FPGA实现Cordic算法——向量模式

FPGA实现Cordic算法——向量模式

  • FPGA实现Cordic算法——向量模式
    • 1.cordic算法基本原理
    • 2.FPGA实现cordic算法向量模式
      • i、FPGA串行实现cordic
      • ii、FPGA流水线实现cordic
      • iii、实验结果

FPGA实现Cordic算法——向量模式

1.cordic算法基本原理

  FPGA中运算三角函数,浮点数的能力有限,而cordic算法能够将三角函数运算转换为简单的移位和加减法进行迭代得到近似结果,能够有效降低运算代价,提升运算效率。

在这里插入图片描述

  如上图所示,若已知点矢量终点A 0 _0 0 (x 0 _0 0,y 0 _0 0) ,若将该矢量逆时针旋转 θ \theta θ 可以根据三角运算得到B 0 _0 0 (x 1 _1 1,y 1 _1 1)点坐标:
{ x 0 = l ∗ c o s ψ y 0 = l ∗ s i n ψ { x 1 = l ∗ c o s ( θ + ψ ) = l ∗ ( c o s θ c o s ψ − s i n θ s i n ψ ) = x 0 c o s θ − y 0 s i n θ y 1 = l ∗ s i n ( θ + ψ ) = l ∗ ( s i n θ c o s ψ + c o s θ s i n ψ ) = x 0 s i n θ + y 0 c o s θ \begin{cases} x_0 = l*cos\psi \\ y_0 = l*sin\psi \\ \end{cases} \\ \begin{cases} x_1 = l*cos(\theta+\psi)=l*(cos\theta cos\psi -sin\theta sin\psi) = x_0 cos\theta - y_0 sin\theta\\ y_1 = l*sin(\theta+\psi)=l*(sin\theta cos\psi +cos\theta sin\psi) = x_0 sin\theta + y_0 cos\theta\\ \end{cases} {x0=lcosψy0=lsinψ{x1=lcos(θ+ψ)=l(cosθcosψsinθsinψ)=x0cosθy0sinθy1=lsin(θ+ψ)=l(sinθcosψ+cosθsinψ)=x0sinθ+y0cosθ
  令 θ 1 = − θ \theta_1 = -\theta θ1=θ,即顺时针旋转 θ \theta θ 角度,则:
{ x 0 c o s θ 1 − y 0 s i n θ 1 = x 0 c o s θ + y 0 s i n θ x 0 s i n θ 1 + y 0 c o s θ 1 = y 0 c o s θ − x 0 s i n θ \\ \begin{cases} x_0 cos\theta_1 - y_0 sin\theta_1 = x_0 cos\theta + y_0 sin\theta \\ x_0 sin\theta_1 + y_0 cos\theta_1 = y_0 cos\theta - x_0 sin\theta \\ \end{cases} {x0cosθ1y0sinθ1=x0cosθ+y0sinθx0sinθ1+y0cosθ1=y0cosθx0sinθ
  联立上述两个式子,引入常数$ d (d=-1,+1)$ ,因此可得:
{ x 0 c o s θ − d y 0 s i n θ = c o s θ ( x 0 − d y 0 t a n θ ) y 0 c o s θ + d x 0 s i n θ = c o s θ ( y 0 + d x 0 t a n θ ) \\ \begin{cases} x_0 cos\theta - dy_0 sin\theta = cos\theta(x_0 - dy_0 tan\theta) \\ y_0 cos\theta + dx_0 sin\theta = cos\theta(y_0 + dx_0 tan\theta) \\ \end{cases} {x0cosθdy0sinθ=cosθ(x0dy0tanθ)y0cosθ+dx0sinθ=cosθ(y0+dx0tanθ)
  这个算法的核心在于将一系列已知的 t a n θ tan\theta tanθ作为表格键值进行存储,而 t a n θ tan\theta tanθ可以约等于 1 2 n \frac{1}{2^n} 2n1并且。 1 2 n \frac{1}{2^n} 2n1在FPGA中可以通过右移进行快速运算。 t a n θ tan\theta tanθ各个已知存储值如下:

i i i θ \theta θ t a n θ tan\theta tanθ c o s θ cos\theta cosθ ∏ c o s θ \prod cos\theta cosθ
04510.7071067811865480.707106781186548
125.565050.500.8944271909999160.632455532033676
214.032430.250.9701425001453320.613571991077897
37.1250160.1250000000000000.9922778767136680.608833912517753
43.5763340.06250000000000000.9980525784828890.607648256256168
51.7899100.03125000000000000.9995120760870790.607351770141296
60.8951730.01562500000000000.9998779520346950.607277644093526
70.4476140.007812500000000000.9999694838187880.607259112298893
80.2238100.003906250000000000.9999923706927790.607254479332563
90.1119050.001953125000000000.9999980926568240.607253321089875
100.0559520.0009765625000000000.9999995231631830.607253031529135
110.0279760.0004882812500000000.9999998807907320.607252959138945
120.0139880.0002441406250000000.9999999701976790.607252941041397
130.0069940.0001220703125000000.9999999925494200.607252936517011
140.0034976.10351562500000e-050.9999999981373550.607252935385914
150.0017483.05175781250000e-050.9999999995343390.607252935103140

  而多次旋转过程中,每次旋转的 c o s θ cos\theta cosθ需要连续相乘,而多次相乘极限也趋近与0.607252这一个常数,因此也可做近似处理。那么现在还有最后一个问题,这一系列角度能够通过多次旋转得到任意的角度吗?可以看到每个角度是不断降低减半的,呈递减的分布,从宏观上观察大致是可以进行趋近到某一个常数的。

  cordic算法有两个模式:

  1)向量模式,已知点坐标(x0,y0),可以求得该向量的角度即arctan(y0/x0)。这种可以理解为需要通过多次旋转,将该向量旋转至x轴上,即y0 = 0,此时旋转过的角度即为向量角度,x最终坐标即为向量的长度。

  2)旋转模式,已知角度 θ \theta θ ,求 s i n θ sin\theta sinθ c o s θ cos\theta cosθ
{ x 0 c o s θ − d y 0 s i n θ = c o s θ ( x 0 − d y 0 t a n θ ) y 0 c o s θ + d x 0 s i n θ = c o s θ ( y 0 + d x 0 t a n θ ) \\ \begin{cases} x_0 cos\theta - dy_0 sin\theta = cos\theta(x_0 - dy_0 tan\theta) \\ y_0 cos\theta + dx_0 sin\theta = cos\theta(y_0 + dx_0 tan\theta) \\ \end{cases} {x0cosθdy0sinθ=cosθ(x0dy0tanθ)y0cosθ+dx0sinθ=cosθ(y0+dx0tanθ)

令y0 = 0

{ c o s θ ( x 0 − d y 0 t a n θ ) = c o s θ x 0 c o s θ ( y 0 + d x 0 t a n θ ) = s i n θ y 0 \begin{cases} cos\theta(x_0 - dy_0 tan\theta) = cos\theta x_0\\ cos\theta(y_0 + dx_0 tan\theta) = sin\theta y_0\\ \end{cases} {cosθ(x0dy0tanθ)=cosθx0cosθ(y0+dx0tanθ)=sinθy0

  什么意思呢,类似当前有个单位圆,初始点在A(x,0)这一点,经过旋转多次可以得到B(x1,y1)。此时
{ x 1 = c o s ( θ ) y 1 = s i n ( θ ) \begin{cases} x_1 = cos(\theta)\\ y_1 = sin(\theta) \end{cases} {x1=cos(θ)y1=sin(θ)
  但是因为这个旋转变换是伪旋转变换,需要乘以一个 c o s θ cos\theta cosθ的系数。

2.FPGA实现cordic算法向量模式

  这里以向量模式为例子进行FPGA实现,首先构建matlab仿真程序

function [len,theta] = cordic_theat(x_in,y_in)
clc;
clear x y z;z_ref=[ 45,...26.56505113840103,...14.036243438720703,...7.1250163316726685,...3.5763343572616577,...1.7899105548858643,...0.8951736688613892,...0.4476141333580017,...0.22381049394607544,...0.11190563440322876,...0.05595284700393677,...0.027976393699645996,...0.013988196849822998,...0.006994098424911499,... 0.0034970492124557495,...0.00174852460622787475].*2^(24);times = 16;%迭代次数
x = zeros(times+1,1);
y = zeros(times+1,1);
z = zeros(times+1,1);
d = 1;y(1,1) = abs(y_in)*2^(12);
x(1,1) = abs(x_in)*2^(12);
z(1,1) = 0;for i = 1: timesif( y(i,1) < 0 )
%         d = 1;x(i+1,1) = x(i,1) - d/2^(i-1)*y(i,1);y(i+1,1) = y(i,1) + d/2^(i-1)*x(i,1);z(i+1,1) = z(i,1) - d*( z_ref(i) );else
%         d = -1;x(i+1,1) = x(i,1) + d/2^(i-1)*y(i,1);y(i+1,1) = y(i,1) - d/2^(i-1)*x(i,1);z(i+1,1) = z(i,1) + d*( z_ref(i) );endendmy_z = z(times+1,1)/2^(24);
my_x = x(times+1,1)/2^(12) * 0.607253;len = my_x;if( x_in >= 0 && y_in>=0)theta = my_z;
elseif (x_in <= 0 && y_in >=0)theta = 180 - my_z; 
elseif (x_in <= 0 && y_in <=0)theta = 180 + my_z; 
elseif (x_in>= 0 && y_in<= 0)theta = 360 - my_z;    
endend

  实际值比对程序:

t = 0:0.01:2*pi;
x=cos(t);
y=sin(t);
len = zeros( 1,length(t));
theta = zeros(1,length(t));for i = 1:length(t)[len(i),theta(i)] = cordic_theat( x(i),y(i) );
endplot( abs(theta-t/pi*180) );
axis([0 640 -0.5e-3 2e-3]);

  运行结果显示,与真实值相比16次迭代基本上可以满足使用需要

在这里插入图片描述

i、FPGA串行实现cordic

  FPGA流水线实现和串行实现,大概的区别是。假如工厂需要加工一个零件,这个零件需要六个步骤完成,每个步骤10s,每个步骤不能同时进行[步骤前后有先后关系]。如果是串行,是一个工人完成六道工序,也就是每60s加工完成一个零件,然后取新的物料进行完成。而流水线实现是安排六个人,每个人只完成一道工序,也就是正常运行过程中,每10s就能取一次物料。从吞吐率来说,串行每60s取一次数据而流水线每10s便能取一次数据,相应的输出也会更加快。串行速度慢,但消耗人工少;流水线速度快但,消耗六倍人工,这是FPGA中典型的空间换取时间的例子。

