必知必会!使用NumPy对数组进行拆分

使用NumPy对数组进行拆分是一种高效且灵活的数据处理方式。NumPy提供了多种函数,如numpy.split()numpy.hsplit(), 和 numpy.vsplit(),使得数组可以根据不同的需求进行拆分。这些函数能够精确控制拆分的数量和位置,满足不同的数据处理和分析需求。例如,numpy.split()可以按照指定的份数或索引位置将数组分割成多个子数组;而numpy.hsplit()numpy.vsplit()则分别用于沿数组的水平和垂直方向进行拆分。通过这些拆分操作,用户可以轻松地将复杂的数据集划分为更小的、更易于管理的部分,从而简化数据处理流程,提高数据处理效率。​​​​​​​

1.np.vsplit():垂直拆分,需要等分

# 导包import numpy as np# 创建一个6行4列的二维数组n = np.random.randint(0,100,size=(6,4))n# 执行结果array([[11, 47, 82, 13],       [17, 66, 24, 53],       [84, 10, 72, 20],       [83, 33,  7, 23],       [19, 67, 13, 19],       [70, 50, 39, 81]])# np.vsplit:垂直拆分,需要等分np.vsplit(n,3)    # 平均拆成3份# 执行结果[array([[11, 47, 82, 13],        [17, 66, 24, 53]]), array([[84, 10, 72, 20],        [83, 33,  7, 23]]), array([[19, 67, 13, 19],        [70, 50, 39, 81]])]        # 可以按照指定的位置拆分:(0-1),(1-2),(2-4),(4-最后)np.vsplit(n,(1,2,4))# 执行结果[array([[11, 47, 82, 13]]), array([[17, 66, 24, 53]]), array([[84, 10, 72, 20],        [83, 33,  7, 23]]), array([[19, 67, 13, 19],        [70, 50, 39, 81]])]

2.np.hsplit():水平方向拆分

# 水平方向拆分np.hsplit(n,2)# 执行结果[array([[11, 47],        [17, 66],        [84, 10],        [83, 33],        [19, 67],        [70, 50]]), array([[82, 13],        [24, 53],        [72, 20],        [ 7, 23],        [13, 19],        [39, 81]])]# 可以按照指定的位置拆分:(0-1),(1-2),(2-最后)np.hsplit(n,(1,2))# 执行结果[array([[11, 47],        [17, 66],        [84, 10],        [83, 33],        [19, 67],        [70, 50]]), array([[82, 13],        [24, 53],        [72, 20],        [ 7, 23],        [13, 19],        [39, 81]])]# 可以按照指定的位置拆分:(0-1),(1-2),(2-最后)np.hsplit(n,(1,2))# 执行结果[array([[11],        [17],        [84],        [83],        [19],        [70]]), array([[47],        [66],        [10],        [33],        [67],        [50]]), array([[82, 13],        [24, 53],        [72, 20],        [ 7, 23],        [13, 19],        [39, 81]])]

3.np.split():可以做水平或垂直拆分

# split:可以做水平或垂直拆分,axis=0 行,axis=1 列# 默认按行拆分np.split(n,2)# 执行结果[array([[11, 47, 82, 13],        [17, 66, 24, 53],        [84, 10, 72, 20]]), array([[83, 33,  7, 23],        [19, 67, 13, 19],        [70, 50, 39, 81]])]        # 按行拆分np.split(n,2,axis=0)# 执行结果[array([[11, 47, 82, 13],        [17, 66, 24, 53],        [84, 10, 72, 20]]), array([[83, 33,  7, 23],        [19, 67, 13, 19],        [70, 50, 39, 81]])]        # 按列拆分np.split(n,2,axis=1)# 执行结果[array([[11, 47],        [17, 66],        [84, 10],        [83, 33],        [19, 67],        [70, 50]]), array([[82, 13],        [24, 53],        [72, 20],        [ 7, 23],        [13, 19],        [39, 81]])]

