0104练习与思考题-算法基础-算法导论第三版

2.3-1 归并示意图

  • 问题:使用图2-4作为模型,说明归并排序再数组 A = ( 3 , 41 , 52 , 26 , 38 , 57 , 9 , 49 ) A=(3,41,52,26,38,57,9,49) A=(3,41,52,26,38,57,9,49)上的操作。
  • 图示:在这里插入图片描述

tips::有不少在线算法可视化工具(软件),但是没有演示上述归并过程的,想要完成自定义的效果,需要找一个可编程的算法可视化,参考链接3。前端使用react框架,没事研究下,争取做出如上图说是归并过程的可视化效果。

2.3-2 不使用哨兵重写MERGE

重写过程MERGE,使之不使用哨兵,而是一旦数组L或者R的所有元素均被复制回A就立刻停止,然后把另外一个数组的剩余部分复制回A。

伪代码如下:
$$

$$

MERGE(A,p,q,r)
1  n1=q-r+1
2  n2=r-q
3  let L[1...n1] and R[1...n2] be new arrays
4  for i = 1 to n1
5    L[i] = A[p+i-1]
6  for j = 1 to n2
7    R[j] = A[q+j]
8 for k = p to r 
9    if i > n1 or j > n2
10       break
11   if L[i] <= R[j]
12     A[k] = l[i]
13     i = i + 1
14   else A[k] = R[j]
15     j = j + 1
16 if i <= n1 and k <= r 
17   while i <= n1
18     A[k] = L[i]
19     i= i + 1
20     k = k + 1
21 if j <= n2 and k <= r
22   while j <= n2
23     A[k] = R[j]
24     j = j + 1
25     k = k + 1

tips::java代码实现参考链接2

2.3-3 数学归纳法证明归并排序的运行时间

使用数学归纳法证明:当n刚好是2的幂时,以下递归式的解是 T ( n ) = n lg ⁡ n T(n)=n\lg n T(n)=nlgn,
T ( n ) = { 2 若 n = 2 2 T ( n 2 ) + n , 若 n = 2 k , k > 1 T(n)=\begin{cases} 2\quad 若n=2\\ 2T(\frac{n}{2})+n,若n=2^k,k\gt1 \end{cases} T(n)={2n=22T(2n)+n,n=2k,k>1

证明: 当 n = 2 1 时, T ( n ) = 2 lg ⁡ 2 = 2 假设当 n = 2 k 时, T ( n ) = n lg ⁡ n = k 2 K 成立 当 n = 2 k + 1 时 , T ( n ) = 2 T ( 2 k ) + 2 k + 1 = 2 k 2 k + 2 k + 1 = 2 k + 1 ( k + 1 ) = n lg ⁡ n ∴ 当 n 是 2 的幂时, T ( n ) = n lg ⁡ n 是上述递归式的解。 证明:\\ 当n=2^1时,T(n)=2\lg 2=2\\ 假设当n=2^k时,T(n)=n\lg n =k2^K 成立\\ 当n=2^{k+1}时,\\ T(n)=2T(2^k)+2^{k+1}=2k2^k+2^{k+1}\\ =2^{k+1}(k+1)=n\lg n\\ \therefore 当n是2的幂时,T(n)=n\lg n是上述递归式的解。 证明:n=21时,T(n)=2lg2=2假设当n=2k时,T(n)=nlgn=k2K成立n=2k+1,T(n)=2T(2k)+2k+1=2k2k+2k+1=2k+1(k+1)=nlgnn2的幂时,T(n)=nlgn是上述递归式的解。

2.3-4 插入排序的递归版本

我们可以把插入排序表示为如下的一个递归过程。为例排序 A [ 1 ⋯ n ] A[1\cdots n] A[1n],我们递归地排序 A [ 1 ⋯ n − 1 ] , A[1\cdots n-1], A[1n1],然后把 A [ n ] A[n] A[n]插入已排序的数组 A [ 1 ⋯ n − 1 ] A[1\cdots n-1] A[1n1]。为了插入排序的这个递归版本的最坏情况运行时间写一个递归式。

