【数据结构与算法】:快速排序和冒泡排序

一,快速排序

快速排序是一种比较复杂的排序算法,它总共有4种实现方式,分别是挖坑法左右"指针"法前后"指针"法,以及非递归的快速排序,并且这些算法中也会涉及多种优化措施,比如三数取中小区间优化,下面都会一一介绍。

由于它效率极高的缘故,快速排序也是日常开发中使用最多的,最重要的排序算法。

1. 挖坑法

1.1 基本思想:

任取待排序元素序列中的某元素(一般选最左边或最右边的元素)作为基准值(也叫做 key 关键字),按照该排序码将待排序集合分割成两子序列左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

1.2 一趟排序图解如下:

给定一无序数组,选第一个元素为关键字 key = 6
在这里插入图片描述

我们选定关键字 key = 6后,就说明6的位置就可以被覆盖了,所以我们就说左边形成了一个****坑用pivot 表示

![!](https://img-blog.csdnimg.cn/direct/3d53fed3d5e64ef4a46eb2d2f4faf554.png

左边有坑,右边的 end 要从最后一个元素开始找比 key 小的数找到后放到左边的坑里,所以5放进了坑中

在这里插入图片描述
5被拿走之后,右边它原来所在的位置就形成了一个新坑,此时,左边的 begin 要开始找比 key 大的数找到后放到右边的坑里,所以7放进了坑中
在这里插入图片描述
7被拿走后,左边又形成了一个新坑,此时,end 又要开始找比 key 小的数放到左边的坑里,所以4放进了坑中

在这里插入图片描述
此时,右边又形成了新坑,begin 要开始找比 key 大的数,找到后放到右边的坑里,所以9放进了坑中

在这里插入图片描述
左边又形成了坑,右边 end 开始找,找到了3,放入坑中

在这里插入图片描述
最后一次 begin++ 后,begin 和 end 重叠了,并且它们一定相遇在坑中,此时,把 key 放入坑中即可。

在这里插入图片描述
上述操作只是第一趟排序,只排好了一个数,此时第一个基准 key = 6已经在它合适的位置上了(排好序后的位置),后面对左右子序列排序时6不动。并且已经把数组分成了两个子序列,以 key 为基准,左边的元素都比它小,右边的元素都比它大。

1.3 单趟排序的代码实现如下:

注意:第二个和第三个 while 中的 begin < end 不能缺少,要防止在找大和找小的时候 begin 和 end 错开或是在极端情况下(比如已经升序时)end一直减导致越界。

int PartSort1(int* arr, int sz)
{int begin = 0;int end = sz -1;int key = arr[begin];int pivot = begin;//这是排一趟,只排好了一个数while (begin < end){//左边有坑,右边end找比key小的while (begin < end && arr[end] > key){end--;}//小的放到了左边的坑里,右边end自己形成了新的坑arr[pivot] = arr[end];pivot = end;//右边有坑,左边end找比key大的while (begin < end && arr[begin] < key){begin++;}//大的放到右边的坑里,左边begin自己形成新的坑arr[pivot] = arr[begin];pivot = begin;}//最后begin和end相遇了,把key放入该位置pivot = begin;arr[begin] = key;}

1.4 整体排序

要利用分治递归思想。第一趟排序把整个数组分割成了左子序列和右子序列,如果左右子序列都有序了,那么整个数组就有序了,所以再递归使用前面的挖坑算法,再找出关键字,再把左右子序列分割成子序列…… 直到关键字的左右两边只有一个数据不可再递归,或者是关键字的左序列,右序列都是有序,那么整体就有序了。

如图所示:
在这里插入图片描述

1.5 整体排序过程代码实现如下:

注意:因为是左右子序列,所以要控制一个区间。

void QuickySort(int* arr, int left,int right)
{//当左右子区间不存在,或只有一个元素时,//就不需要递归了,排序完成if (left >= right){return;}int begin = left;int end = right;int key = arr[begin];int pivot = begin;//这是排一趟,只排好了一个数while (begin < end){//左边有坑,右边end找比key小的while (begin < end && arr[end] > key){end--;}//小的放到了左边的坑里,右边end自己形成了新的坑arr[pivot] = arr[end];pivot = end;//右边有坑,左边end找比key大的while (begin < end && arr[begin] < key){begin++;}//大的放到右边的坑里,左边begin自己形成新的坑arr[pivot] = arr[begin];pivot = begin;}//最后begin和end相遇了,把key放入该位置pivot = begin;arr[begin] = key;//[left] pivot [right]// [left pivot-1]  pivot [pivot+1 right]//左子区间和右子区间有序,整体就有序了QuickySort(arr, left, pivot-1);QuickySort(arr, pivot+1, right);}