  实现代码如下:

module cordic_serial(input               sys_clk,input               sys_rst_n,input               user_data_valid,input      [31:0]   user_x,input      [31:0]   user_y,output reg          user_data_out_valid,output reg [31:0]   user_theat,output     [31:0]   user_len 
);//输入为有符号数(定点数) 高12位[整数] 低12位[小数] 即放大2^(12) - 整数部分最大为 2 ^12 -1 [最高位为符号位]
//角度标幺 按 高8位[整数] 低24位[小数] 即放大2^(24) 进行标幺
//一共迭代16次/****************************************************************************\Parameter/Define
\****************************************************************************/
wire [31:0] ang_p [15:0];
wire [31:0] ang_n [15:0];
localparam  K = 32'h9b74ee;    //K=0.607253*2^24,32'h9b74ee,assign ang_p[0]  = 32'b0_0101101_000000000000000000000000; //2D00 0000 45
assign ang_p[1]  = 32'b0_0011010_100100001010011100110001; //1A90 A731 26.56505113840103  445,687,601
assign ang_p[2]  = 32'b0_0001110_000010010100011101000000; //0E09 4740 14.036243438720703
assign ang_p[3]  = 32'b0_0000111_001000000000000100010010; //0720 0112 7.1250163316726685
assign ang_p[4]  = 32'b0_0000011_100100111000101010100110; //0393 8AA6 3.5763343572616577
assign ang_p[5]  = 32'b0_0000001_110010100011011110010100; //01CA 3794 1.7899105548858643
assign ang_p[6]  = 32'b0_0000000_111001010010101000011010; //00E5 2A1A 0.8951736688613892
assign ang_p[7]  = 32'b0_0000000_011100101001011011010111; //0072 96D7 0.4476141333580017
assign ang_p[8]  = 32'b0_0000000_001110010100101110100101; //0039 4BA5 0.22381049394607544
assign ang_p[9]  = 32'b0_0000000_000111001010010111011001; //001C A5D9 0.11190563440322876
assign ang_p[10] = 32'b0_0000000_000011100101001011101101; //000E 52ED 0.05595284700393677
assign ang_p[11] = 32'b0_0000000_000001110010100101110110; //0007 2976 0.027976393699645996
assign ang_p[12] = 32'b0_0000000_000000111001010010111011; //0003 94BB 0.013988196849822998
assign ang_p[13] = 32'b0_0000000_000000011100101001011101; //0001 CA5D 0.006994098424911499
assign ang_p[14] = 32'b0_0000000_000000001110010100101110; //0000 E52E 0.0034970492124557495
assign ang_p[15] = 32'b0_0000000_000000000111001010010111; //0000 7297 0.00174852460622787475assign ang_n[0] =  32'b1_1010011_000000000000000000000000; //complement code -45
assign ang_n[1] =  32'b1_1100101_011011110101100011001111; //complement code -26.56505113840103
assign ang_n[2] =  32'b1_1110001_111101101011100011000000; //complement code -14.036243438720703
assign ang_n[3] =  32'b1_1111000_110111111111111011101110; //complement code -7.1250163316726685
assign ang_n[4] =  32'b1_1111100_011011000111010101011010; //complement code -3.5763343572616577
assign ang_n[5] =  32'b1_1111110_001101011100100001101100; //complement code -1.7899105548858643
assign ang_n[6] =  32'b1_1111111_000110101101010111100110; //complement code -0.8951736688613892
assign ang_n[7] =  32'b1_1111111_100011010110100100101001; //complement code -0.4476141333580017
assign ang_n[8] =  32'b1_1111111_110001101011010001011011; //complement code -0.22381049394607544
assign ang_n[9] =  32'b1_1111111_111000110101101000100111; //complement code -0.11190563440322876
assign ang_n[10] = 32'b1_1111111_111100011010110100010011; //complement code -0.05595284700393677
assign ang_n[11] = 32'b1_1111111_111110001101011010001010; //complement code -0.027976393699645996
assign ang_n[12] = 32'b1_1111111_111111000110101101000101; //complement code -0.013988196849822998
assign ang_n[13] = 32'b1_1111111_111111100011010110100011; //complement code -0.006994098424911499
assign ang_n[14] = 32'b1_1111111_111111110001101011010010; //complement code -0.0034970492124557495
assign ang_n[15] = 32'b1_1111111_111111111000110101101001; //complement code -0.00174852460622787475localparam  ang_180_p = 32'b0_1011_0100_0000_0000_0000_0000_0000_000; //+180  - Q23
//localparam  ang_180_n = 32'b ; //-180reg [31:0] z_theat;
reg [4:0]  iterate_times; //迭代次数最大16次数
reg        cordic_start_flag;
reg signed [31:0] cordic_x;
reg signed [31:0] cordic_y;
reg signed [31:0] cordic_z;always @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)begincordic_start_flag <= 1'd0;end else if(iterate_times == 5'd15) begincordic_start_flag <= 1'd0;end else if(user_data_valid == 1'b1) begincordic_start_flag <= 1'd1;end
endalways @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)beginiterate_times <= 5'd0;end if(user_data_out_valid == 1'b1)beginiterate_times <= 5'd0;end if(cordic_start_flag == 1'b1)beginiterate_times <= iterate_times + 5'd1;end
endreg [1:0] quadrant; //象限判断标志 I-00 II-10 III-11 IV-01 
always @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)beginquadrant <= 2'd0;end else if( user_data_valid == 1'b1 && iterate_times == 5'd0)beginquadrant <= {user_x[31],user_y[31]};end
endalways @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)begincordic_x <= 32'd0;cordic_y <= 32'd0;cordic_z <= 32'd0;end else if( user_data_valid == 1'b1 && iterate_times == 5'd0)begincase ({user_x[31],user_y[31]})2'b00: {cordic_x,cordic_y} <= {user_x, user_y};2'b10: {cordic_x,cordic_y} <= {{1'b0,~user_x[30:0]}+1'b1, user_y};2'b11: {cordic_x,cordic_y} <= {{1'b0,~user_x[30:0]}+1'b1, {1'b0,~user_y[30:0]}+1'b1};2'b01: {cordic_x,cordic_y} <= {user_x, {1'b0,~user_y[30:0]}+1'b1};endcasecordic_z <= 32'd0;end else if( cordic_start_flag == 1'b1 && cordic_y[31] == 1 ) begincordic_x <= cordic_x - ({{cordic_y >>> iterate_times}});cordic_y <= cordic_y + ({{cordic_x >>> iterate_times}});cordic_z <= cordic_z + ang_n[iterate_times];end else if( cordic_start_flag == 1'b1 && cordic_y[31] == 0 ) begincordic_x <= cordic_x + ({{cordic_y >>> iterate_times}});cordic_y <= cordic_y - ({{cordic_x >>> iterate_times}});cordic_z <= cordic_z + ang_p[iterate_times];endendalways @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)beginuser_data_out_valid <= 1'b0;end else if(iterate_times == 5'd15)beginuser_data_out_valid <= 1'b1;end else beginuser_data_out_valid <= 1'b0;end
endalways @(*) beginif(user_data_out_valid == 1'b1)begincase (quadrant)2'b00 : user_theat  = (cordic_z >>>24);2'b10 : user_theat  = (ang_180_p - (cordic_z >>>1)) >>> 23;2'b11 : user_theat  = (ang_180_p + (cordic_z >>>1)) >>> 23;2'b01 : user_theat  = (~(cordic_z>>>24)) + 1'b1 ;endcaseendend//输出*0.607253
assign user_len    =(user_data_out_valid == 1'b1)? ( (cordic_x >>> 1) + (cordic_x >>> 4) + (cordic_x >>> 5) +(cordic_x >>> 7) + (cordic_x >>> 8) + (cordic_x >>> 10)+(cordic_x >>> 11) + (cordic_x >>> 12)):32'd0; endmodule