插入排序递归版本最坏情况就是数据排列顺序和需求的排序相反。把 A [ n ] A[n] A[n]插入已排序的数组 A [ 1 ⋯ n − 1 ] A[1\cdots n-1] A[1n1]运行时间为O(n),终止条件是n=1,此时数组以有序,运行时间为O(1),递归式如下:
T ( n ) = { O ( 1 ) , n = 1 T ( n − 1 ) + O ( n ) , n > 1 T(n)=\begin{cases} O(1),n=1\\ T(n-1)+O(n),n\gt 1 \end{cases} T(n)={O(1),n=1T(n1)+O(n),n>1
T(n)的最坏情况下的运行时间为O(n^2),性能不高,这里不做实现。

2.3-5 二分查找算法运行时间

回顾查找问题(参见练习2.1-3),注意到,如果序列A已排好序,就可以将排序列中点与v进行比较。根据比较的结果,原序列中有一半就可以不用再做进一步的考虑了。二分查找算法重复这个过程,每次都讲序列剩余部分规模减半。为二分查找算法写出迭代或递归的伪代码。证明:二分查找的最坏情况运行时间为 O ( lg ⁡ n ) O(\lg n) O(lgn)

分析:首先序列已排序,二分查找的最坏情况就是要查找的数不在序列中。计算序列中点,与目标值比较,如果小于大于目标值,继续在左半边序列查找;否则在右半边序列查找。直至序列长度为2,中点必为其中一个此时序列中该元素依然不等于目标值,终止。

循环递归式如下:
T ( n ) = { O ( 1 ) , n = 1 T ( n 2 ) + O ( 1 ) , n > 1 T(n)=\begin{cases} O(1),n=1\\ T(\frac{n}{2})+O(1),n\gt 1 \end{cases} T(n)={O(1),n=1T(2n)+O(1),n>1
二分查找运行时间 T ( n ) = lg ⁡ n T(n)=\lg n T(n)=lgn,实现相对比较简单,自行搜索,这里不在详述。非递归实现参考下面链接5或者去下面列出的仓库地址中查找。

2.3-6 二分查找能改进插入排序吗?

注意到2.1节中的过程INSERTION_SORT的第5~7行的while循环采用一种线性查询来(反向)扫描已排好序的子数组 A [ 1 ⋯ j − 1 ] A[1\cdots j-1] A[1j1].我们可以使用二分查找(参见练习2.3-5)来把插入排序的最坏情况运行时间改进到 O ( n lg ⁡ n ) O(n\lg n) O(nlgn)吗?

**解答:**不能。因为在第5~7步,包含查找和移动元素,查找A[j]合适位置使用二分查找运行时间为 O ( lg ⁡ j ) O(\lg j) O(lgj),把该元素之后全部向后移动一位运行时间为 O ( j ) O(j) O(j),所以运行时间为 O ( j ) O(j) O(j),那么总的运行时间还是 O ( n 2 ) O(n^2) O(n2)

二、思考题

2-1 在归并排序中对小数组采用插入排序

虽然归并排序的最坏情况运行时间是 O ( n lg ⁡ n ) O(n\lg n) O(nlgn),而插入排序的最坏情况运行时间是 O ( n 2 ) O(n^2) O(n2),但是插入插入排序中的常量因子可能使得它在n较小时,在许多机器上实际运行的更快。因此,在归并排序中当子问题变得足够小时,采用插入排序来使递归的叶变粗是有意义的。考虑对归并排序的一种修改,其中使用插入排序来排序长度为k的 n k \frac{n}{k} kn个子表,然后使用标准的合并机制来合并这些子表,这里k是一个待定的值。

a. 证明插入排序最坏情况下可以在 O ( n k ) O(nk) O(nk)时间内排序每个长度为k的 n k \frac{n}{k} kn歌子表。

b. 表名在最坏情况下如何在 O [ n lg ⁡ ( n k ) ] O[n\lg(\frac{n}{k})] O[nlg(kn)]时间内合并这些子表。

c. 假定修改后的算法的最坏情况运行时间为 O [ n k + n lg ⁡ ( n k ) ] O[nk+n\lg(\frac{n}{k})] O[nk+nlg(kn)],要使修改后的算法与标准的归并排序具有相同的运行时间,作为n的一个函数,记住O记号,k的最大值是什么?

d. 在实践中,我们应该如何选择k?