2. 快速排序的优化

2.1 三数取中

上文快排的算法思想有一个致命的缺陷:那就是当数据为有序时,其时间复杂度为O(N*N)。

原因:这是因为在取关键字 key 的值时,一直都是选最左边(或最右边)的数据。当数组本为升序时,每次关键字的右子序列的值都比它大,再次递归调用时,右子序列的子序列也是如此(降序同理)。

所以这个缺陷的原因就是 key 的取值。
那该如何取 key的值呢?一个比较好的方法是三数取中

三数取中:并不是指取所有数据中间的那数,而是指在三个数中取那个不大不小的中间数,这个数可能在最左边,也可能在最右边。

通过这种类似随机选数的方法,就能保证一定不是数据中最大或最小的值做 key。

2.1.1 三数取中的代码的实现:

//三数取中
int GetMidIndex(int* arr, int left, int right)
{//右移有除2的效果int mid = (left + right) >> 1;if (arr[mid] > arr[left]){if (arr[mid] < arr[right]){return mid;}else if(arr[left]>arr[right]){return left;}else{return right;}}else   //arr[mid] < arr[left]{if (arr[mid] > arr[right]){return mid;}else if (arr[left] < arr[right]){return left;}else{return right;}}
}

但是挖坑算法中我们习惯拿 begin 作为 key ,为了保持挖坑算法不被改变,我们把 begin 指向的值和通过三数取中选出的数的指向的值进行交换,确保 key 仍是begin指向的值。

代码实现为:


void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}void QuickySort(int* arr, int left,int right)
{   //当左右子区间不存在,或只有一个元素时,//就不需要递归了,排序完成if (left >= right){return;}int begin = left;int end = right;int index = GetMidIndex(arr, left, right);Swap(&arr[index], &arr[left]);//交换一下,保证key还是最左边的数int key = arr[begin];int pivot = begin;//这是排一趟,只排好了一个数while (begin < end){//左边有坑,右边end找比key小的while (begin < end && arr[end] > key){end--;}//小的放到了左边的坑里,右边end自己形成了新的坑arr[pivot] = arr[end];pivot = end;//右边有坑,左边end找比key大的while (begin < end && arr[begin] < key){begin++;}//大的放到右边的坑里,左边begin自己形成新的坑arr[pivot] = arr[begin];pivot = begin;}//最后begin和end相遇了,把key放入该位置pivot = begin;arr[begin] = key;// [left] pivot [right]// [left pivot-1]  pivot [pivot+1 right]// 左子区间和右子区间有序,整体就有序了QuickySort(arr, left, pivot-1);QuickySort(arr, pivot+1, right);}

2.2 小区间优化

我们知道在函数调用的过程中会在内存中建立栈帧,栈帧的建立也是需要时间和空间的。假设用上述代码排100W个数据,则大致有20层的递归调用,但是在最后几层中就大概调用了80多万次函数,它占用了栈帧的绝大多数空间和时间。

那么有人就会想,能不能把最后几层的函数递归调用消除呢?

官方给出的一种方法是小区间优化法,用于减少递归调用次数。

就是在排序的过程中当左右子序列中的数据个数大于某个数量时,不进行递归了,而是选用其他排序算法进行排序。这里一般用插入排序。

2.2.1 小区间优化的代码实现:

(注意:插入排序的算法这里没有给出,想要了解的请前往我的主页。)

//小区间优化法:减少递归调用次数//  keyindex - 1 - left 指子序列中的元素个数
//  > 10是我们控制的一个界限  
if (keyindex - 1 - left > 10)
{QuickySort(arr, left, keyindex - 1);
}
else
{  // arr + left 是指这时的子序列不一定从第一个元素开始//keyindex - 1 - left + 1 是指元素的个数InsertSort(arr + left, keyindex - 1 - left + 1);
}if (right - (keyindex + 1) > 10)
{QuickySort(arr, keyindex + 1, right);
}
else
{InsertSort(arr + keyindex + 1, right - (keyindex + 1) + 1);
}