ii、FPGA流水线实现cordic

module cordic_parallel(input               sys_clk   ,input               sys_rst_n ,input               user_data_valid,input      [31:0]   user_x,input      [31:0]   user_y,output reg          user_data_out_valid,output reg [31:0]   user_theat,output     [31:0]   user_len);//输入为有符号数(定点数) 高12位[整数] 低12位[小数] 即放大2^(12) - 整数部分最大为 2 ^12 -1 [最高位为符号位]
//角度标幺 按 高8位[整数] 低24位[小数] 即放大2^(24) 进行标幺
//一共迭代16次/****************************************************************************\Parameter/Define
\****************************************************************************/
wire [31:0] ang_p [15:0];
wire [31:0] ang_n [15:0];
localparam  K = 32'h9b74ee;    //K=0.607253*2^24,32'h9b74ee,assign ang_p[0]  = 32'b0_0101101_000000000000000000000000; //2D00 0000 45
assign ang_p[1]  = 32'b0_0011010_100100001010011100110001; //1A90 A731 26.56505113840103  445,687,601
assign ang_p[2]  = 32'b0_0001110_000010010100011101000000; //0E09 4740 14.036243438720703
assign ang_p[3]  = 32'b0_0000111_001000000000000100010010; //0720 0112 7.1250163316726685
assign ang_p[4]  = 32'b0_0000011_100100111000101010100110; //0393 8AA6 3.5763343572616577
assign ang_p[5]  = 32'b0_0000001_110010100011011110010100; //01CA 3794 1.7899105548858643
assign ang_p[6]  = 32'b0_0000000_111001010010101000011010; //00E5 2A1A 0.8951736688613892
assign ang_p[7]  = 32'b0_0000000_011100101001011011010111; //0072 96D7 0.4476141333580017
assign ang_p[8]  = 32'b0_0000000_001110010100101110100101; //0039 4BA5 0.22381049394607544
assign ang_p[9]  = 32'b0_0000000_000111001010010111011001; //001C A5D9 0.11190563440322876
assign ang_p[10] = 32'b0_0000000_000011100101001011101101; //000E 52ED 0.05595284700393677
assign ang_p[11] = 32'b0_0000000_000001110010100101110110; //0007 2976 0.027976393699645996
assign ang_p[12] = 32'b0_0000000_000000111001010010111011; //0003 94BB 0.013988196849822998
assign ang_p[13] = 32'b0_0000000_000000011100101001011101; //0001 CA5D 0.006994098424911499
assign ang_p[14] = 32'b0_0000000_000000001110010100101110; //0000 E52E 0.0034970492124557495
assign ang_p[15] = 32'b0_0000000_000000000111001010010111; //0000 7297 0.00174852460622787475assign ang_n[0] =  32'b1_1010011_000000000000000000000000; //complement code -45
assign ang_n[1] =  32'b1_1100101_011011110101100011001111; //complement code -26.56505113840103
assign ang_n[2] =  32'b1_1110001_111101101011100011000000; //complement code -14.036243438720703
assign ang_n[3] =  32'b1_1111000_110111111111111011101110; //complement code -7.1250163316726685
assign ang_n[4] =  32'b1_1111100_011011000111010101011010; //complement code -3.5763343572616577
assign ang_n[5] =  32'b1_1111110_001101011100100001101100; //complement code -1.7899105548858643
assign ang_n[6] =  32'b1_1111111_000110101101010111100110; //complement code -0.8951736688613892
assign ang_n[7] =  32'b1_1111111_100011010110100100101001; //complement code -0.4476141333580017
assign ang_n[8] =  32'b1_1111111_110001101011010001011011; //complement code -0.22381049394607544
assign ang_n[9] =  32'b1_1111111_111000110101101000100111; //complement code -0.11190563440322876
assign ang_n[10] = 32'b1_1111111_111100011010110100010011; //complement code -0.05595284700393677
assign ang_n[11] = 32'b1_1111111_111110001101011010001010; //complement code -0.027976393699645996
assign ang_n[12] = 32'b1_1111111_111111000110101101000101; //complement code -0.013988196849822998
assign ang_n[13] = 32'b1_1111111_111111100011010110100011; //complement code -0.006994098424911499
assign ang_n[14] = 32'b1_1111111_111111110001101011010010; //complement code -0.0034970492124557495
assign ang_n[15] = 32'b1_1111111_111111111000110101101001; //complement code -0.00174852460622787475localparam  ang_180_p = 32'b0_1011_0100_0000_0000_0000_0000_0000_000; //+180  - Q23//象限判断标志 I-00 II-10 III-11 IV-01 
//16-level-pipelevel
