using namespace cv;
using namespace dnn;float confThreshold, nmsThreshold;
std::vector<std::string> classes;void postprocess(Mat& frame, const std::vector<Mat>& out, Net& net);void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame);void callback(int pos, void* userdata);int main(int argc, char** argv)
{// 根据选择的检测模型文件进行配置 confThreshold = 0.5;nmsThreshold = 0.4;float scale = 0.00392;Scalar mean = {0,0,0};bool swapRB =  true;int inpWidth = 416;   // 416, 608 ...int inpHeight = 416;String modelPath =  "../../data/testdata/dnn/yolov4.weights";String configPath = "../../data/testdata/dnn/yolov4.cfg";String framework = "";//int backendId = cv::dnn::DNN_BACKEND_OPENCV;//int targetId = cv::dnn::DNN_TARGET_CPU;	int backendId = cv::dnn::DNN_BACKEND_CUDA;int targetId = cv::dnn::DNN_TARGET_CUDA;String classesFile = "../../data/dnn/object_detection_classes_yolov4.txt";// Open file with classes names.if (!classesFile.empty()) {const std::string& file = classesFile;std::ifstream ifs(file.c_str());if (!ifs.is_open())CV_Error(Error::StsError, "File " + file + " not found");std::string line;while (std::getline(ifs, line)) {classes.push_back(line);}}// Load a model.Net net = readNet(modelPath, configPath, framework);net.setPreferableBackend(backendId);net.setPreferableTarget(targetId);std::vector<String> outNames = net.getUnconnectedOutLayersNames();// Create a windowstatic const std::string kWinName = "Deep learning object detection in OpenCV";// Open a video file or an image file or a camera stream.VideoCapture cap;cap.open(0);// Process frames.Mat frame, blob;while (waitKey(1) < 0) {cap >> frame;if (frame.empty()) {waitKey();break;}// Create a 4D blob from a frame.Size inpSize(inpWidth > 0 ? inpWidth : frame.cols,inpHeight > 0 ? inpHeight : frame.rows);blobFromImage(frame, blob, scale, inpSize, mean, swapRB, false);// Run a model.net.setInput(blob);if (net.getLayer(0)->outputNameToIndex("im_info") != -1)  // Faster-RCNN or R-FCN{resize(frame, frame, inpSize);Mat imInfo = (Mat_<float>(1, 3) << inpSize.height, inpSize.width, 1.6f);net.setInput(imInfo, "im_info");}std::vector<Mat> outs;net.forward(outs, outNames);postprocess(frame, outs, net);// Put efficiency information.std::vector<double> layersTimes;double freq = getTickFrequency() / 1000;double t = net.getPerfProfile(layersTimes) / freq;std::string label = format("Inference time: %.2f ms", t);putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));imshow(kWinName, frame);}return 0;
}void postprocess(Mat& frame, const std::vector<Mat>& outs, Net& net)
{static std::vector<int> outLayers = net.getUnconnectedOutLayers();static std::string outLayerType = net.getLayer(outLayers[0])->type;std::vector<int> classIds;std::vector<float> confidences;std::vector<Rect> boxes;if (net.getLayer(0)->outputNameToIndex("im_info") != -1)  // Faster-RCNN or R-FCN{// Network produces output blob with a shape 1x1xNx7 where N is a number of// detections and an every detection is a vector of values// [batchId, classId, confidence, left, top, right, bottom]CV_Assert(outs.size() == 1);float* data = (float*)outs[0].data;for (size_t i = 0; i < outs[0].total(); i += 7) {float confidence = data[i + 2];if (confidence > confThreshold) {int left = (int)data[i + 3];int top = (int)data[i + 4];int right = (int)data[i + 5];int bottom = (int)data[i + 6];int width = right - left + 1;int height = bottom - top + 1;classIds.push_back((int)(data[i + 1]) - 1);  // Skip 0th background class id.boxes.push_back(Rect(left, top, width, height));confidences.push_back(confidence);}}}else if (outLayerType == "DetectionOutput") {// Network produces output blob with a shape 1x1xNx7 where N is a number of// detections and an every detection is a vector of values// [batchId, classId, confidence, left, top, right, bottom]CV_Assert(outs.size() == 1);float* data = (float*)outs[0].data;for (size_t i = 0; i < outs[0].total(); i += 7) {float confidence = data[i + 2];if (confidence > confThreshold) {int left = (int)(data[i + 3] * frame.cols);int top = (int)(data[i + 4] * frame.rows);int right = (int)(data[i + 5] * frame.cols);int bottom = (int)(data[i + 6] * frame.rows);int width = right - left + 1;int height = bottom - top + 1;classIds.push_back((int)(data[i + 1]) - 1);  // Skip 0th background class id.boxes.push_back(Rect(left, top, width, height));confidences.push_back(confidence);}}}else if (outLayerType == "Region") {for (size_t i = 0; i < outs.size(); ++i) {// Network produces output blob with a shape NxC where N is a number of// detected objects and C is a number of classes + 4 where the first 4// numbers are [center_x, center_y, width, height]float* data = (float*)outs[i].data;for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols) {Mat scores = outs[i].row(j).colRange(5, outs[i].cols);Point classIdPoint;double confidence;minMaxLoc(scores, 0, &confidence, 0, &classIdPoint);if (confidence > confThreshold) {int centerX = (int)(data[0] * frame.cols);int centerY = (int)(data[1] * frame.rows);int width = (int)(data[2] * frame.cols);int height = (int)(data[3] * frame.rows);int left = centerX - width / 2;int top = centerY - height / 2;classIds.push_back(classIdPoint.x);confidences.push_back((float)confidence);boxes.push_back(Rect(left, top, width, height));}}}}elseCV_Error(Error::StsNotImplemented, "Unknown output layer type: " + outLayerType);std::vector<int> indices;NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices);for (size_t i = 0; i < indices.size(); ++i) {int idx = indices[i];Rect box = boxes[idx];drawPred(classIds[idx], confidences[idx], box.x, box.y,box.x + box.width, box.y + box.height, frame);}
}void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame)
{rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 255, 0));std::string label = format("%.2f", conf);if (!classes.empty()) {CV_Assert(classId < (int)classes.size());label = classes[classId] + ": " + label;}int baseLine;Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);top = max(top, labelSize.height);rectangle(frame, Point(left, top - labelSize.height),Point(left + labelSize.width, top + baseLine), Scalar::all(255), FILLED);putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.5, Scalar());
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/80157.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