a . 插入排序长度为 k 的在最坏情况下运行时间为 O ( k 2 ) ∴ n k 个子表花费时间为 O ( k 2 ⋅ n k ) = O ( n k ) b . 合并长度为 k 的 n k 的子表,每次合并 2 个子表 需要合并的层数为 lg ⁡ ( n k ) + 1 , 每层需要比较 n 次 ∴ 最坏情况下运行时间为 n lg ⁡ ( n k ) c . 修改后的算法与标准的归并排序有想听的运行时间,即 O ( n k + n lg ⁡ ( n k ) ) = O ( n lg ⁡ n ) 令 k = O ( lg ⁡ n ) , 有 O ( n k + n lg ⁡ ( n k ) ) = O ( n k + n lg ⁡ n − n lg ⁡ k ) = O ( 2 n lg ⁡ n − n lg ⁡ lg ⁡ n ) = O ( n lg ⁡ n ) d . 实践中, k 取插入排序比归并排序的最大值。 a. 插入排序长度为k的在最坏情况下运行时间为O(k^2)\\ \therefore \frac{n}{k}个子表 花费时间为O(k^2\cdot \frac{n}{k})=O(nk)\\ b. 合并长度为k的\frac{n}{k}的子表,每次合并2个子表\\ 需要合并的层数为\lg(\frac{n}{k})+1,每层需要比较n次\\ \therefore 最坏情况下运行时间为n\lg(\frac{n}{k})\\ c. 修改后的算法与标准的归并排序有想听的运行时间,即\\ O(nk+n\lg(\frac{n}{k}))=O(n\lg n)\\ 令k=O(\lg n),有\\ O(nk+n\lg(\frac{n}{k}))=O(nk+n\lg n-n\lg k)\\ =O(2n\lg n-n\lg\lg n) =O(n\lg n)\\ d.实践中,k取插入排序比归并排序的最大值。 a.插入排序长度为k的在最坏情况下运行时间为O(k2)kn个子表花费时间为O(k2kn)=O(nk)b.合并长度为kkn的子表,每次合并2个子表需要合并的层数为lg(kn)+1,每层需要比较n最坏情况下运行时间为nlg(kn)c.修改后的算法与标准的归并排序有想听的运行时间,即O(nk+nlg(kn))=O(nlgn)k=O(lgn),O(nk+nlg(kn))=O(nk+nlgnnlgk)=O(2nlgnnlglgn)=O(nlgn)d.实践中,k取插入排序比归并排序的最大值。
Java算法实现参考edu.princeton.cs.algs4.MergeX

2-2 冒泡排序的正确性

冒泡排序是一种流行但低效的排序算法,它的作用是反复交换相邻的未按次序排序的元素。

BUBBLESORT(A)
1 for i = 1 to A.length -1 
2  for j = A.length downto i+1
3   if A[j]< A[j-1]
4    exchange A[j] wiht A[j-1]

a. 假设 A ′ A^{'} A表示BUBBLESORT(A)的输出。为了证明BUBBLESORT正确,我们必须证明它将终止并且有:

A ′ [ 1 ] ≤ A ′ [ 2 ] ≤ ⋯ ≤ A ′ [ n ] A^{'}[1]\le A^{'}[2]\le \cdots\le A^{'}[n] A[1]A[2]A[n]

其中 n = A . l e n g t h n=A.length n=A.length。为了证明BUBBLESORT确实完成了排序,我们还需要证明什么?下面两部分讲证明上述不等式。

b. 为第2~4行的for循环精确地说明一个循环不变式,并证明该循环不变式成立。你的证明应该使用本章中给出的循环不变式证明的结果。

c. 使用(b)部分证明的循环不变式的终止条件,为第1~4行的for循环说明一个循环不变式,该不变式将使你证明不等式。你的证明应该使用本章中给出的循环不变式证明的结构。

d. 冒泡排序的最坏情况下运行时间是多少?与插入排序的运行时间相比,其性能如何?
$$
a.\ 我们需要证明A^{'}的元素都来自A且以排序。\
b. \
循环不变式: 2~4行迭代开始,A[j\cdots n]元素为原A[j\cdots n]的元素,可能顺序不同\
且A[j]为其中最小的元素.\
初始:初始子数组元素只有A[n],为当前数组最小元素。\
维持:每次迭代,我们比较A[j]与A[j-1]的大小,确保A[j-1]为其中的最小值。迭代完成后,子数组元素加1,且第一个元素为其中最小值。\
终止:终止条件为j=i。此时A[i]是子数组A[i\cdots n]中最小元素,其中A[i\cdots n]元素是原数组中A[i\cdots n]。\