reg signed [31:0] cordic_x0 ,cordic_y0 ,cordic_z0 ,quadrant_0 ;
reg signed [31:0] cordic_x1 ,cordic_y1 ,cordic_z1 ,quadrant_1 ;
reg signed [31:0] cordic_x2 ,cordic_y2 ,cordic_z2 ,quadrant_2 ;
reg signed [31:0] cordic_x3 ,cordic_y3 ,cordic_z3 ,quadrant_3 ;
reg signed [31:0] cordic_x4 ,cordic_y4 ,cordic_z4 ,quadrant_4 ;
reg signed [31:0] cordic_x5 ,cordic_y5 ,cordic_z5 ,quadrant_5 ;
reg signed [31:0] cordic_x6 ,cordic_y6 ,cordic_z6 ,quadrant_6 ;
reg signed [31:0] cordic_x7 ,cordic_y7 ,cordic_z7 ,quadrant_7 ;
reg signed [31:0] cordic_x8 ,cordic_y8 ,cordic_z8 ,quadrant_8 ;
reg signed [31:0] cordic_x9 ,cordic_y9 ,cordic_z9 ,quadrant_9 ;
reg signed [31:0] cordic_x10,cordic_y10,cordic_z10,quadrant_10;
reg signed [31:0] cordic_x11,cordic_y11,cordic_z11,quadrant_11;
reg signed [31:0] cordic_x12,cordic_y12,cordic_z12,quadrant_12;
reg signed [31:0] cordic_x13,cordic_y13,cordic_z13,quadrant_13;
reg signed [31:0] cordic_x14,cordic_y14,cordic_z14,quadrant_14;
reg signed [31:0] cordic_x15,cordic_y15,cordic_z15,quadrant_15;
reg signed [31:0] cordic_x16,cordic_y16,cordic_z16,quadrant_16;//reg [1:0] quadrant; //象限判断标志 I-00 II-10 III-11 IV-01 
always @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)beginquadrant_0 <= 2'd0;end else if( user_data_valid == 1'b1)beginquadrant_0 <= {user_x[31],user_y[31]};end
endalways @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)begincordic_x0   <= 32'd0;cordic_y0   <= 32'd0;cordic_z0   <= 32'd0;end else if( user_data_valid == 1'b1)begincase ({user_x[31],user_y[31]})2'b00: {cordic_x0,cordic_y0} <= {user_x, user_y};2'b10: {cordic_x0,cordic_y0} <= {{1'b0,~user_x[30:0]}+1'b1, user_y};2'b11: {cordic_x0,cordic_y0} <= {{1'b0,~user_x[30:0]}+1'b1, {1'b0,~user_y[30:0]}+1'b1};2'b01: {cordic_x0,cordic_y0} <= {user_x, {1'b0,~user_y[30:0]}+1'b1};endcasecordic_z0 <= 32'd0;endend//iterate 1
always @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)begincordic_x1   <= 32'd0;cordic_y1   <= 32'd0;cordic_z1   <= 32'd0;end else if(cordic_y0[31] == 1) begincordic_x1 <= cordic_x0 - ({{cordic_y0 >>> 0}});cordic_y1 <= cordic_y0 + ({{cordic_x0 >>> 0}});cordic_z1 <= cordic_z0 + ang_n[0];end else if(cordic_y0[31] == 0) begincordic_x1 <= cordic_x0 + ({{cordic_y0 >>> 0}});cordic_y1 <= cordic_y0 - ({{cordic_x0 >>> 0}});cordic_z1 <= cordic_z0 + ang_p[0];endend//iterate 2
always @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)begincordic_x2   <= 32'd0;cordic_y2   <= 32'd0;cordic_z2   <= 32'd0;end else if(cordic_y1[31] == 1) begincordic_x2 <= cordic_x1 - ({{cordic_y1 >>> 1}});cordic_y2 <= cordic_y1 + ({{cordic_x1 >>> 1}});cordic_z2 <= cordic_z1 + ang_n[1];end else if(cordic_y1[31] == 0) begincordic_x2 <= cordic_x1 + ({{cordic_y1 >>> 1}});cordic_y2 <= cordic_y1 - ({{cordic_x1 >>> 1}});cordic_z2 <= cordic_z1 + ang_p[1];endend//iterate 3
always @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)begincordic_x3   <= 32'd0;cordic_y3   <= 32'd0;cordic_z3   <= 32'd0;end else if(cordic_y2[31] == 1) begincordic_x3 <= cordic_x2 - ({{cordic_y2 >>> 2}});cordic_y3 <= cordic_y2 + ({{cordic_x2 >>> 2}});cordic_z3 <= cordic_z2 + ang_n[2];end else if(cordic_y2[31] == 0) begincordic_x3 <= cordic_x2 + ({{cordic_y2 >>> 2}});cordic_y3 <= cordic_y2 - ({{cordic_x2 >>> 2}});cordic_z3 <= cordic_z2 + ang_p[2];endend//iterate 4
always @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)begincordic_x4   <= 32'd0;cordic_y4   <= 32'd0;cordic_z4   <= 32'd0;end else if(cordic_y3[31] == 1) begincordic_x4 <= cordic_x3 - ({{cordic_y3 >>> 3}});cordic_y4 <= cordic_y3 + ({{cordic_x3 >>> 3}});cordic_z4 <= cordic_z3 + ang_n[3];end else if(cordic_y3[31] == 0) begincordic_x4 <= cordic_x3 + ({{cordic_y3 >>> 3}});cordic_y4 <= cordic_y3 - ({{cordic_x3 >>> 3}});cordic_z4 <= cordic_z3 + ang_p[3];endend//iterate 5
