【三维重建工具】NeRFStudio、3D GaussianSplatting、Colmap安装与使用指南(更新中)

目录

  • 一、NeRFStudio安装
    • 1.安装(ubuntu系统)
    • 2.安装(windows系统)
  • 二、安装tinycudann
  • 三、Colmap安装与使用
    • 1. 安装依赖
    • 2. 安装colmap
    • 3.使用colmap
    • 3.1 可视化界面使用
    • 3.2 Nerfstudio命令行调用Colmap
  • 四、使用NeRFStudio进行三维重建
  • 五、3D GaussianSplatting安装与使用(即将到来)
  • 五* CUDA安装(附C++编译器说明)

场景/物体三维重建过程:首先用colmap估计图像位姿,而后以图像和位姿作为出入,用NeRF或Gaussian Splatting进行三维重建

一、NeRFStudio安装

  简介:Nerfstudio,一个用于NeRF开发的模块化PyTorch框架。框架中用于实现基于NeRF的方法的组件即插即用,使得研究人员和相关从业者可以轻松地将NeRF集成到自己的项目中。框架的模块化设计支持实时可视化工具,导入用户真实世界捕获的数据集外(in-the-wild)数据,以及导出为视频,点云和网格表示的工具。近期,还导入了InstantNGP、3D Gaussian Splatting等最新重建算法。

在这里插入图片描述

1.安装(ubuntu系统)

  下载项目代码到本地:

git clone https://github.com/nerfstudio-project/nerfstudio.git

  可以去github直接下载zip文件,也可以按照以上命令git。网络不好可以去gitee(码云)加速。

cd nerfstudio
pip install --upgrade pip setuptools
pip install -e .

2.安装(windows系统)

2.1.安装vs2019 + cuda 11.6;
2.2.通过conda创建虚拟环境nerfstudio,依次执行如下命令:

conda create --name nerfstudio -y python=3.8
conda activate nerfstudio
python -m pip install --upgrade pip

3.3.安装依赖:
  (1).pytorch 1.13.1, 执行如下命令:

pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 -f https://download.pytorch.org/whl/torch_stable.html

  (2).tinycudann, 执行如下命令:

pip install ninja git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch

3.4.安装nerfstudio,依次执行如下命令:

git clone git@github.com:nerfstudio-project/nerfstudio.git
cd nerfstudio
pip install --upgrade pip setuptools
pip install -e .

5.安装ffmpeg, 执行如下命令:

conda install -c conda-forge ffmpeg

6.安装colmap, 执行如下命令:

conda install -c conda-forge colmap
conda install -c conda-forge mpir

7.安装hloc,依次执行如下命令: 可选,windwos上不支持pycolmap

cd ..
git clone --recursive https://github.com/cvg/Hierarchical-Localization/
cd Hierarchical-Localization/
pip install pycolmap # windows不支持
python -m pip install -e .

二、安装tinycudann

pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch

  这句命令不成功的,请切换gcc与g++版本,方法见最后

三、Colmap安装与使用

   colmap是用来对一系列图像进行位姿匹配,从而生成场景的三维模型(点云)。也就是你对一个场景拍摄了很多照片,colmap可以估计出每张照片的相机位置(pose,是NeRF的输入),并利用SFM算法生成三维模型。使用NeRF和Gaussian Splatting进行三维重建必备的工具。

1. 安装依赖

sudo apt-get install \git \cmake \ninja-build \build-essential \libboost-program-options-dev \libboost-filesystem-dev \libboost-graph-dev \libboost-system-dev \libeigen3-dev \libflann-dev \libfreeimage-dev \libmetis-dev \libgoogle-glog-dev \libgtest-dev \libsqlite3-dev \libglew-dev \qtbase5-dev \libqt5opengl5-dev \libcgal-dev \libceres-dev

2. 安装colmap

git clone https://github.com/colmap/colmap.git
cd colmap
mkdir build
cd build
sudo cmake .. \-D CMAKE_CUDA_COMPILER="/usr/local/cuda-11.3/bin/nvcc" ../CMakeLists.txt \-D CMAKE_CUDA_ARCHITECTURES='89'    
cd ..
sudo make -j24 
sudo make install

  注意:
  更改以上命令中cuda路径,以及最后的显卡算力(75代表Turing架构,如RTX 20系列;80代表Ampere架构,如RTX 30系列;89为RTX4080 显卡等)

3.使用colmap

3.1 可视化界面使用

使用命令打开colmap

colmap gui

打开界面如下:

在这里插入图片描述1.创建 project_cat 文件夹,把图片放 project_cat/images 下
2.执行 Automatic reconstruction 重建,如下:‘
在这里插入图片描述
在这里插入图片描述
  需要等待比较久的时间,最开始比较占用CPU,大概执行的是特征点计算和匹配一类的,后面会占用比较大的GPU使用率,GPU内存占用大概2G.

