3D目标检测跟踪 | 基于kitti+waymo数据集的自动驾驶场景的3D目标检测+跟踪渲染可视化

  • 项目应用场景
    • 面向自动驾驶场景的 3D 目标检测+目标跟踪,基于kitti+waymo数据集的自动驾驶场景的3D目标检测+跟踪渲染可视化查看。
  • 项目效果

  • 项目细节 ==> 具体参见项目 README.md
    • (1) Kitti detection 数据集结构
# For Kitti Detection Dataset         
└── kitti_detection├── testing |      ├──calib|      ├──image_2|      ├──label_2|      └──velodyne      └── training├──calib├──image_2├──label_2└──velodyne 
    • (2) Kitti tracking 数据集结构
# For Kitti Tracking Dataset         
└── kitti_tracking├── testing |      ├──calib|      |    ├──0000.txt|      |    ├──....txt|      |    └──0028.txt|      ├──image_02|      |    ├──0000|      |    ├──....|      |    └──0028|      ├──label_02|      |    ├──0000.txt|      |    ├──....txt|      |    └──0028.txt|      └──velodyne|           ├──0000|           ├──....|           └──0028      └── training # the structure is same as testing set├──calib├──image_02├──label_02└──velodyne 
    • (3) 安装依赖
pip install python3 \numpy==1.21.3 \vedo==2021.0.6 \vtk==9.0.3 \opencv==4.5.4.58 \matplotlib==3.4.3
    • (4) 执行示例
from viewer.viewer import Viewer
import numpy as npvi = Viewer() # set box_type='OpenPCDet' if you use OpenPCDet boxes
len_dataset = 1000for i in range(len_dataset):pseudo_boxes = np.array([[i*0.05, -1, 1, 1, 1, 1, 0], [i*0.05, 1, 1, 1, 1, 1, 0]]) # your boxesids = np.array([0,1]) # your boxes ids (optional)pseudo_points = np.random.randn(100, 3) # your pointsvi.add_points(pseudo_points, radius=4, scatter_filed=pseudo_points[:, 0])vi.add_3D_boxes(pseudo_boxes, ids=ids,caption_size=(0.09,0.09))vi.add_spheres(pseudo_boxes[:, 0:3],radius=0.03,res=10,color='red',del_after_show=False, alpha=1) # Draw motion trackvi.show_3D() # press the Q or Enter or ESC key to view
  • 项目获取
    • https://download.csdn.net/download/weixin_42405819/89093750

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/799333.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

4.7总结(内部类,JDBC API || 离散化,树状数组)

JAVA学习小结 一.内部类 基础概念,用途和访问特点 什么是内部类:写在一个类中的另一个类称之为内部类; 内部类的用途:用于封装那些单独存在时没有意义,且是外部类的一部分的类(汽车发动机,人…

【MySQL探索之旅】数据库设计以及聚合查询

📚博客主页:爱敲代码的小杨. ✨专栏:《Java SE语法》 | 《数据结构与算法》 | 《C生万物》 |《MySQL探索之旅》 |《Web世界探险家》 ❤️感谢大家点赞👍🏻收藏⭐评论✍🏻,您的三连就是我持续更…

Django之静态文件及模板语法(上)

Python学习之路系列文章目录 python面向对象之警察与匪徒火拼场景模拟python面向对像之第二次笔记Django环境搭建及测试第1个Django应用及Django的请求处理Django之静态文件及模板语法(上) 静态文件及模板语法 Python学习之路系列文章目录一、静态文件1.…

SQLite 4.9的虚拟表机制(十四)

返回:SQLite—系列文章目录 上一篇:SQLite 4.9的 OS 接口或“VFS”(十三) 下一篇:SQLite—系列文章目录 1. 引言 虚拟表是向打开的 SQLite 数据库连接注册的对象。从SQL语句的角度来看, 虚拟表对象与任何其他…

软考高级:计算机网络概述

作者:明明如月学长, CSDN 博客专家,大厂高级 Java 工程师,《性能优化方法论》作者、《解锁大厂思维:剖析《阿里巴巴Java开发手册》》、《再学经典:《Effective Java》独家解析》专栏作者。 热门文章推荐&am…

数据库相关知识总结

一、数据库三级模式 三个抽象层次: 1. 视图层:最高层次的抽象,描述整个数据库的某个部分的数据 2. 逻辑层:描述数据库中存储的数据以及这些数据存在的关联 3. 物理层:最低层次的抽象,描述数据在存储器中时如…

五一假期来临,各地景区云旅游、慢直播方案设计与平台搭建

一、行业背景 经文化和旅游部数据中心测算,今年清明节假期3天全国国内旅游出游1.19亿人次,按可比口径较2019年同期增长11.5%;国内游客出游花费539.5亿元,较2019年同期增长12.7%。踏青赏花和户外徒步成为假期的热门出游主题。随着…