c.\
循环不变式:1-4行循环起始,子数组A[1\cdots i -1]为A[1\cdots n]中最小的i-1个元素,且以排序;A[i\cdots n]为A[1\cdots n]中剩余n-i+1个元素。\
初始:子数组A[1\cdots i-1]为空。\
维持:根据(b)有,执行完内循环之后,A[i]为子数组A[i\cdots n]中的最小值。在外循环的起始A[1\cdots i-1]元素比A[i\cdots n]中元素小且以排序。\那么每次外循环执行完成后A[1\cdots i]为比数组A[i+1\cdots n]中的元素小且以排序。\
终止:当i=n.length 时,循环终止。此时A[1\cdots n]以全部完成排序。\
d.\
冒泡排序在最坏情况下运行时间为O(n^2),和插入排序一样。
$$

2-3 霍纳规则的正确性

给定系数 a 0 , a 1 , ⋯ , a n 和 x a_0,a_1,\cdots,a_n和x a0,a1,,anx的值,代码片段

1 y=0
2 for in downto 0
3  y = a_i+xy

实现了用于求值多项式
P ( x ) = ∑ k = 0 n a k x k = a 0 + x ( a 1 + x ( a 2 + ⋯ + x ( a n − 1 + x a n ) ⋯ ) ) P(x)=\sum_{k=0}^na_kx^k=a_0+x(a_1+x(a_2+\cdots +x(a_n-1 + xa_n)\cdots)) P(x)=k=0nakxk=a0+x(a1+x(a2++x(an1+xan)))
的霍纳规则。

a. 借助O记号,实现霍纳规则的以上代码片段的运行时间是多少?

b. 编写伪代码来实现朴素的多项式求值算法,该算法从头开始计算多项式的每个项。该算法的运行时间是多少?与霍纳规则相比,其性能如果?

c. 考虑以下循环不变式:

在第2~3for循环每次迭代的开始有
y = ∑ k = 0 n − ( i + 1 ) a k + i + 1 x k y=\sum_{k=0}^{n-(i+1)}a_{k+i+1}x^k y=k=0n(i+1)ak+i+1xk
把没有项的合式解释为等于0.遵照本章中给出的循环不变式证明的结构,使用该循环不变式来证明终止时有 P ( x ) = ∑ k = 0 n a k x k P(x)=\sum_{k=0}^na_kx^k P(x)=k=0nakxk

d. 最后证明上面给出的代码片段将正确地求由系数 a 0 , a 1 , ⋯ , a n a_0,a_1,\cdots,a_n a0,a1,,an刻画的多项式的值。
a 运行时间为 O ( n ) a\\ 运行时间为O(n)\\ a运行时间为O(n)

b. \\
NAIVE-HORNER()y = 0for k = 0 to ntemp = 1for i = 1 to ktemp = temp * xy = y + a[k] * temp

运行时间为 O ( n 2 ) O(n^2) O(n2),比霍纳规则慢。
c . 初始: y = 0 维持: y = a i + x ∑ k = 0 n − ( i + 1 ) a k + i + 1 x k = a i x 0 + ∑ k = 0 n − ( i + 1 ) a k + i + 1 x k + 1 = a i x 0 + ∑ k = 0 n − i a k + i x k = ∑ k = 0 n − i a k + i x k 终止:此时 i = − 1 y = ∑ k = 0 n a k x k d . 循环的不变量是与给定系数的多项式相等的和。 c. \\ 初始:y=0\\ 维持:y=a_i+x\sum_{k=0}^{n-(i+1)}a_{k+i+1}x^k\\ =a_ix^0+\sum_{k=0}^{n-(i+1)}a_{k+i+1}x^{k+1}\\ =a_ix^0+\sum_{k=0}^{n-i}a_{k+i}x^k\\ =\sum_{k=0}^{n-i}a_{k+i}x^k\\ 终止:此时i=-1\\ y=\sum_{k=0}^na_kx^k\\ d. \\ 循环的不变量是与给定系数的多项式相等的和。 c.初始:y=0维持:y=ai+xk=0n(i+1)ak+i+1xk=aix0+k=0n(i+1)ak+i+1xk+1=aix0+k=0niak+ixk=k=0niak+ixk终止:此时i=1y=k=0nakxkd.循环的不变量是与给定系数的多项式相等的和。