但是由于小区间优化所带来的效率提升并不显著,而且它是与我们所控制的那个界限有关,所以平时并没有过于注重这个优化

3.挖坑法的完整排序代码


void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}//三数取中
int GetMidIndex(int* arr, int left, int right)
{//右移有除2的效果int mid = (left + right) >> 1;if (arr[mid] > arr[left]){if (arr[mid] < arr[right]){return mid;}else if(arr[left]>arr[right]){return left;}else{return right;}}else   //arr[mid] < arr[left]{if (arr[mid] > arr[right]){return mid;}else if (arr[left] < arr[right]){return left;}else{return right;}}
}//挖坑法
int PartSort1(int* arr, int left, int right)
{int index = GetMidIndex(arr, left, right);Swap(&arr[index], &arr[left]);//交换一下,保证key还是最左边的数int begin = left;int end = right;int key = arr[begin];int pivot = begin;//这是排一趟,只排好了一个数while (begin < end){//左边有坑,右边end找比key小的while (begin < end && arr[end] > key){end--;}//小的放到了左边的坑里,右边end自己形成了新的坑arr[pivot] = arr[end];pivot = end;//右边有坑,左边end找比key大的while (begin < end && arr[begin] < key){begin++;}//大的放到右边的坑里,左边begin自己形成新的坑arr[pivot] = arr[begin];pivot = begin;}//最后begin和end相遇了,把key放入该位置pivot = begin;arr[begin] = key;return key;
}void QuickySort(int* arr, int left,int right)
{   //当左右子区间不存在,或只有一个元素时,//就不需要递归了,排序完成if (left >= right){return;}int keyindex = PartSort1(arr, left, right);// [left] keyindex [right]// [left keyindex -1]  keyindex [keyindex +1 right]// 左子区间和右子区间有序,整体就有序了QuickySort(arr, left, keyindex - 1);QuickySort(arr, keyindex + 1, right);//或是/*if (keyindex - 1 - left > 10)
{QuickySort(arr, left, keyindex - 1);
}
else
{  // arr + left 是指这时的子序列不一定从第一个元素开始//keyindex - 1 - left + 1 是指元素的个数InsertSort(arr + left, keyindex - 1 - left + 1);
}if (right - (keyindex + 1) > 10)
{QuickySort(arr, keyindex + 1, right);
}
else
{InsertSort(arr + keyindex + 1, right - (keyindex + 1) + 1);}*/

排序结果为:
在这里插入图片描述

3.1 时间复杂度与稳定性

挖坑法的时间复杂度是O(N*logN),是不稳定的排序。

3. 左右"指针"法

3.1 算法思想:

与挖坑法类似,一般也要用三数取中法选一个关键字做 key,最终也是把整个数组分割成左右两个子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值。

只是实现的方式不同,左右"指针"法是分别从数组的最左边和最右边开始找数左边的 begin 找比 key大的数右边的 end 找比 key 小的数找到后把这两个位置上的数交换,直到分割成左右两个子序列,然后左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

3.2 单趟排序的图解如下:

给定一无序数组,选第一个元素为关键字 keyi = 6,这里的keyi是数组的下标
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/d2905a16ec794096b226e39d8bcd8af6.png

begin++ 找比 keyi 大的数,end – 找比 keyi 小的数,找到后停下来交换
在这里插入图片描述
重复上述操作
在这里插入图片描述
最后当 begin 和 end 相遇时,把相遇位置上的数与关键字 keyi所在位置的数 交换
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/450119654a7d4a46a921d89f45ad3bb7.png

最终排完第一趟后,以 keyi所指向的数6为基准,左边的元素都比它小,右边的元素都比它大。

3.3 单趟排序的代码实现:

注意:
1.代码中的三数取中函数与交换函数在上文,此处就直接调用

2.第二个和第三个while中的 begin < end 和 <= 中的等于号二者缺一不可。
在这里插入图片描述


//左右指针法
int PartSort2(int* arr, int left, int right)
{int index = GetMidIndex(arr, left, right);Swap(&arr[index], &arr[left]);//交换一下,保证key还是最左边的数int begin = left;int end = right;int keyi = begin;//第一个元素的下标while (begin < end){//找比key小的while (begin < end && arr[keyi] <= arr[end]){end--;}//找比key大的while (begin < end && arr[keyi] >= arr[begin]){begin++;}Swap(&arr[begin], &arr[end]);}//当begin与end相遇时Swap(&arr[begin], &arr[keyi]);return begin;
}

4. 前后"指针"法

4.1 算法思想

与挖坑法类似,一般也要用三数取中法选一个关键字做 key,最终也是把整个数组分割成左右两个子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值。

只是实现方式不同,前后"指针"法是要定义两个前后变量( cur 和 prev,其中 cur 在前,prev 在后)分别指向数组的前两个元素,前面的 cur 先往前走,prev 后走,cur 找到比key 小的值,每次找到就停下来,prev++,再交换 prev 和 cur 所在位置的值。

直到分割成左右两个子序列,然后左右子序列重复该过程,直到所有元素都排列在相应位置上为止

4.2 单趟排序的部分图解如下:

给定一无序数组,选第一个元素为关键字 keyi = 6,这里的keyi是数组的下标

在这里插入图片描述
前几个数 cur 和 prev 重叠,省略图解

当cur在3的位置上时,prev指向7,此时,交换两数
在这里插入图片描述
再cur++指向了4,停下,prev++指向了9,此时再交换
在这里插入图片描述
………………(重复上述操作)

当cur超出数组界限时,把此时 prev 所指向的值和 keyi 所指向的关键字交换,最终的结果是:

在这里插入图片描述
最终排完第一趟后,以 keyi所指向的数6为基准,左边的元素都比它小,右边的元素都比它大。

4.3 单趟排序的代码实现如下:


//前后指针法
int  PartSort3(int* arr, int left, int right)
{int index = GetMidIndex(arr, left, right);Swap(&arr[index], &arr[left]);//交换一下,保证key还是最左边的数int keyi = left;int prev = left;int cur = left + 1;while (cur <= right){if (arr[cur] < arr[keyi]){prev++;Swap(&arr[cur], &arr[prev]);}cur++;}Swap(&arr[keyi], &arr[prev]);return prev;
}

4.4 代码的小优化

通过上面的图解可知,当 cur 和 prev 重叠时,我们也进行了交换,但是这种自己和自己的交换其实是多于的。

优化代码如下:

在if判断条件中多了++prev != cur

int  PartSort3(int* arr, int left, int right)
{int index = GetMidIndex(arr, left, right);Swap(&arr[index], &arr[left]);//交换一下,保证key还是最左边的数int keyi = left;int prev = left;int cur = left + 1;while (cur <= right){//++prev != cur是指当cur和prev重合时不用多于的交换if (arr[cur] < arr[keyi]&& ++prev != cur){Swap(&arr[cur], &arr[prev]);}cur++;}Swap(&arr[keyi], &arr[prev]);return prev;
}

二,快速排序总结:

  • 快速排序的三种思想虽然实现方式不同,但是最终结果都是以key为基准值把整个数组分割成左右两个子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值。
  • 在我们日常写快速排序算法时,那两种优化方式三数取中,最小区间优化并不是一定要有,可以根据情况自主添加。

1.比如没有优化的挖坑法的代码实现:


void QuickySort(int* arr, int left,int right)
{//当左右子区间不存在,或只有一个元素时,//就不需要递归了,排序完成if (left >= right){return;}int begin = left;int end = right;int key = arr[begin];int pivot = begin;//这是排一趟,只排好了一个数while (begin < end){//左边有坑,右边end找比key小的while (begin < end && arr[end] > key){end--;}//小的放到了左边的坑里,右边end自己形成了新的坑arr[pivot] = arr[end];pivot = end;//右边有坑,左边end找比key大的while (begin < end && arr[begin] < key){begin++;}//大的放到右边的坑里,左边begin自己形成新的坑arr[pivot] = arr[begin];pivot = begin;}//最后begin和end相遇了,把key放入该位置pivot = begin;arr[begin] = key;//[left] pivot [right]// [left pivot-1]  pivot [pivot+1 right]//左子区间和右子区间有序,整体就有序了QuickySort(arr, left, pivot-1);QuickySort(arr, pivot+1, right);}void PrintArray(int* arr, int sz)
{for (int i = 0; i < sz; i++){printf("%d ", arr[i]);}printf("\n");}int main()
{int arr[] = { 6,7,9,2,4,3,5,1,0,8,-1};int sz = sizeof(arr) / sizeof(int);//快速排序QuickySort(arr, 0, sz - 1);PrintArray(arr, sz);
}