Taro打包生成不同目录

使用taro init创建taro项目时,taro默认打包目录是: /config/index.js outputRoot:dist默认的目录,编译不同平台代码时就会覆盖掉,为了达到多端同步调试的目的,这时需要修改默认生成目录了,通过查看官方文…

【LeetCode】排序数组——不一样的方式实现快排

目录 题目链接 颜色分类 算法原理 代码实现 排序数组 算法原理 代码实现 最小的k个数 算法原理 代码实现 题目链接 LeetCode链接:75. 颜色分类 - 力扣(LeetCode) LeetCode链接:912. 排序数组 - 力扣(L…

docker 部署 Epusdt - 独角数卡 dujiaoka 的 usdt 支付插件

部署 部署说明 部署之前必须注意的几点事项,该教程不一定适合所有用户: 本教程主要是使用 docker 部署,宝塔用户或宿主机直接安装的用户请直接参考官网教程.本教程是独立部署 epusdt,使用独立的mysql和redis,与dujiaoka项目分开. 在研究的过程中发现 epusdt 也需要用到 mys…

CADP加密系统的可扩展性和可定制性

CADP加密系统是一种专门用于保护CAD(计算机辅助设计)文件安全的加密解决方案。随着CAD技术在各个领域的广泛应用,CAD文件的安全性和保密性日益受到重视。CADP加密系统通过一系列先进的加密技术和安全措施,为CAD文件提供全面的保护,防止未经授…

ES入门十五:分页的三驾马车【from+size、search after、scroll api】

从数据集中获取数据时分页是绕不开的操作,一下子从数据集中获取过多的数据可能会造成系统抖动、占用带宽等问题。特别是进行全文搜索时,用户只关心相关性最高的那个几个结果,从系统中拉取过多的数据等于浪费资源。 ES提供了3种分页方式&…

Java | Leetcode Java题解之第15题三数之和

题目&#xff1a; 题解&#xff1a; class Solution {public List<List<Integer>> threeSum(int[] nums) {int n nums.length;Arrays.sort(nums);List<List<Integer>> ans new ArrayList<List<Integer>>();// 枚举 afor (int first 0;…

springboot整合ShardingSphere分库分表并插入1kw条记录

目录 一&#xff0c;数据分片 二&#xff0c;水平分片 三&#xff0c;创建数据库表 四&#xff0c;springboot项目导入依赖 五&#xff0c;创建类 六&#xff0c;bug bug放到最后了。 一&#xff0c;数据分片 数据分片指按照某个维度将存放在单一数据库中的数据分散地存…

每天学习一个Linux命令之curl

每天学习一个Linux命令之curl 在Linux系统中&#xff0c;有很多有用的命令可以帮助我们与网络进行交互。一个非常常用的命令是curl&#xff0c;它是一个功能强大的工具&#xff0c;可用于发送、接收和处理各种网络请求。本文将详细介绍在Linux下使用curl命令的各种选项及其用法…

如何理解图像处理领域的病态问题(ill-posed problem)

ill-posed problem&#xff0c;我们可以理解为病态问题或者不适定问题。在本文中&#xff0c;统一成为不适定问题。 在讨论不适定问题&#xff08;ill-posed problem&#xff09;之前&#xff0c;我们先来看一下什么叫适定性问题&#xff08;well-posed problem&#xff09;。…

如何明确的选择IT方向?

一、明确目标 作为初学者&#xff0c;先树立自己目标&#xff0c;找到自己感兴趣的IT行业&#xff0c;IT行业分很多种&#xff0c;听的最多次的无非不就是web前端工、程序员、后端、大数据、网络运维等。学习知识也是为了找到更好的工作&#xff0c;所以我建议先去boss直聘、五…

目标检测标签分配策略,难样本挖掘策略

在目标检测任务中&#xff0c;样本的划分对于模型的性能具有至关重要的影响。其中&#xff0c;正样本指的是包含目标物体的图像或区域&#xff0c;而负样本则是不包含目标物体的图像或区域。然而&#xff0c;在负样本中&#xff0c;有一部分样本由于其与正样本在特征上的相似性…

jest单元测试——项目实战

jest单元测试——项目实战 一、纯函数测试二、组件测试三、接口测试四、React Hook测试&#x1f4a5; 其他的疑难杂症另&#xff1a;好用的方法 &#x1f31f; 温故而知新&#xff1a;单元测试工具——JEST 包括&#xff1a;什么是单元测试、jest的基本配置、快照测试、mock函数…

「39」打造专业流畅的直播特效转场……

「39」工作室模式 打造专业流畅的直播特效转场体验 工作室模式是OBS软件里的一个特殊功能,用于后期直播过程中追求直播效果的用户,才会使用此功能。 该功能意在更加平滑,使用模板信息变化的过渡效果。主要用在赛事比分、活动抽奖、直播时需要经常更改的场景和内容,以及片…