2-4 逆序对

假设 A [ 1 ⋯ n ] A[1\cdots n] A[1n]是一个有n个不同数的数组。若 i < j 且 A [ i ] > A [ j ] i\lt j且A[i]\gt A[j] i<jA[i]>A[j],则对偶 ( i , j ) (i,j) (i,j)称为A的一个逆序对(inversion)。

a. 列出数组(2,3,8,6,1)的5个逆序对。

b. 由集合 [ 1 , 2 , ⋯ , n ] [1,2,\cdots,n] [1,2,,n]中的元素构成的什么数组具有最多的逆序对?它有多少逆序对?

c. 插入排序的运行时间与输入数组中逆序对的数量之间是什么关系?证明你的回答。

d. 给出一个确定在n个元素的任何排列中逆序对数量的算法,最坏情况下需要 O ( n k + n lg ⁡ ( n k ) ) O(nk+ n\lg(\frac{n}{k}) ) O(nk+nlg(kn))的时间。(提示:修改归并排序)
a . ( 2 , 1 ) , ( 3 , 1 ) , ( 8 , 6 ) , ( 8 , 1 ) , ( 6 , 1 ) b . 数组 [ n , n − 1 , ⋯ , 1 ] 具有对多的逆序对,逆序对数为 ( n − 1 ) n 2 c . 插入排序的运行时间是逆序对数的常量倍数。 d a. \\ (2,1),(3,1),(8,6),(8,1),(6,1)\\ b. \\ 数组[n,n-1,\cdots,1]具有对多的逆序对,逆序对数为\frac{(n-1)n}{2}\\ c. \\ 插入排序的运行时间是逆序对数的常量倍数。\\ d a.(2,1),(3,1),(8,6),(8,1),(6,1)b.数组[n,n1,,1]具有对多的逆序对,逆序对数为2(n1)nc.插入排序的运行时间是逆序对数的常量倍数。d
结合2-1,Java代码实现如下所示:

package com.gaogzhen.introductiontoalgorithms3.foundation;import edu.princeton.cs.algs4.MergeX;
import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;import java.util.Comparator;/*** 求解逆序对的数量*  1 逆序:对于n个不同的元素,先规定各演示之间有一个标准次序(例如n个不同的自然数,可规定由小到大为标准次序),与是在这n个元素的任一排序中,当某一对元素的先后次序与标准次序不同时,*    就说它构成1个逆序。*  2 逆序数:一个排列中所有逆序的总数叫做这个排列的逆序数。* 逆序对数=交换次数** @author gaogzhen* @since 2024/4/7 21:46*/
public class Inversion {private static final int CUTOFF = 7;  // cutoff to insertion sort// This class should not be instantiated.private Inversion() { }/*** 归并统计交换次数* @param src 源子数组* @param dst 目的子数组* @param lo 起始索引* @param mid 中间索引* @param hi 结束索引* @return*/private static int merge(Comparable[] src, Comparable[] dst, int lo, int mid, int hi) {// precondition: src[lo .. mid] and src[mid+1 .. hi] are sorted subarrays// assert isSorted(src, lo, mid);// assert isSorted(src, mid+1, hi);int i = lo, j = mid+1;// 交换次数int inversions = 0;for (int k = lo; k <= hi; k++) {if      (i > mid) {// 低位归并完成需要计数dst[k] = src[j++];} else if (j > hi) {// 高位归并完成,不需要计数dst[k] = src[i++];} else if (less(src[j], src[i])) {// 交换次数=mid - lo + 1 - i + 1inversions += mid - lo + 1 - i + 1;dst[k] = src[j++];   // to ensure stability} else {// 归并低位需要计数dst[k] = src[i++];}}// postcondition: dst[lo .. hi] is sorted subarray// assert isSorted(dst, lo, hi);return inversions;}/*** 统计逆序对数* @param src 源子数组* @param dst 目的(交换)子数组* @param lo 低位起始索引* @param hi 高位终止索引* @return*/private static int sort(Comparable[] src, Comparable[] dst, int lo, int hi) {// if (hi <= lo) return;if (hi <= lo + CUTOFF) {// 小数组使用插入排序统计逆序对数return insertionSort(dst, lo, hi);}int mid = lo + (hi - lo) / 2;// 统计左子树组逆序对数int left = sort(dst, src, lo, mid);// 统计左子树组逆序对数int right = sort(dst, src, mid+1, hi);// if (!less(src[mid+1], src[mid])) {//    for (int i = lo; i <= hi; i++) dst[i] = src[i];//    return;// }// using System.arraycopy() is a bit faster than the above loopif (!less(src[mid+1], src[mid])) {// 左子树组和右子树组完成排序好,且左侧最大元素小于右侧最小元素,无需交换System.arraycopy(src, lo, dst, lo, hi - lo + 1);return left + right;}// 统计归并左右子数组逆序对数int inversions = merge(src, dst, lo, mid, hi);return inversions + left + right;}/*** 统计数组a的逆序对数* @param a 目标数组*/public static int  sort(Comparable[] a) {Comparable[] aux = a.clone();int inversions =  sort(aux, a, 0, a.length-1);// assert isSorted(a);return inversions;}/*** 插入排序统计逆序对数* @param a 目标数组* @param lo 低位起始索引* @param hi 高位终止索引* @return*/private static int insertionSort(Comparable[] a, int lo, int hi) {int inversions = 0;for (int i = lo; i <= hi; i++) {for (int j = i; j > lo && less(a[j], a[j-1]); j--) {exch(a, j, j-1);// 交换一次,逆序数+1inversions++;}}return inversions;}/********************************************************************  Utility methods.*******************************************************************//*** 交换元素* @param a 目标数组* @param i 交换元素索引* @param j 另一个交换式索引*/private static void exch(Object[] a, int i, int j) {Object swap = a[i];a[i] = a[j];a[j] = swap;}/*** 第一个元素是否小于第二个元素* @param a 第一个元素* @param b 第二个元素* @return {@true} a 小于b ;else {@false}*/private static boolean less(Comparable a, Comparable b) {return a.compareTo(b) < 0;}/*** 使用比较器,比较a是否小于b* @param a 元素a* @param b 元素吧* @param comparator 比较器* @return*/private static boolean less(Object a, Object b, Comparator comparator) {return comparator.compare(a, b) < 0;}/********************************************************************  Version that takes Comparator as argument.*******************************************************************//*** Rearranges the array in ascending order, using the provided order.** @param a the array to be sorted* @param comparator the comparator that defines the total order*/public static void sort(Object[] a, Comparator comparator) {Object[] aux = a.clone();sort(aux, a, 0, a.length-1, comparator);// assert isSorted(a, comparator);}private static void merge(Object[] src, Object[] dst, int lo, int mid, int hi, Comparator comparator) {// precondition: src[lo .. mid] and src[mid+1 .. hi] are sorted subarrays// assert isSorted(src, lo, mid, comparator);// assert isSorted(src, mid+1, hi, comparator);int i = lo, j = mid+1;for (int k = lo; k <= hi; k++) {if      (i > mid)                          dst[k] = src[j++];else if (j > hi)                           dst[k] = src[i++];else if (less(src[j], src[i], comparator)) dst[k] = src[j++];else                                       dst[k] = src[i++];}// postcondition: dst[lo .. hi] is sorted subarray// assert isSorted(dst, lo, hi, comparator);}private static void sort(Object[] src, Object[] dst, int lo, int hi, Comparator comparator) {// if (hi <= lo) return;if (hi <= lo + CUTOFF) {insertionSort(dst, lo, hi, comparator);return;}int mid = lo + (hi - lo) / 2;sort(dst, src, lo, mid, comparator);sort(dst, src, mid+1, hi, comparator);// using System.arraycopy() is a bit faster than the above loopif (!less(src[mid+1], src[mid], comparator)) {System.arraycopy(src, lo, dst, lo, hi - lo + 1);return;}merge(src, dst, lo, mid, hi, comparator);}// sort from a[lo] to a[hi] using insertion sortprivate static int insertionSort(Object[] a, int lo, int hi, Comparator comparator) {int inversions = 0;for (int i = lo; i <= hi; i++) {for (int j = i; j > lo && less(a[j], a[j-1], comparator); j--) {exch(a, j, j-1);inversions++;}}return inversions;}/****************************************************************************  Check if array is sorted - useful for debugging.***************************************************************************/private static boolean isSorted(Comparable[] a) {return isSorted(a, 0, a.length - 1);}private static boolean isSorted(Comparable[] a, int lo, int hi) {for (int i = lo + 1; i <= hi; i++) {if (less(a[i], a[i-1])) {return false;}}return true;}private static boolean isSorted(Object[] a, Comparator comparator) {return isSorted(a, 0, a.length - 1, comparator);}private static boolean isSorted(Object[] a, int lo, int hi, Comparator comparator) {for (int i = lo + 1; i <= hi; i++) {if (less(a[i], a[i-1], comparator)) {return false;}}return true;}/*** 输出a数组* @param a 数组*/private static void show(Object[] a) {for (int i = 0; i < a.length; i++) {StdOut.println(a[i]);}}/*** 测试*/public static void main(String[] args) {String[] a = StdIn.readAllStrings();int inversions = Inversion.sort(a);show(a);StdOut.print("逆序对数:" + inversions);}
}