4.案例:把图片拆分

# 数据分析三剑客import numpy as npimport pandas as pdimport matplotlib.pyplot as plt# python.png# 图片:其实时数字组成的,三维数组# RGB:红Red,绿Green,蓝Blue# RGB范围:0-255# plt.imread:读取图片的数据pyimg = plt.imread("python.png")pyimgprint(pyimg.shape)# 执行结果(539, 1080, 4)# 切片img = pyimg[:-1]img.shape# 执行结果(538, 1080, 4)plt.imshow(img)# 垂直拆分img1 = np.split(img,2)img1# 执行结果[array([[[0.09019608, 0.15294118, 0.24313726, 1.        ],         [0.05882353, 0.12156863, 0.21176471, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ],         ...,         [0.05490196, 0.11764706, 0.20784314, 1.        ],         [0.05098039, 0.11372549, 0.20392157, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ]],         [[0.09019608, 0.15294118, 0.24313726, 1.        ],         [0.05882353, 0.12156863, 0.21176471, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ],         ...,         [0.05490196, 0.11764706, 0.20784314, 1.        ],         [0.05098039, 0.11372549, 0.20392157, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ]],         [[0.09019608, 0.15294118, 0.24313726, 1.        ],         [0.05882353, 0.12156863, 0.21176471, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ],         ...,         [0.05490196, 0.11764706, 0.20784314, 1.        ],         [0.05098039, 0.11372549, 0.20392157, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ]],         ...,         [[0.09019608, 0.15294118, 0.24313726, 1.        ],         [0.05882353, 0.12156863, 0.21176471, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ],         ...,         [0.05490196, 0.11764706, 0.20784314, 1.        ],         [0.05098039, 0.11372549, 0.20392157, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ]],         [[0.09019608, 0.15294118, 0.24313726, 1.        ],         [0.05882353, 0.12156863, 0.21176471, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ],         ...,         [0.05490196, 0.11764706, 0.20784314, 1.        ],         [0.05098039, 0.11372549, 0.20392157, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ]],         [[0.09019608, 0.15294118, 0.24313726, 1.        ],         [0.05882353, 0.12156863, 0.21176471, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ],         ...,         [0.05490196, 0.11764706, 0.20784314, 1.        ],         [0.05098039, 0.11372549, 0.20392157, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ]]], dtype=float32), array([[[0.09019608, 0.15294118, 0.24313726, 1.        ],         [0.05882353, 0.12156863, 0.21176471, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ],         ...,         [0.05490196, 0.11764706, 0.20784314, 1.        ],         [0.05098039, 0.11372549, 0.20392157, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ]],         [[0.09019608, 0.15294118, 0.24313726, 1.        ],         [0.05882353, 0.12156863, 0.21176471, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ],         ...,         [0.05490196, 0.11764706, 0.20784314, 1.        ],         [0.05098039, 0.11372549, 0.20392157, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ]],         [[0.09019608, 0.15294118, 0.24313726, 1.        ],         [0.05882353, 0.12156863, 0.21176471, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ],         ...,         [0.05490196, 0.11764706, 0.20784314, 1.        ],         [0.05098039, 0.11372549, 0.20392157, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ]],         ...,         [[0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         ...,         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ]],         [[0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         ...,         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ]],         [[0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         ...,         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ]]], dtype=float32)]         # 图片上半部分plt.imshow(img1[0])# 图片下半部分plt.imshow(img1[1])# 水平拆分成5等份img2 = np.split(img,5,axis=1)img2# 执行结果[array([[[0.09019608, 0.15294118, 0.24313726, 1.        ],         [0.05882353, 0.12156863, 0.21176471, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ],         ...,         [0.10196079, 0.1764706 , 0.29411766, 1.        ],         [0.10196079, 0.1764706 , 0.29411766, 1.        ],         [0.10196079, 0.1764706 , 0.29411766, 1.        ]],         [[0.09019608, 0.15294118, 0.24313726, 1.        ],         [0.05882353, 0.12156863, 0.21176471, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ],         ...,         [0.10196079, 0.1764706 , 0.29411766, 1.        ],         [0.10196079, 0.1764706 , 0.29411766, 1.        ],         [0.10196079, 0.1764706 , 0.29411766, 1.        ]],         [[0.09019608, 0.15294118, 0.24313726, 1.        ],         [0.05882353, 0.12156863, 0.21176471, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ],         ...,         [0.10196079, 0.1764706 , 0.29411766, 1.        ],         [0.10196079, 0.1764706 , 0.29411766, 1.        ],         [0.10196079, 0.1764706 , 0.29411766, 1.        ]],         ...,         [[0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         ...,         [0.11372549, 0.29803923, 0.64705884, 1.        ],         [0.11764706, 0.29411766, 0.6509804 , 1.        ],         [0.11764706, 0.29411766, 0.6509804 , 1.        ]],         [[0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         ...,         [0.11372549, 0.29803923, 0.64705884, 1.        ],         [0.11764706, 0.29411766, 0.6509804 , 1.        ],         [0.11764706, 0.29411766, 0.6509804 , 1.        ]],         [[0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         ...,         [0.11372549, 0.29803923, 0.64705884, 1.        ],         [0.11764706, 0.29411766, 0.6509804 , 1.        ],         [0.11764706, 0.29411766, 0.6509804 , 1.        ]]], dtype=float32), array([[[0.10196079, 0.1764706 , 0.29411766, 1.        ],         [0.10196079, 0.1764706 , 0.29411766, 1.        ],         [0.10196079, 0.1764706 , 0.29411766, 1.        ],         ...,         [0.11372549, 0.21960784, 0.40392157, 1.        ],         [0.11372549, 0.21960784, 0.40392157, 1.        ],         [0.11372549, 0.21960784, 0.40392157, 1.        ]],         [[0.10196079, 0.1764706 , 0.29411766, 1.        ],         [0.10196079, 0.1764706 , 0.29411766, 1.        ],         [0.10196079, 0.1764706 , 0.29411766, 1.        ],         ...,         [0.11372549, 0.21960784, 0.40392157, 1.        ],         [0.11372549, 0.21960784, 0.40392157, 1.        ],         [0.11372549, 0.21960784, 0.40392157, 1.        ]],         [[0.10196079, 0.1764706 , 0.29411766, 1.        ],         [0.10196079, 0.1764706 , 0.29411766, 1.        ],         [0.10196079, 0.1764706 , 0.29411766, 1.        ],         ...,         [0.11372549, 0.21960784, 0.40392157, 1.        ],         [0.11372549, 0.21960784, 0.40392157, 1.        ],         [0.11372549, 0.21960784, 0.40392157, 1.        ]],         ...,         [[0.11764706, 0.29411766, 0.6509804 , 1.        ],         [0.11764706, 0.29411766, 0.6509804 , 1.        ],         [0.12156863, 0.29803923, 0.654902  , 1.        ],         ...,         [0.5294118 , 0.72156864, 0.9490196 , 1.        ],         [0.53333336, 0.7294118 , 0.95686275, 1.        ],         [0.5254902 , 0.7254902 , 0.9607843 , 1.        ]],         [[0.11764706, 0.29411766, 0.6509804 , 1.        ],         [0.11764706, 0.29411766, 0.6509804 , 1.        ],         [0.12156863, 0.29803923, 0.654902  , 1.        ],         ...,         [0.53333336, 0.7254902 , 0.9529412 , 1.        ],         [0.5372549 , 0.73333335, 0.9607843 , 1.        ],         [0.5254902 , 0.7254902 , 0.9607843 , 1.        ]],         [[0.11764706, 0.29411766, 0.6509804 , 1.        ],         [0.12156863, 0.29803923, 0.654902  , 1.        ],         [0.1254902 , 0.3019608 , 0.65882355, 1.        ],         ...,         [0.5372549 , 0.7294118 , 0.95686275, 1.        ],         [0.54509807, 0.7372549 , 0.96862745, 1.        ],         [0.53333336, 0.73333335, 0.96862745, 1.        ]]], dtype=float32), array([[[0.11372549, 0.21960784, 0.40392157, 1.        ],         [0.11372549, 0.21960784, 0.40392157, 1.        ],         [0.11372549, 0.21960784, 0.40392157, 1.        ],         ...,         [0.10196079, 0.21176471, 0.39607844, 1.        ],         [0.10196079, 0.21176471, 0.4       , 1.        ],         [0.10196079, 0.21176471, 0.4       , 1.        ]],         [[0.11372549, 0.21960784, 0.40392157, 1.        ],         [0.11372549, 0.21960784, 0.40392157, 1.        ],         [0.11372549, 0.21960784, 0.40392157, 1.        ],         ...,         [0.10196079, 0.21176471, 0.39607844, 1.        ],         [0.10196079, 0.21176471, 0.4       , 1.        ],         [0.10196079, 0.21176471, 0.4       , 1.        ]],         [[0.11372549, 0.21960784, 0.40392157, 1.        ],         [0.11372549, 0.21960784, 0.40392157, 1.        ],         [0.11372549, 0.21960784, 0.40392157, 1.        ],         ...,         [0.10196079, 0.21176471, 0.39607844, 1.        ],         [0.10196079, 0.21176471, 0.4       , 1.        ],         [0.10196079, 0.21176471, 0.4       , 1.        ]],         ...,         [[0.5176471 , 0.7176471 , 0.9647059 , 1.        ],         [0.5137255 , 0.7254902 , 0.972549  , 1.        ],         [0.52156866, 0.73333335, 0.9843137 , 1.        ],         ...,         [0.05882353, 0.19607843, 0.41568628, 1.        ],         [0.06666667, 0.19215687, 0.41568628, 1.        ],         [0.07058824, 0.19607843, 0.41960785, 1.        ]],         [[0.52156866, 0.72156864, 0.96862745, 1.        ],         [0.5176471 , 0.7294118 , 0.9764706 , 1.        ],         [0.5254902 , 0.7372549 , 0.9882353 , 1.        ],         ...,         [0.05882353, 0.19607843, 0.42352942, 1.        ],         [0.06666667, 0.19215687, 0.42352942, 1.        ],         [0.07058824, 0.19607843, 0.42745098, 1.        ]],         [[0.5254902 , 0.7254902 , 0.972549  , 1.        ],         [0.52156866, 0.73333335, 0.98039216, 1.        ],         [0.5294118 , 0.7411765 , 0.99215686, 1.        ],         ...,         [0.0627451 , 0.19607843, 0.42352942, 1.        ],         [0.07058824, 0.19607843, 0.42745098, 1.        ],         [0.07058824, 0.19607843, 0.42745098, 1.        ]]], dtype=float32), array([[[0.10196079, 0.21176471, 0.4       , 1.        ],         [0.10196079, 0.21176471, 0.4       , 1.        ],         [0.10196079, 0.21176471, 0.4       , 1.        ],         ...,         [0.10196079, 0.1764706 , 0.29411766, 1.        ],         [0.10196079, 0.1764706 , 0.29411766, 1.        ],         [0.09803922, 0.17254902, 0.2901961 , 1.        ]],         [[0.10196079, 0.21176471, 0.4       , 1.        ],         [0.10196079, 0.21176471, 0.4       , 1.        ],         [0.10196079, 0.21176471, 0.4       , 1.        ],         ...,         [0.10196079, 0.1764706 , 0.29411766, 1.        ],         [0.10196079, 0.1764706 , 0.29411766, 1.        ],         [0.09803922, 0.17254902, 0.2901961 , 1.        ]],         [[0.10196079, 0.21176471, 0.4       , 1.        ],         [0.10196079, 0.21176471, 0.4       , 1.        ],         [0.10196079, 0.21176471, 0.4       , 1.        ],         ...,         [0.10196079, 0.1764706 , 0.29411766, 1.        ],         [0.10196079, 0.1764706 , 0.29411766, 1.        ],         [0.09803922, 0.17254902, 0.2901961 , 1.        ]],         ...,         [[0.07058824, 0.19607843, 0.42745098, 1.        ],         [0.07058824, 0.1882353 , 0.42352942, 1.        ],         [0.06666667, 0.18431373, 0.41960785, 1.        ],         ...,         [0.23921569, 0.5176471 , 0.8627451 , 1.        ],         [0.23921569, 0.5176471 , 0.8627451 , 1.        ],         [0.23921569, 0.5176471 , 0.8627451 , 1.        ]],         [[0.07058824, 0.19607843, 0.42745098, 1.        ],         [0.07058824, 0.1882353 , 0.42352942, 1.        ],         [0.06666667, 0.18431373, 0.41960785, 1.        ],         ...,         [0.1882353 , 0.4862745 , 0.8627451 , 1.        ],         [0.1882353 , 0.4862745 , 0.8627451 , 1.        ],         [0.1882353 , 0.4862745 , 0.8627451 , 1.        ]],         [[0.07058824, 0.19607843, 0.42745098, 1.        ],         [0.07058824, 0.1882353 , 0.42352942, 1.        ],         [0.06666667, 0.18431373, 0.41960785, 1.        ],         ...,         [0.16470589, 0.47843137, 0.8666667 , 1.        ],         [0.16470589, 0.47843137, 0.8666667 , 1.        ],         [0.16470589, 0.47843137, 0.8666667 , 1.        ]]], dtype=float32), array([[[0.09411765, 0.16862746, 0.28627452, 1.        ],         [0.10196079, 0.1764706 , 0.2901961 , 1.        ],         [0.10196079, 0.18039216, 0.28627452, 1.        ],         ...,         [0.05490196, 0.11764706, 0.20784314, 1.        ],         [0.05098039, 0.11372549, 0.20392157, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ]],         [[0.09411765, 0.16862746, 0.28627452, 1.        ],         [0.10196079, 0.1764706 , 0.2901961 , 1.        ],         [0.10196079, 0.18039216, 0.28627452, 1.        ],         ...,         [0.05490196, 0.11764706, 0.20784314, 1.        ],         [0.05098039, 0.11372549, 0.20392157, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ]],         [[0.09411765, 0.16862746, 0.28627452, 1.        ],         [0.10196079, 0.1764706 , 0.2901961 , 1.        ],         [0.10196079, 0.18039216, 0.28627452, 1.        ],         ...,         [0.05490196, 0.11764706, 0.20784314, 1.        ],         [0.05098039, 0.11372549, 0.20392157, 1.        ],         [0.08235294, 0.14509805, 0.23529412, 1.        ]],         ...,         [[0.23921569, 0.5176471 , 0.8627451 , 1.        ],         [0.23921569, 0.5176471 , 0.8627451 , 1.        ],         [0.23921569, 0.5176471 , 0.8627451 , 1.        ],         ...,         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ]],         [[0.1882353 , 0.4862745 , 0.8627451 , 1.        ],         [0.1882353 , 0.4862745 , 0.8627451 , 1.        ],         [0.1882353 , 0.4862745 , 0.8627451 , 1.        ],         ...,         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ]],         [[0.16470589, 0.47843137, 0.8666667 , 1.        ],         [0.16470589, 0.47843137, 0.8666667 , 1.        ],         [0.16470589, 0.47843137, 0.8666667 , 1.        ],         ...,         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ],         [0.0627451 , 0.25882354, 0.5294118 , 1.        ]]], dtype=float32)]         # 显示第三部分图片plt.imshow(img2[2])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/800495.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024/4/1—力扣—按摩师