  到下面的界面后表明完成。

在这里插入图片描述
  同时介绍了可视化sparse, dense, mesh 模型结果的方法。最终效果如下:

在这里插入图片描述
一些参数说明:

Rotate model: Left-click and drag.
Shift model: Right-click or -click (-click) and drag.
Zoom model: Scroll.
Change point size: -scroll (-scroll).
Change camera size: -scroll. (红色的表示相机拍摄位置的符号)
Adjust clipping plane: -scroll. (距离观察视点一定距离的点会被 clipped)
Select point: Double-left-click point (change point size if too small). The green lines visualize the projections into the images that see the point. The opening window shows the projected locations of the point in all images.

3.2 Nerfstudio命令行调用Colmap

  除以上可视化界面直接计算图片的pose以外,还可以用Nerfstudio调用colmap:

ns-process-data images --sfm-tool hloc --feature-type superpoint --matcher-type superglue --data '/path/to/IMG'  --output-dir '/path/to/IMG' 

  其优点是利用superpoint 和 superglue深度特征,替代原始的sift提取特征

四、使用NeRFStudio进行三维重建

4.1.通过colmap生成数据集,也可从网上,如https://data.nerf.studio/nerfstudio/ 下载lego 乐高玩具测试集,并拷贝到nerfstudio的data/nerfstudio目录下,data/nerfstudio需自己创建;

4.2.采用colmap生成数据集时,需执行如下命令生成transforms.json:

ns-process-data images --data data/nerfstudio/lego/train --output-dir data/nerfstudio/lego --camera-type perspective --matching-method exhaustive --sfm-tool colmap --crop-factor 0.0 0.0 0.0 0.0

4.3.训练命令如下:迭代产生的checkpoint存储在outputs/lego/nerfacto目录下

ns-train nerfacto --data data/nerfstudio/lego --vis viewer --max-num-iterations 50000

参数为数据路路径,迭代次数等。还可添加其他参数,用命令ns-render --help查看官方文档

  训练进度如下图所示:

在这里插入图片描述
训练结束后,会显示本地浏览地址。打开web实时预览: https://viewer.nerf.studio/versions/23-04-10-0/?websocket_url=ws://localhost:7007 ,如下图所示:

在这里插入图片描述加载预训练模型,继续训练命令为:

ns-train nerfacto --data data/nerfstudio/person --load-dir outputs/person/nerfacto/2023-08-23_152364/nerfstudio_models

加载预训练模型进行可视化查看:

ns-viewer --load-config outputs/person/nerfacto/2023-04-23_152364/config.yml

训练结果可以导出为 (1).渲染视频; (2).点云;(3).mesh.

支持的自定义数据集类型:https://docs.nerf.studio/en/latest/quickstart/custom_dataset.html
ns-process-data各参数说明:https://docs.nerf.studio/en/latest/reference/cli/ns_process_data.html
官方提供的数据集:https://drive.google.com/drive/folders/19TV6kdVGcmg3cGZ1bNIUnBBMD-iQjRbG

五、3D GaussianSplatting安装与使用(即将到来)

  一周内将更新此部分内容

五* CUDA安装(附C++编译器说明)

提示:安装cuda前,首先要确保gcc与g++编译器的版本,与cuda版本相匹配。不确定的先看第5节

1、查看已安装的CUDA版本

  所有已安装的CUDA版本默认保存在/usr/local路径下,cd到该路径下通过ls命令查看:

在这里插入图片描述

2、查看当前使用的CUDA版本

  在/usr/local路径下通过 stat cuda 命令查看当前使用的CUDA版本:

3、安装新的CUDA版本——CUDA11.3为例

3.1、下载对应版本的CUDA安装包: 链接(选择下载runfile文件)