always @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)begincordic_x5   <= 32'd0;cordic_y5   <= 32'd0;cordic_z5   <= 32'd0;end else if(cordic_y4[31] == 1) begincordic_x5 <= cordic_x4 - ({{cordic_y4 >>> 4}});cordic_y5 <= cordic_y4 + ({{cordic_x4 >>> 4}});cordic_z5 <= cordic_z4 + ang_n[4];end else if(cordic_y4[31] == 0) begincordic_x5 <= cordic_x4 + ({{cordic_y4 >>> 4}});cordic_y5 <= cordic_y4 - ({{cordic_x4 >>> 4}});cordic_z5 <= cordic_z4 + ang_p[4];endend//iterate 6
always @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)begincordic_x6   <= 32'd0;cordic_y6   <= 32'd0;cordic_z6   <= 32'd0;end else if(cordic_y5[31] == 1) begincordic_x6 <= cordic_x5 - ({{cordic_y5 >>> 5}});cordic_y6 <= cordic_y5 + ({{cordic_x5 >>> 5}});cordic_z6 <= cordic_z5 + ang_n[5];end else if(cordic_y5[31] == 0) begincordic_x6 <= cordic_x5 + ({{cordic_y5 >>> 5}});cordic_y6 <= cordic_y5 - ({{cordic_x5 >>> 5}});cordic_z6 <= cordic_z5 + ang_p[5];endend//iterate 7
always @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)begincordic_x7   <= 32'd0;cordic_y7   <= 32'd0;cordic_z7   <= 32'd0;end else if(cordic_y6[31] == 1) begincordic_x7 <= cordic_x6 - ({{cordic_y6 >>> 6}});cordic_y7 <= cordic_y6 + ({{cordic_x6 >>> 6}});cordic_z7 <= cordic_z6 + ang_n[6];end else if(cordic_y6[31] == 0) begincordic_x7 <= cordic_x6 + ({{cordic_y6 >>> 6}});cordic_y7 <= cordic_y6 - ({{cordic_x6 >>> 6}});cordic_z7 <= cordic_z6 + ang_p[6];endend//iterate 8
always @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)begincordic_x8   <= 32'd0;cordic_y8   <= 32'd0;cordic_z8   <= 32'd0;end else if(cordic_y7[31] == 1) begincordic_x8 <= cordic_x7 - ({{cordic_y7 >>> 7}});cordic_y8 <= cordic_y7 + ({{cordic_x7 >>> 7}});cordic_z8 <= cordic_z7 + ang_n[7];end else if(cordic_y7[31] == 0) begincordic_x8 <= cordic_x7 + ({{cordic_y7 >>> 7}});cordic_y8 <= cordic_y7 - ({{cordic_x7 >>> 7}});cordic_z8 <= cordic_z7 + ang_p[7];endend//iterate 9
always @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)begincordic_x9   <= 32'd0;cordic_y9   <= 32'd0;cordic_z9   <= 32'd0;end else if(cordic_y8[31] == 1) begincordic_x9 <= cordic_x8 - ({{cordic_y8 >>> 8}});cordic_y9 <= cordic_y8 + ({{cordic_x8 >>> 8}});cordic_z9 <= cordic_z8 + ang_n[8];end else if(cordic_y8[31] == 0) begincordic_x9 <= cordic_x8 + ({{cordic_y8 >>> 8}});cordic_y9 <= cordic_y8 - ({{cordic_x8 >>> 8}});cordic_z9 <= cordic_z8 + ang_p[8];endend//iterate 10
always @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)begincordic_x10   <= 32'd0;cordic_y10   <= 32'd0;cordic_z10   <= 32'd0;end else if(cordic_y9[31] == 1) begincordic_x10 <= cordic_x9 - ({{cordic_y9 >>> 9}});cordic_y10 <= cordic_y9 + ({{cordic_x9 >>> 9}});cordic_z10 <= cordic_z9 + ang_n[9];end else if(cordic_y9[31] == 0) begincordic_x10 <= cordic_x9 + ({{cordic_y9 >>> 9}});cordic_y10 <= cordic_y9 - ({{cordic_x9 >>> 9}});cordic_z10 <= cordic_z9 + ang_p[9];endend//iterate 11
always @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)begincordic_x11   <= 32'd0;cordic_y11   <= 32'd0;cordic_z11   <= 32'd0;end else if(cordic_y10[31] == 1) begincordic_x11 <= cordic_x10 - ({{cordic_y10 >>> 10}});cordic_y11 <= cordic_y10 + ({{cordic_x10 >>> 10}});cordic_z11 <= cordic_z10 + ang_n[10];end else if(cordic_y10[31] == 0) begincordic_x11 <= cordic_x10 + ({{cordic_y10 >>> 10}});cordic_y11 <= cordic_y10 - ({{cordic_x10 >>> 10}});cordic_z11 <= cordic_z10 + ang_p[10];endend//iterate 12
always @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)begincordic_x12   <= 32'd0;cordic_y12   <= 32'd0;cordic_z12   <= 32'd0;end else if(cordic_y11[31] == 1) begincordic_x12 <= cordic_x11 - ({{cordic_y11 >>> 11}});cordic_y12 <= cordic_y11 + ({{cordic_x11 >>> 11}});cordic_z12 <= cordic_z11 + ang_n[11];end else if(cordic_y11[31] == 0) begincordic_x12 <= cordic_x11 + ({{cordic_y11 >>> 11}});cordic_y12 <= cordic_y11 - ({{cordic_x11 >>> 11}});cordic_z12 <= cordic_z11 + ang_p[11];endend//iterate 13