代码实现&#xff1a; 思路&#xff1a;打家劫舍题 int massage(int *nums, int numsSize) {if (nums NULL || numsSize 0) {return 0;}if (numsSize 1) {return nums[0];}int dp[numsSize];memset(dp, 0, sizeof(dp));dp[0] nums[0];dp[1] (nums[0] < nums[1] ? nums…

【NLP】多标签分类【下】

文章目录 简介个人博客与相关链接1 实验数据与任务说明2 模型介绍2.1 TransformerTransformer能做什么&#xff1f; 2.2 Hugging FaceHugging Face的Transformers库社区支持和资源预训练模型的应用 2.3 T5模型&#xff08;Text-To-Text Transfer Transformer&#xff09;T5的核…

时间系列预测总结

转载自&#xff1a;https://mp.weixin.qq.com/s/B1eh4IcHTnEdv2y0l4MCog 拥有一种可靠的方法来预测和预测未来事件一直是人类的愿望。在数字时代&#xff0c;我们拥有丰富的信息&#xff0c;尤其是时间序列数据。 时间序列是指基于时间刻度维度&#xff08;天、月、年等&…

【THM】Protocols and Servers 2(协议和服务器 2

介绍 协议和服务器房间涵盖了许多协议: 远程登录HTTP协议文件传输协议邮件传输协议POP3IMAP实现这些协议的服务器会受到不同类型的攻击。仅举几例,请考虑: 嗅探攻击(网络数据包捕获)中间人 ( MITM ) 攻击密码攻击(身份验证攻击)漏洞从安全的角度来看,我们始终需要思考…

用API技术为数据安全“上保险”——双重保障

&#x1f50d;API在数据安全领域的核心地位 随着数字化进程的狂飙突进&#xff0c;应用程序接口&#xff08;API&#xff09;已化身为企业内部、不同平台间以及用户交互的关键纽带。它们不仅是数据流动与共享的驱动引擎&#xff0c;更是守护数据安全的重要防线。其中&#xf…

端口敲击守护程序之DC-9

总结 getwebshell : 发现SQL注入 → 登录系统 → 疑似文件包含 → FUZZ参数 → 文件包含读取守护程序 → 敲击打开SSH端口 → 利用泄露账号密码登录 提 权 思 路 : 发现3个用户 → 登录获取密码字典 → 再次爆破获取第4个用户 → sudo文件发现 → 存在root权限写入功能 → pa…

共生共舞的期货黄金和现货黄金

期货黄金&#xff0c;作为一种在金融市场上备受关注的投资工具&#xff0c;其价值与价格走势深受现货黄金市场的直接影响和联动。期货黄金交易&#xff0c;本质上是投资者对未来某一特定时间内黄金价格的预期进行押注&#xff0c;而这背后的逻辑支撑和价格基准正是现货黄金市场…

2024通信技术与航空航天工程国际会议(ICCTAE2024)

2024通信技术与航空航天工程国际会议(ICCTAE2024) 会议简介 通信技术和航空航天领域有着密切的关联和深远的意义。 随着通信技术和航空航天工程的快速发展&#xff0c;这两个领域的交叉融合为学术界和工业界提供了广阔的研究空间和实际应用前景。为了进一步推动相关领域的发…

Ubuntu 20.04.06 PCL C++学习记录(二十)

[TOC]PCL中点云分割模块的学习 学习背景 参考书籍&#xff1a;《点云库PCL从入门到精通》以及官方代码PCL官方代码链接,&#xff0c;PCL版本为1.10.0&#xff0c;CMake版本为3.16 学习内容 基于颜色的区域增长细分 源代码及所用函数 源代码 #include<iostream> #i…

HIS系统是什么?一套前后端分离云HIS系统源码 接口技术RESTful API + WebSocket + WebService

HIS系统是什么&#xff1f;一套前后端分离云HIS系统源码 接口技术RESTful API WebSocket WebService 医院管理信息系统(全称为Hospital Information System)即HIS系统。 常规模版包括门诊管理、住院管理、药房管理、药库管理、院长查询、电子处方、物资管理、媒体管理等&…