结语

欢迎小伙伴一起学习交流,需要啥工具或者有啥问题随时联系我。

❓QQ:806797785

⭐️源代码地址:https://gitee.com/gaogzhen/algorithm

[1]算法导论(原书第三版)/(美)科尔曼(Cormen, T.H.)等著;殷建平等译 [M].北京:机械工业出版社,2013.1(2021.1重印).p22-24

[2]归并排序-排序-算法第四版[CP/OL]

[3]CLRS Solutions[CP/OL]

[4]Algorithm Visualizer[CP/OL]

[4]入门-基础-算法第4版[CP/OL]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/801283.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙内核源码分析 (内存管理篇) | 虚拟内存全景图是怎样的

初始化整个内存 OsSysMemInitOsMainmain从 main() 跟踪可看内存部分初始化是在 OsSysMemInit() 中完成的。 UINT32 OsSysMemInit(VOID) {STATUS_T ret;OsKSpaceInit();//内核空间初始化ret OsKHeapInit(OS_KHEAP_BLOCK_SIZE);// 内核动态内存初始化 512K if (ret ! LOS_OK…

一款轻量、干净的 Laravel 后台管理框架

系统简介 ModStart 是一个基于 Laravel 的模块化快速开发框架。模块市场拥有丰富的功能应用&#xff0c;支持后台一键快速安装&#xff0c;让开发者能快的实现业务功能开发。 系统完全开源&#xff0c;基于 Apache 2.0 开源协议&#xff0c;免费且不限制商业使用。 系统特性 …

第三、四章 if语句 + 循环

第三章 if语句 bool类型 两种&#xff1a;True和False bool_1 True bool_2 False print(f"bool_1变量的内容是&#xff1a;{bool_1}," f"类型是&#xff1a;{type(bool_1)}") print(f"bool_2变量的内容是&#xff1a;{bool_2}," f"类…

解决Selenium元素拖拽不生效Bug

前几天在使用Selenium进行元素拖拽操作时&#xff0c;发现Selenium自带的元素拖拽方法&#xff08;dragAndDrop()&#xff09;不生效&#xff0c;网上的回答也是五花八门&#xff0c;比较混乱&#xff0c;尝试了以下几种方法均无法解决。 方案1&#xff1a;通过dragAndDrop()方…

外部模块介绍(七) 蓝牙HC05

HC05原理图 2. 蓝牙模块的调试 2.1 两种工作模式: HC-05蓝牙串口通讯模块具有两种工作模式:命令响应工作模式和自动连接工作模式。在自动连接工作模式下模块又可分为主(Master)、从(Slave)和回环(Loopback)三种工作角色。 当模块处于自动连接工作模式时,将自动根据事…

二叉树练习day.3

104.二叉树的最大深度 链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 题目描述&#xff1a; 给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1&#xff1a; 输入&#xff1a;root…

pygame旋转直线,计算角色到墙距离

pygame怎么计算距离 在Pygame中&#xff0c;计算两点之间的距离可以使用几何公式。给定两点P1(x1, y1)和P2(x2, y2)&#xff0c;距离D可以用以下公式计算&#xff1a; D √((x2 - x1) (y2 - y1)) 在Python中&#xff0c;你可以使用math库中的sqrt函数来计算平方根。以下是一…

34-5 CSRF漏洞 - CSRF分类

环境准备:构建完善的安全渗透测试环境:推荐工具、资源和下载链接_渗透测试靶机下载-CSDN博客 1)GET 类型 传参: 参数连接在URL后面 POC构造及执行流程: 构造URL,诱导受害者访问点击利用利用标签进行攻击: 构造虚假URL,在链接上添加payload抓包获取数据包,通过CSRF POC…

excel散点图怎么每个点添加名称

最终效果图&#xff1a; 添加图标元素->数据标签->其他数据标签选项 选择单元格中的值 手动拖动数据标签&#xff0c;调整到合适的位置。

C语言从入门到实战————编译和链接

目录 前言 1. 翻译环境和运行环境 2. 翻译环境 2.1 预处理&#xff08;预编译&#xff09; 2.2 编译 2.2.1 词法分析&#xff1a; 2.2.2 语法分析 2.2.3 语义分析 2.3 汇编 2.4 链接 3. 运行环境 前言 编译和链接是将C语言源代码转换成可执行文件的必经过程&a…