2.比如没有优化的前后"指针"法的代码实现:


void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}void QuickySort(int* arr, int left,int right)
{//当左右子区间不存在,或只有一个元素时,//就不需要递归了,排序完成if (left >= right){return;}int keyi = left;int prev = left;int cur = left + 1;while (cur <= right){//++prev != cur是指当cur和prev重合时不用多于的交换if (arr[cur] < arr[keyi]&& ++prev != cur){Swap(&arr[cur], &arr[prev]);}cur++;}Swap(&arr[keyi], &arr[prev]);//[left] pivot [right]// [left pivot-1]  pivot [pivot+1 right]//左子区间和右子区间有序,整体就有序了QuickySort(arr, left, keyi-1);QuickySort(arr, keyi+1, right);}void PrintArray(int* arr, int sz)
{for (int i = 0; i < sz; i++){printf("%d ", arr[i]);}printf("\n");}int main()
{int arr[] = { 6,7,9,2,4,3,5,1,0,8,-1};int sz = sizeof(arr) / sizeof(int);//快速排序QuickySort(arr, 0, sz - 1);PrintArray(arr, sz);
}

三,冒泡排序

1.基本思想:

从序列的一端开始往另一端冒泡,依次比较相邻的两个数的大小。

设数组长度为N。

1.每轮比较相邻的前后两个数据,如果前面数据大于(或者小于)后面的数据,就将这两个个数据交换。

2.这样每轮对数组的第0个数据到N-1个数据进行一次遍历后,最大或者最小的一个数据就到数组第N-1个位置。

3.第一轮比较到下标为N-1的数据(最后一个),以后每次比较都-1。

2.图解冒泡排序:
以 [ 8,2,5,9,7 ] 这组数字来做示例:
从左往右依次冒泡,将小的往右移动(排降序)
第一轮冒泡:

在这里插入图片描述
首先比较第一个数和第二个数的大小,我们发现 2 比 8 要小,那么保持原位,不做改动。位置还是 8,2,5,9,7 。指针往右移动一格,接着比较:

在这里插入图片描述

比较第二个数和第三个数的大小,发现 2 比 5 要小,所以位置交换,交换后数组更新为:[ 8,5,2,9,7 ]。
指针再往右移动一格,继续比较:

在这里插入图片描述

比较第三个数和第四个数的大小,发现 2 比 9 要小,所以位置交换,交换后数组更新为:[ 8,5,9,2,7 ]。同样,指针再往右移动,继续比较:

在这里插入图片描述

比较第 4 个数和第 5 个数的大小,发现 2 比 7 要小,所以位置交换,交换后数组更新为:[ 8,5,9,7,2 ]。

下一步,指针再往右移动,发现已经到底了,则本轮冒泡结束,处于最右边的 2 就是已经排好序的数字。

通过这一轮不断的对比交换,数组中最小的数字移动到了最右边。

重复上述步骤,得到的最终结果是:

在这里插入图片描述
3.代码实现冒泡排序如下:


void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}void BubbleSort(int* arr, int sz)
{for (int j = 0; j < sz; j++){//一趟排序for (int i = 1; i < sz-j; i++){if (arr[i - 1] < arr[i]){//前一个比后一个小,就交换Swap(&arr[i - 1], &arr[i]);}}}
}

4.冒泡排序的小优化:

假设我们要排降序,如果数组此时就是降序,那么在第一轮比较过后数据并没有发生交换,那就不要再进行多于的后续比较了,直接跳出循环即可。

void BubbleSort(int* arr, int sz)
{for (int j = 0; j < sz; j++){int exchange = 0;//默认是有序的//一趟排序for (int i = 1; i < sz-j; i++){if (arr[i - 1] > arr[i]){//前一个比后一个大,就交换Swap(&arr[i - 1], &arr[i]);//如果不是有序的就发生了交换,exchange=1exchange = 1; }}//如果一趟比较过后发现是有序的,就直接跳出循环if (exchange == 0){break;}}
}

5.时间复杂度和稳定性的分析

最好:就是顺序时,时间复杂度为O(N)
乱序时:时间复杂度为O(N*N)

所以冒泡排序的时间复杂度是O(N*N)。
冒泡排序算法是稳定的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/799289.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

zdpdjango_materialadmin使用Django开发一个Material风格的后台管理系统

启动项目 同样地&#xff0c;还是先看看代码&#xff1a; 将项目启动起来&#xff1a; 浏览器访问&#xff1a;http://localhost:8000/ 代码初步优化 首先是将admin_materal提到本地来&#xff1a; 移除掉第三方依赖&#xff1a; pip uninstall django-admin-materi…

移动平台相关(安卓)

目录 安卓开发 Unity打包安卓 ​编辑​编辑 BuildSettings PlayerSettings OtherSettings 身份证明 配置 脚本编译 优化 PublishingSettings 调试 ReMote Android Logcat AndroidStudio的调试 Java语法 ​编辑​编辑​编辑 变量 运算符 ​编辑​编辑​编辑​…

面向低碳经济运行目标的多微网能量互联优化调度matlab程序

微❤关注“电气仔推送”获得资料&#xff08;专享优惠&#xff09; 运用平台 matlabgurobi 程序简介 该程序为多微网协同优化调度模型&#xff0c;系统在保障综合效益的基础上&#xff0c;调度时优先协调微网与微网之间的能量流动&#xff0c;将与大电网的互联交互作为备用…

百度松果菁英班——机器学习实践四:文本词频分析

飞桨AI Studio星河社区-人工智能学习与实训社区 &#x1f96a;jieba分词词频统计 import jieba # jieba中文分词库 ​ with open(test.txt, r, encodingUTF-8) as novelFile:novel novelFile.read() # print(novel) stopwords [line.strip() for line in open(stop.txt, r,…

初识C++ · 类和对象(上)

目录 1.面向过程和面向对象初步认识 2.类的引入 3.类的定义 4.类的访问限定符及封装 4.1 访问限定符 4.2 封装 5.类的作用域 6.类的实例化 7.类的对象大小的计算 8.类成员函数的this指针 1.面向过程和面向对象初步认识 C语言是一门面向过程的语言&#xff0c;注重的…

vue+springboot多角色登录

①前端编写 将Homeview修改为manager Manager&#xff1a; <template><div><el-container><!-- 侧边栏 --><el-aside :width"asideWidth" style"min-height: 100vh; background-color: #001529"><div style"h…

百度文库验证码识别

一、前言 百度出了如图所示的验证码&#xff0c;需要拖动滑块&#xff0c;与如图所示的曲线轨迹进行重合。经过不断研究&#xff0c;终于解决了这个问题。我把识别代码分享给大家。 下面是使用selenium进行验证的&#xff0c;这样可以看到轨迹滑动的过程&#xff0c;如果需要…

亚马逊店铺引流:海外云手机的利用方法

在电商业务蓬勃发展的当下&#xff0c;亚马逊已经成为全球最大的电商平台之一&#xff0c;拥有庞大的用户群和交易量。在激烈的市场竞争中&#xff0c;如何有效地吸引流量成为亚马逊店铺经营者所关注的重点。海外云手机作为一项新兴技术工具&#xff0c;为亚马逊店铺的流量引导…

页面转word的那些事

背景 有些时候需要将页面内容或者是页面的数据通过word进行下载&#xff0c;以方便客户进行二次编辑&#xff0c;而不是直接导出图片或者是pdf。 想在页面端点击下载成word&#xff0c;那必然需要服务端来进行读写文件&#xff0c;无论是你后端编辑好的内容流&#xff0c;还是…