3.2、在下载文件的目录下,通过命令进行安装:

sudo sh cuda_10.0.130_410.48_linux.run
## 安装时去掉对显卡驱动的安装,如下图中去掉第一行

在这里插入图片描述
3.3、修改环境变量
  系统环境中修改cuda版本。执行以下命令,打开环境路径,在最后添加并保存:

gedit ~/.bashrc
## 默认为以上软连接的路径
export PATH=/usr/local/cuda/bin:$PATH  
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export CUDA_HOME=/usr/local/cuda## 也可以指定具体路径
export PATH=/usr/local/cuda-11.3/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.3/lib64:$LD_LIBRARY_PATH

保存环境变量:

source ~/.bashrc

4、CUDA版本的切换

4.1、删除原版本的cuda软连接

sudo rm -rf /usr/local/cuda

4.2、建立新的指向cuda-10.0的软连接

sudo ln -s /usr/local/cuda-10.0 /usr/local/cuda

5.切换gcc与g++版本

  cuda支持的最高版gcc与g++如下表,大部分人都需要降级gcc:

在这里插入图片描述

  安装对应版本gcc与g++(这里以cuda11.3对应的9.5为例):

sudo apt-get install gcc-9
sudo apt-get install g++-9

  随后,进入/usr/bin目录下删除旧版本gcc/g++文件(这里只是删除了软连接):

cd /usr/bin
sudo rm gcc g++

  最后,将gcc/g++和新安装的gcc-9/g+±9关联起来:

sudo ln -s gcc-9 gcc
sudo ln -s g++-9 g++

  查看最新版本:

gcc -V

  其他切换版本方法:gcc版,默认使用优先级最高的版本。设置gcc 10优先级为100,设置gcc 9优先级为70。那么默认使用gcc10。

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 100 --slave /usr/bin/g++ g++ /usr/bin/g++-10 --slave /usr/bin/gcov gcov /usr/bin/gcov-10
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-9 70 --slave /usr/bin/g++ g++ /usr/bin/g++-9 --slave /usr/bin/gcov gcov /usr/bin/gcov-9

  随后,使用以下命令来选择版本(默认选择第1行的,序号为0)

sudo update-alternatives --config gcc

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/801034.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

行云防水堡-打造企业数据安全新防线

企业数据安全,顾名思义就是通过各种手段或者技术或者工具保障企业数据的安全性;保障数据信息的硬件、软件及数据受到保护,不受偶然的或者恶意的原因而遭到破坏、更改、泄露,系统连续可靠正常地运行,信息服务不中断。目…

西圣、漫步者、万魔开放式耳机怎么样?无广真实测评对比推荐

开放式耳机因其独特的音质体验和佩戴舒适度,受到了越来越多消费者的青睐。西圣、漫步者、万魔作为国内知名的耳机品牌,各自都推出了自家的开放式耳机产品,那么,这三款耳机究竟如何呢?身为开放式耳机党的我,…

Datacom HCIP笔记-MPLS协议 之一

MPLS标签放在二层头和IP头之间可以称之为2.5层的位置 LSP(Label Switched Path):标签交换路径,艮即到达同一目的地址的报文在MPLS网络中经过的路径。 FEC(Forwarding Equivalent Class):一般指具…

编辑脚本 shell中的符号

shell中的符号 ~:家目录 !:执行历史命令 $:取变量内容 - * / %:数学运算符 &:后台执行 *:通配符 ?:匹配除回车以外的一个字符 ;:命令分隔符 |:管道符,该符号的上一…

【科研】SCI同行评审-审稿指南与意见撰写

【科研】SCI同行评审-审稿指南与意见撰写 文章目录 1、审稿指南 By Elsevier2、审稿指南 By Nature3、审稿意见撰写 1、审稿指南 By Elsevier Elsevier审稿人注意事项 Elsevier如何进行同行评审 how-to-review 完整的研究文章 检查手稿中解决的研究问题的重要性(例…

uniapp:Hbuilder没有检测到设备请插入设备或启动模拟器的问题解决

问题 使用模拟器调试运行项目时,出现以下提示,“没有检测到设备,请插入设备或启动模拟器后点击刷新再试”。排查了一天最终找到原因。 解决 已确认模拟器是已经正常启动,并且Hbuilder设置中的adb路径和端口都配置没有问题&#…

一文搞懂从爬楼梯到最小花费(力扣70,746)

文章目录 题目前知动态规划简介动态规划模版 爬楼梯一、思路二、解题方法三、Code 使用最小花费爬楼梯一、思路二、解题方法三、Code 总结 在计算机科学中,动态规划是一种强大的算法范例,用于解决多种优化问题。本文将介绍动态规划的核心思想&#xff0c…