Java面试八股文(更新中)

Java面试八股文 1. 基础篇1.1 Java语言特点1.2 面向对象和面向过程的区别1.3 八种基本数据类型的大小&#xff0c;以及他们的封装类1.4 标识符的命名规则1.5 instanceof 关键字的作用 ************************************************************* 1. 基础篇 1.1 Java语言特…

【Java网络编程】计算机网络基础概念

就目前而言&#xff0c;多数网络编程的系列的文章都在围绕着计算机网络体系进行阐述&#xff0c;但其中太多理论概念&#xff0c;对于大部分开发者而言&#xff0c;用途甚微。因此&#xff0c;在本系列中则会以实际开发者的工作为核心&#xff0c;从Java程序员的角度出发&#…

测试自动化流程设计思路

a) 背景介绍 基于当前互联网敏捷开发的现状&#xff0c;手工人力测试已不足以满足当前快速的版本迭代&#xff1b;以下将介绍一种可实现的自动化设计与使用。 b) 当前版本迭代流程 研发同学从代码库master分支拉出新代码进行研发工作得开发开发完成之后提交到代码库测试同学介入…

ES入门十一:正排索引和倒排索引

索引本质上就是一种加快检索数据的存储结构&#xff0c;就像书本的目录一下。 为了更好的理解正排索引和倒排索引&#xff0c;我们借由一个 **唐诗宋词比赛&#xff0c;**这个比赛一共有两个项目&#xff1a; 给定诗词名称&#xff0c;背诵整首给诗词中几个词语&#xff0c;让…

构建第一个ArkTS用的资源分类与访问

应用开发过程中&#xff0c;经常需要用到颜色、字体、间距、图片等资源&#xff0c;在不同的设备或配置中&#xff0c;这些资源的值可能不同。 应用资源&#xff1a;借助资源文件能力&#xff0c;开发者在应用中自定义资源&#xff0c;自行管理这些资源在不同的设备或配置中的表…

男生穿什么裤子显腿长?男生显腿长裤子分享

现在市面上出现很多劣质而且不耐洗不耐穿的裤子&#xff0c;不但穿着体验感差&#xff0c;而且还可能会对皮肤有影响。为此作为一名穿搭博主&#xff0c;我专门做了这篇关于男生裤子的测评&#xff0c;希望大家能够通过一下的科普知识&#xff0c;对选择裤子有更详细的了解。 什…

CDN加速原理那些事

名词解释 CNAME记录&#xff08;CNAME record&#xff09; CNAME即别名( Canonical Name )&#xff1b;可以用来把一个域名解析到另一个域名&#xff0c;当 DNS 系统在查询 CNAME 左面的名称的时候&#xff0c;都会转向 CNAME 右面的名称再进行查询&#xff0c;一直追踪到最后…

创建型模式--4.抽象工厂模式【弗兰奇一家】

1. 奔向大海 在海贼世界中&#xff0c;位于水之都的弗兰奇一家是由铁人弗兰奇所领导的以拆船为职业的家族&#xff0c;当然了他们的逆向工程做的也很好&#xff0c;会拆船必然会造船。船是海贼们出海所必备的海上交通工具&#xff0c;它由很多的零件组成&#xff0c;从宏观上看…

算法:完全背包问题dp

文章目录 一、完全背包问题的特征二、定义状态三、状态转移四、降维优化五、参考例题5.1、Acwing&#xff1a;3.完全背包问题5.2、Acwing&#xff1a;900. 整数划分 一、完全背包问题的特征 完全背包问题是动态规划中的一种经典问题&#xff0c;它的主要特征可以总结如下&…

[HackMyVM]靶场Flossy

难度:Medium kali:192.168.56.104 靶机:192.168.56.142 端口扫描 ┌──(root㉿kali2)-[~/Desktop] └─# nmap 192.168.56.142 Starting Nmap 7.94SVN ( https://nmap.org ) at 2024-04-01 21:01 CST Nmap scan report for 192.168.56.142 Host is up (0.00018s latency).…