always @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)begincordic_x13   <= 32'd0;cordic_y13   <= 32'd0;cordic_z13   <= 32'd0;end else if(cordic_y12[31] == 1) begincordic_x13 <= cordic_x12 - ({{cordic_y12 >>> 12}});cordic_y13 <= cordic_y12 + ({{cordic_x12 >>> 12}});cordic_z13 <= cordic_z12 + ang_n[12];end else if(cordic_y12[31] == 0) begincordic_x13 <= cordic_x12 + ({{cordic_y12 >>> 12}});cordic_y13 <= cordic_y12 - ({{cordic_x12 >>> 12}});cordic_z13 <= cordic_z12 + ang_p[12];endend//iterate 14
always @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)begincordic_x14   <= 32'd0;cordic_y14   <= 32'd0;cordic_z14   <= 32'd0;end else if(cordic_y13[31] == 1) begincordic_x14 <= cordic_x13 - ({{cordic_y13 >>> 13}});cordic_y14 <= cordic_y13 + ({{cordic_x13 >>> 13}});cordic_z14 <= cordic_z13 + ang_n[13];end else if(cordic_y13[31] == 0) begincordic_x14 <= cordic_x13 + ({{cordic_y13 >>> 13}});cordic_y14 <= cordic_y13 - ({{cordic_x13 >>> 13}});cordic_z14 <= cordic_z13 + ang_p[13];endend//iterate 15
always @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)begincordic_x15   <= 32'd0;cordic_y15   <= 32'd0;cordic_z15   <= 32'd0;end else if(cordic_y14[31] == 1) begincordic_x15 <= cordic_x14 - ({{cordic_y14 >>> 14}});cordic_y15 <= cordic_y14 + ({{cordic_x14 >>> 14}});cordic_z15 <= cordic_z14 + ang_n[14];end else if(cordic_y14[31] == 0) begincordic_x15 <= cordic_x14 + ({{cordic_y14 >>> 14}});cordic_y15 <= cordic_y14 - ({{cordic_x14 >>> 14}});cordic_z15 <= cordic_z14 + ang_p[14];endend//iterate 16
always @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)begincordic_x16   <= 32'd0;cordic_y16   <= 32'd0;cordic_z16   <= 32'd0;end else if(cordic_y15[31] == 1) begincordic_x16 <= cordic_x15 - ({{cordic_y15 >>> 15}});cordic_y16 <= cordic_y15 + ({{cordic_x15 >>> 15}});cordic_z16 <= cordic_z15 + ang_n[15];end else if(cordic_y15[31] == 0) begincordic_x16 <= cordic_x15 + ({{cordic_y15 >>> 15}});cordic_y16 <= cordic_y15 - ({{cordic_x15 >>> 15}});cordic_z16 <= cordic_z15 + ang_p[15];endendalways @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)begin{quadrant_1,  quadrant_2,  quadrant_3,  quadrant_4}  <= 4'b0;{quadrant_5,  quadrant_6,  quadrant_7,  quadrant_8}  <= 4'b0;{quadrant_9,  quadrant_10, quadrant_11, quadrant_12} <= 4'b0;{quadrant_13, quadrant_14, quadrant_15, quadrant_16} <= 4'b0;end else begin{quadrant_1,  quadrant_2,  quadrant_3,  quadrant_4 }  <= {quadrant_0,  quadrant_1,  quadrant_2,  quadrant_3 };{quadrant_5,  quadrant_6,  quadrant_7,  quadrant_8 }  <= {quadrant_4,  quadrant_5,  quadrant_6,  quadrant_7 };{quadrant_9,  quadrant_10, quadrant_11, quadrant_12}  <= {quadrant_8,  quadrant_9, quadrant_10,  quadrant_11};{quadrant_13, quadrant_14, quadrant_15, quadrant_16}  <= {quadrant_12, quadrant_13, quadrant_14, quadrant_15};end
endreg [4:0] iterate_times;
reg       start_flag;always @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)beginstart_flag <= 1'd0;end else if(user_data_valid == 1'b1) begin start_flag = 1'd1;end 
endalways @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)beginiterate_times <= 5'd0;end else if(iterate_times >= 5'd17) begin iterate_times = 5'd17;end else if(user_data_valid == 1'b1 || start_flag == 1'b1 ) beginiterate_times <= iterate_times + 5'd1;end
endalways @(posedge sys_clk or negedge sys_rst_n) beginif(!sys_rst_n)beginuser_data_out_valid <= 1'b0;end else if(iterate_times >= 5'd16)beginuser_data_out_valid <= 1'b1;end else beginuser_data_out_valid <= 1'b0;end
endalways @(*) beginif(user_data_out_valid == 1'b1)begincase (quadrant_16)2'b00 : user_theat  = (cordic_z16 >>>24);2'b10 : user_theat  = (ang_180_p - (cordic_z16 >>>1)) >>> 23;2'b11 : user_theat  = (ang_180_p + (cordic_z16 >>>1)) >>> 23;2'b01 : user_theat  = (~(cordic_z16>>>24)) + 1'b1 ;endcaseendend//输出*0.607253
assign user_len    =(user_data_out_valid == 1'b1)? ( (cordic_x16 >>> 1) + (cordic_x16 >>> 4) + (cordic_x16 >>> 5) +(cordic_x16 >>> 7) + (cordic_x16 >>> 8) + (cordic_x16 >>> 10)+(cordic_x16 >>> 11) + (cordic_x16 >>> 12)):32'd0; endmodule