主从复制、数据持久化 、Redis主从集群、哨兵机制 、Redis分片集群

数据持久化 Redis、主从集群、哨兵机制 Redis分片集群 1、单点 redis 的问题2、主从复制2.1 命令传播 3、Redis的持久化3.1 AOF3.2 RDB(默认方式)RDB 方式:执行快照时,数据能被修改吗?RDB 方式总结 3.3 RDB 和 AOF 组合…

电路基础-电容-电感

电路基础 电容 通交流阻直流,滤波,旁路,退耦,作驱动电源(洗衣机电机启动时需要一个强电启动) 电容选型的工程值;参考以往开发板的选型;抄作业。 电源并连多个电容的作用 保证单…

30万奖金谁能瓜分?OurBMC开源大赛决赛入围名单公示

首届开放原子开源大赛基础软件赛道自今年 1 月开启报名以来,吸引了全国各地 BMC 技术爱好者的广泛关注和踊跃报名。该赛事由开放原子开源基金会牵头, OurBMC 社区及理事长单位飞腾信息技术有限公司联合承办,以 “基于 BMC 技术的服务器故障诊…

go的orm框架-Gorm

官网文档 特点 全功能 ORM 关联 (拥有一个,拥有多个,属于,多对多,多态,单表继承) Create,Save,Update,Delete,Find 中钩子方法 支持 Preload、Joins 的预加载 事务&…

基于Vue3 中后台管理系统框架

基于Vue3 中后台管理系统框架 文章目录 基于Vue3 中后台管理系统框架一、特点二、源码下载地址 一款开箱即用的 Vue 中后台管理系统框架,支持多款 UI 组件库,兼容PC、移动端。vue-admin, vue-element-admin, vue后台, 后台系统, 后台框架, 管理后台, 管理…

Leetcode - 2009. 使数组连续的最少操作数

文章目录 解析排序 原地去重 滑动窗口AC CODE 题目链接:Leetcode - 2009. 使数组连续的最少操作数 解析 题中所述的连续数组就是一串连续的自然数,想问需要多少次操作能将原数组变为连续的数。 我们排序去重,用逆向思维想能保留的数字数目…

Qt | Q_PROPERTY属性和QVariant 类

一、属性基础 1、属性与数据成员相似,但是属性可使用 Qt 元对象系统的功能。他们的主要差别在于存取方式不相同,比如属性值通常使用读取函数(即函数名通常以 get 开始的函数)和设置函数(即函数名通常以 set 开始的函数)来存取其值,除此种方法外,Qt 还有其他方式存取属性值…

20240325-2-K-means面试题

K-means面试题 1. 聚类算法(clustering Algorithms)介绍 聚类是一种无监督学习—对大量未知标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大而类别间的数据相似度较小。 聚类算法可以分为原型…

构建高效网络:深入理解正向与反向代理的作用与配置

正向代理 如果把局域网外的互联网环境想象成一个巨大的资源库,则局域网中的客户端要访问互联网则需要通过代理服务器来访问,这种代理成为正向代理。 示例: 用户想要访问 https://chensir.ink (目标服务器)&#xff0…

基于SSE长连接的智能客服问答系统技术方案及完整项目源码

文章目录 一、项目背景二、项目演示三、项目介绍B系统主要功能1. 注册登录重置密码2. 权限管理3. 项目管理4.客服管理 C系统主要功能1. 问答组件2. 主题色定制3. 类微信时间显示控件及智能tip提示4. 无障碍阅读4. 丰富的输入框组件5. 人工客服6. 聊天记录分表记录与查询 四、项…

Scala大数据开发

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl Scala简述 在此,简要介绍 Scala 的基本信息和情况。 Scala释义 Scala 源自于英语单词scalable,表示可伸缩的、可扩展的含义。 Scala作者 Scala编…

K8s学习十(高级调度)

高级调度 CronJob计划任务 在 k8s 中周期性运行计划任务,与 linux 中的 crontab 相同注意点:CronJob 执行的时间是 controller-manager 的时间,所以一定要确保 controller-manager 时间是准确的cron表达式如下: 配置如下&#x…

Axios 使用教程

Axios 是什么? Axios 是一个基于 promise 网络请求库,作用于node.js 和浏览器中。 它是 isomorphic 的(即同一套代码可以运行在浏览器和node.js中)。在服务端它使用原生 node.js http 模块, 而在客户端 (浏览端) 则使用 XMLHttpRequests。 特性 从浏览器创建 XM…