从头开发一个RISC-V的操作系统(五)汇编语言编程

文章目录 前提RISC-V汇编语言入门RISC-V汇编指令总览汇编指令操作对象汇编指令编码格式add指令介绍无符号数 练习参考链接 目标&#xff1a;通过这一个系列课程的学习&#xff0c;开发出一个简易的在RISC-V指令集架构上运行的操作系统。 前提 这个系列的大部分文章和知识来自于…

VMware Intel i5-10400 安装Mac 14 Sonoma

目录 安装完后的效果安装前的准备创建虚拟机创建虚拟机&#xff0c;选择典型安装。选择ISO文件选择系统类型命名虚拟机设置磁盘完成 配置虚拟机文件修改配置文件 第一次运行虚拟机选择语言选择磁盘工具格式磁盘安装macOS Sonoma 其他问题登录Apple帐户 &#xff1a; MOBILEME_C…

单点登录系统设计

一、介绍 token鉴权最佳的实践场景就是在单点登录系统上。 在企业发展初期&#xff0c;使用的后台管理系统还比较少&#xff0c;一个或者两个。 以电商系统为例&#xff0c;在起步阶段&#xff0c;可能只有一个商城下单系统和一个后端管理产品和库存的系统。 随着业务量越来…

药店药品进销存管理系统软件可以对有效期管理查询以及对批号库存管理

药店药品进销存管理系统软件可以对有效期管理查询以及对批号库存管理 一、前言 以下软件操作教程以&#xff0c;佳易王药店药品进销存管理软件为例说明 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 软件可以对药品有效期进行管理查询&#xff0c;可以…

【C++进阶】哈希表(哈希函数、哈希冲突、开散列、闭散列)

&#x1fa90;&#x1fa90;&#x1fa90;欢迎来到程序员餐厅&#x1f4ab;&#x1f4ab;&#x1f4ab; 主厨&#xff1a;邪王真眼 主厨的主页&#xff1a;Chef‘s blog 所属专栏&#xff1a;c大冒险 总有光环在陨落&#xff0c;总有新星在闪烁 引言&#xff1a; 我们之前…

【Frida】【Android】 10_爬虫之WebSocket协议分析

&#x1f6eb; 系列文章导航 【Frida】【Android】01_手把手教你环境搭建 https://blog.csdn.net/kinghzking/article/details/136986950【Frida】【Android】02_JAVA层HOOK https://blog.csdn.net/kinghzking/article/details/137008446【Frida】【Android】03_RPC https://bl…

实现第一个动态链接库 游戏插件 成功在主程序中运行 dll 中定义的类

devc 5.11编译环境 dll编译环境设置参考 Dev c C语言实现第一个 dll 动态链接库 创建与调用-CSDN博客 插件 DLL代码和主程序代码如下 注意 dll 代码中的class 类名需要 和主程序 相同 其中使用了函数指针和强制类型转换 函数指针教程参考 以动态库链接库 .dll 探索结构体…

HBase详解(2)

HBase 结构 HRegion 概述 在HBase中&#xff0c;会从行键方向上对表来进行切分&#xff0c;切分出来的每一个结构称之为是一个HRegion 切分之后&#xff0c;每一个HRegion会交给某一个HRegionServer来进行管理。HRegionServer是HBase的从节点&#xff0c;每一个HRegionServ…

elementPlus el-table动态列扩展及二维表格

1、循环列数据源&#xff0c;动态生成列 <template><div><el-table ref"table" :data"pageData.tableData" stripe style"width: 100%"><el-table-column v-for"column in pageData.columns" :key"column.p…

尚硅谷html5+css3(1)html相关知识

1.基本标签&#xff1a; <h1>最大的标题字号 <h2>二号标题字号 <p>换行 2.根标签<html> 包括<head>和<body> <html><head><title>title</title><body>body</body></head> </html> 3…

162 Linux C++ 通讯架构实战16,UDP/TCP协议的优缺点,使用环境对比。UDP 服务器开发

UDP/TCP协议的优缺点 TCP :面向连接的&#xff0c;可靠数据包传输。对于不稳定的网络层&#xff0c;采取完全弥补的通信方式。丢包重传 优点&#xff1a;稳定&#xff0c;数据流量稳定&#xff0c;速度稳定&#xff0c;顺序稳定 缺点&#xff1a;传输速度慢&…