kafka 3.5 主题分区ISR伸缩源码

ISR(In-sync Replicas)&#xff1a;保持同步的副本 OSR(Outof-sync Replicas)&#xff1a;不同步的副本。最开始所有的副本都在ISR中&#xff0c;在kafka工作的过程中&#xff0c;如果某个副本同步速度慢于replica.lag.time.max.ms指定的阈值&#xff0c;则被踢出ISR存入OSR&am…

(1)输入输出函数:cin和cout(2)数学函数:sqrt、pow、sin、cos、tan等

输入输出函数&#xff1a;cin 和 cout 在C编程语言中&#xff0c;为了与用户进行交互和显示程序的结果&#xff0c;我们使用了两个非常重要的函数&#xff1a;cin 和 cout。这两个函数分别用于输入和输出。 cin是C中的标准输入流对象&#xff0c;它用于从键盘接收用户的输入。…

SQL12 高级操作符练习(2)

描述 题目&#xff1a;现在运营想要找到学校为北大或GPA在3.7以上(不包括3.7)的用户进行调研&#xff0c;请你取出相关数据&#xff08;使用OR实现&#xff09; 示例&#xff1a;user_profile iddevice_idgenderageuniversitygpa12138male21北京大学3.423214male复旦大学4.03…

六、不root不magisk不xposed lsposed frida原生修改定位

前言常用风控APP检测1.Aida64检测2.momo检测3.微霸检测4.cellular-z检测 厂商测试总结 前言 不root不戴面具 不xposed lsposed frida&#xff0c;不分身&#xff0c;不多开&#xff0c;最完美的原生修改定位。 常用风控APP检测 先看效果再说原理&#xff0c;先过一遍环境 1.Ai…

聚类分析 | MATLAB实现基于SOM自组织特征映射聚类可视化

聚类分析 | MATLAB实现基于SOM自组织特征映射聚类可视化 目录 聚类分析 | MATLAB实现基于SOM自组织特征映射聚类可视化效果一览基本介绍程序设计参考资料 效果一览 基本介绍 基于自组织特征映射聚类算法(SOM)的数据聚类可视化 可直接运行 注释清晰 Matlab语言 1.多特征输入&…

Python 可迭代对象、迭代器、生成器

可迭代对象 定义 在Python的任意对象中&#xff0c;只要它定义了可以返回一个迭代器的 __iter__ 魔法方法&#xff0c;或者定义了可以支持下标索引的 __getitem__ 方法&#xff0c;那么它就是一个可迭代对象&#xff0c;通俗的说就是可以通过 for 循环遍历了。Python 原生的列…

爬虫 — 正则案例

目录 一、需求二、页面分析三、代码实现 一、需求 目标网站&#xff1a;http://www.weather.com.cn/weather/101010700.shtml 需求&#xff1a;获取日期&#xff0c;天气&#xff0c;温度&#xff0c;风力数据 二、页面分析 1、确定 url&#xff0c;静态加载 url&#xff1a;ht…

Mybatis的mapper.xml批量插入、修改sql

今天要有个功能&#xff0c;要进行一批数据的插入和修改&#xff0c;为了不频繁调用数据库&#xff0c;所以想到了批量插入和修改&#xff0c;因为从毕业后&#xff0c;就没写过批量插入和批量修改&#xff0c;所以在这里记录一下&#xff0c;避免后续再遇到忘记怎么写了 批量…