Grafana告警(邮件)自定义模板配置

一年前给客户部署配置过grafana&#xff0c;告警配置也是用的原始的&#xff0c;客户在使用过程中只需要一些核心点信息&#xff0c;想要实现这个就需要用Grafana的自定义告警模板以及编辑邮件模板。 通知模板 模板信息的配置中查阅了相关资料&#xff0c;自己组装了一套&…

【IC前端虚拟项目】spyglass lint环境组织与lint清理

【IC前端虚拟项目】数据搬运指令处理模块前端实现虚拟项目说明-CSDN博客 和上个虚拟项目的lint清理环节一样&#xff0c;关于spyglass的lint清理功能与流程还是大家通过各种资料去学习下就好啦。和之前不同的事&#xff0c;这次的虚拟项目里我把流程封装为Makefile&#xff0c;…

三流大学毕业,物流专业转行自述:“从月薪4K到现在月入2W+,我做到了哪些?”

我是25岁转行学python的。说实在&#xff0c;转行就是奔着挣钱去的。希望我的经历可以给想转行的朋友带来一点启发和借鉴。 先简单介绍下个人背景&#xff0c;三流大学毕业&#xff0c;物流专业&#xff0c;学习能力一般&#xff0c;没啥特别技能&#xff0c;反正就很普通的一…

C++ //练习 11.23 11.2.1节练习(第378页)中的map以孩子的姓为关键字,保存他们的名的vector,用multimap重写此map。

C Primer&#xff08;第5版&#xff09; 练习 11.23 练习 11.23 11.2.1节练习&#xff08;第378页&#xff09;中的map以孩子的姓为关键字&#xff0c;保存他们的名的vector&#xff0c;用multimap重写此map。 环境&#xff1a;Linux Ubuntu&#xff08;云服务器&#xff09;…

flutter 获取验证码倒计时组件封装

send_sms_btn.dart import dart:async;import package:flutter/material.dart; import package:get/get.dart;// 发送验证码 按钮 class SendSmsBtn extends StatefulWidget {final Future<bool> Function()? onTap;const SendSmsBtn({super.key,this.onTap,});overrid…

CS162 Operating System笔记

What is an Operating System? it’s typically a special layer of software that provides the application access to hardware resources.So.it’s convenient abs fractions of complex hardware devices.

FHE全同态加密简介

1. 何为FHE&#xff1f; FHE (Fully homomorphic encryption)&#xff1a; 是一种隐私技术&#xff0c;支持直接对密文进行计算&#xff0c;而无需对密文先解密再计算。即&#xff0c;任何第三方或云厂商&#xff0c;都可对敏感信息的密文进行处理&#xff0c;而无需访问密文内…

快速安装/升级/卸载Ascend配套软件包的

一、参考资料 配套MindSpore 昇腾软件安装指引&#xff08;23.0.RC3&#xff09; 快速安装CANN 二、安装Ascend配套软件包 1. Ascend配套软件包简介 Ascend配套软件包&#xff0c;包括&#xff1a;固件、驱动和CANN&#xff08;Compute Architecture for Neural Networks&…

近距离共享数字化实战经验,深挖数据价值赋能千行百业

近期&#xff0c;思迈特软件积极投身于金融、制造、零售、医疗等多个行业的线下活动中&#xff0c;深度解析行业趋势&#xff0c;分享BI数字化创新解决方案&#xff0c;并与客户及合作伙伴进行深入交流。通过这些活动&#xff0c;不仅展示了思迈特软件在各领域的先进技术和成果…

【数据结构】双向链表 C++

一、什么是双向链表 1、定义 双向链表也叫双链表&#xff0c;是链表的一种&#xff0c;它的每个数据结点中都有两个指针&#xff0c;分别指向直接后继和直接前驱。所以&#xff0c;从双向链表中的任意一个结点开始&#xff0c;都可以很方便地访问它的前驱结点和后继结点。 双…