【小记录】jupyter notebook新版本

手欠升级 &#x1f605;今天手贱&#xff0c;在anaconda navigator里面更新了最新版本的spyder&#xff0c;然后莫名奇妙地jupyter notebook就打不开了&#x1f605;&#xff0c;报错说缺少模块”ModuleNotFoundError: No module named jupyter_server.contents“&#xff0c;…

Python分享之对象的属性

Python一切皆对象(object)&#xff0c;每个对象都可能有多个属性(attribute)。Python的属性有一套统一的管理方案。 属性的__dict__系统 对象的属性可能来自于其类定义&#xff0c;叫做类属性(class attribute)。类属性可能来自类定义自身&#xff0c;也可能根据类定义继承来的…

docker挂载目录权限问题

虽然是root身份进入docker但是依然有些权限是没有的&#xff01; 一、docker权限参数 可以解决挂载目录操作权限低 使用–privilegedtrue和-u参数来给Docker容器授权 docker run -it --privilegedtrue -uroot --namemysqlTest -v /root/data:/root/data_container mysql:5.7…

从0到1学会Git(第三部分):Git的远程仓库链接与操作

写在前面:前面两篇文章我们已经学会了git如何在本地进行使用&#xff0c;这篇文章将讲解如何将本地的git仓库和云端的远程仓库链接起来并使用 为什么要使用远程仓库:因为我们需要拷贝我们的代码给别人以及进行协同开发&#xff0c;就需要有一个云端仓库进行代码的存储和同步&a…

常见的HTTP请求方式

目录 GET 请求 POST 请求 PUT 请求 DELETE 请求 PATCH 请求 HEAD 请求 OPTIONS 请求 HTTP&#xff08;Hypertext Transfer Protocol&#xff09;是一种用于传输数据的协议&#xff0c;它在互联网中扮演了至关重要的角色。HTTP请求方式定义了客户端与服务器之间的通信方式…

【数据结构】C++实现AVL平衡树

文章目录 1.AVL树的概念2.AVL树的实现AVL树结点的定义AVL树的插入AVL树的旋转左单旋右单旋左右双旋右左双旋插入代码 AVL树的验证AVL树的查找AVL树的修改AVL树的删除AVL树的性能 AVL树的代码测试 1.AVL树的概念 二叉搜索树虽然可以提高我们查找数据的效率&#xff0c;但如果插…

错误码:spark_error_00000004

错误码&#xff1a;spark_error_00000004 错误码&#xff1a;spark_error_00000004 问题原因&#xff1a;这个报错与Spark执行器&#xff08;executor&#xff09;的内存不足有关&#xff0c;程序运行时所需内存 > memory。一般是因为处理数据量或者缓存的数据量较大&#x…

模拟实现链式二叉树及其结构学习——【数据结构】

W...Y的主页 &#x1f60a; 代码仓库分享 &#x1f495; 之前我们实现了用顺序表完成二叉树(也就是堆)&#xff0c;顺序二叉树的实际作用就是解决堆排序以及Topk问题。 今天我们要学习的内容是链式二叉树&#xff0c;并且实现链式二叉树&#xff0c;这篇博客与递归息息相关&a…

Leetcode.712 两个字符串的最小ASCII删除和

题目链接 Leetcode.712 两个字符串的最小ASCII删除和 mid 题目描述 给定两个字符串 s1 和 s2&#xff0c;返回 使两个字符串相等所需删除字符的 ASCII 值的最小和 。 示例 1: 输入: s1 “sea”, s2 “eat” 输出: 231 解释: 在 “sea” 中删除 “s” 并将 “s” 的值(115)加…

Keepalived+LVS高可用集群

目录 一、keepalived介绍&#xff1a; 二、keepalived工具介绍&#xff1a; &#xff08;1&#xff09;管理 LVS 负载均衡软件&#xff1a; &#xff08;2&#xff09;支持故障自动切换&#xff1a; &#xff08;3&#xff09;实现 LVS 负载调度器、节点服务器的高可用性&…

合宙Air724UG LuatOS-Air LVGL API控件-二维码(Qrcode)

二维码&#xff08;Qrcode&#xff09; 示例代码 qrcodelvgl.qrcode_create(lvgl.scr_act(),nil)lvgl.qrcode_set_txt(qrcode,"https://doc.openluat.com/home")lvgl.obj_set_size(qrcode,400,400)lvgl.obj_align(qrcode, nil, lvgl.ALIGN_CENTER, 0, 0)创建 可以通…

【Nginx25】Nginx学习:连接限制和请求限制

Nginx学习&#xff1a;连接限制和请求限制 之前我们就已经学习过了一些和流量限制相关的配置指令&#xff0c;它们是 HTTP 核心配置中的内容 &#xff0c;不记得的小伙伴可以回去看一下 Nginx学习&#xff1a;HTTP核心模块&#xff08;七&#xff09;请求体与请求限流https://m…