以上实现一定要注意不能运算溢出,一旦溢出将影响相应判断

iii、实验结果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/79922.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

初见QT,控件的基本应用,实现简单登录窗口

窗口实现代码 #include "widget.h"Widget::Widget(QWidget *parent): QWidget(parent) {//窗口设置this->setFixedSize(538, 373); //固定窗口大小this->setWindowIcon(QIcon("G:\\QT_Icon\\windos_icon2.png"))…

多图片展示弹窗插件

<!DOCTYPE html> <html><head><meta charset"UTF-8"><title>图片预览完善</title><style>/*** Created by WangCheng on 2020/9/24.*//*背景框*/.mask-layer * {padding: 0;margin: 0;box-sizing: border-box;}.mask-laye…

肖sir__mysql之三表__008

mysql之三表 create table student( stu_no int, stu_name varchar(10), sex char(1), age int(3), edit varchar(20) ) DEFAULT charsetutf8; insert into student values (1,‘wang’,‘男’,21,‘hello’), (2,‘小明’,‘女’,22,‘haha2’), (3,‘hu’,‘女’,23,‘haha3…

Fast-DDS 服务发现简要概述

阅读本文章需要对DDS基础概念有一些了解&#xff0c;一些内容来自Fast-DDS官方文档&#xff0c;一些是工作中踩过的坑。 1. 服务发现阶段 满足OMG标准的DDS服务发现分为两部分&#xff0c;分别是: PDP(Participant Discovery Protocol 参与者发现协议)&#xff1a;参与者确认…

豆瓣图书评分数据的可视化分析

导语 豆瓣是一个提供图书、电影、音乐等文化产品的社区平台&#xff0c;用户可以在上面发表自己的评价和评论&#xff0c;形成一个丰富的文化数据库。本文将介绍如何使用爬虫技术获取豆瓣图书的评分数据&#xff0c;并进行可视化分析&#xff0c;探索不同类型、不同年代、不同…

第13节-PhotoShop基础课程-裁剪工具

文章目录 前言1.裁剪工具1.基本操作 Alt Shift2.拉直3.内容识别 自动填充 2.透视裁剪工具3.切片工具-长图分成多个4.切片选择工具5. 存储为一张一张 前言 1.裁剪工具 1.基本操作 Alt Shift 2.拉直 可以矫正图片 3.内容识别 自动填充 2.透视裁剪工具 可以拉正图片 3.切片工具-…

Spring系列文章:Spring中的设计模式

一、简单⼯⼚模式 BeanFactory的getBean()⽅法&#xff0c;通过唯⼀标识来获取Bean对象。是典型的简单⼯⼚模式&#xff08;静态⼯⼚模 式&#xff09;&#xff1b; 二、⼯⼚⽅法模式 FactoryBean是典型的⼯⼚⽅法模式。在配置⽂件中通过factory-method属性来指定⼯⼚⽅法&a…

Python中进行特征重要性分析的9个常用方法

特征重要性分析用于了解每个特征(变量或输入)对于做出预测的有用性或价值。目标是确定对模型输出影响最大的最重要的特征&#xff0c;它是机器学习中经常使用的一种方法。 为什么特征重要性分析很重要? 如果有一个包含数十个甚至数百个特征的数据集&#xff0c;每个特征都可能…

发现某设备 adb shell ps 没有输出完整信息

某错误示例 并不是都使用 -ef 参数查找都能够返回完整信息&#xff0c;某些版本设备不适用 -ef 也不会返回完整信息。 简单兼容 简单兼容不同版本 Android 设备查找进程列表&#xff0c;没有通过脚本判断 Android 版本&#xff0c;如有兴趣可以自己修改。 :loop adb shell…

在测试过程中引入可观测性平台提升业务质量

作者 观测云 产品技术专家 成都办公室 - 刘跃兰 前言 随着微服务技术的发展&#xff0c;微服务概念已深入人心&#xff0c;越来越多的企业开始使用微服务架构来开发业务应用。业务应用系统的整体架构变得更加复杂&#xff0c;并存在各种各样的不确定性因素&#xff0c;从而对…

小节8:Python之文件操作

1、文件在哪里&#xff1f; 如果用代码对文件进行操作&#xff0c;需要先找到那个文件 MacOS/Linux&#xff1a;斜杠/ 表示根目录&#xff0c;一切的文件、目录都存放在根目录下面。 Windows系统&#xff1a;就不一样了&#xff0c;它每一个磁盘分区都有自己的根目录&#x…

01-Redis核心数据结构与高性能原理

上一篇&#xff1a; 1.Redis安装 下载地址&#xff1a;http://redis.io/download 安装步骤&#xff1a; # 安装gcc yum install gcc# 把下载好的redis-5.0.3.tar.gz放在/usr/local文件夹下&#xff0c;并解压 wget http://download.redis.io/releases/redis-5.0.3.tar.gz…

[C++入门]---List的使用及模拟实现

文章目录 1.list的介绍2.list的使用2.1list的构造函数2.2list modifiers2.3list capacity2.4list elment access2.5iterator的使用 3.list的模拟实现3.1list的源码 1.list的介绍 list是可以在常数范围内在任意位置进行插入和删除的序列式容器&#xff0c;并且该容器可以前后双向…

【数据结构】堆排序详解

文章目录 一、堆排序思想二、向上调整建堆排序三、向下调整建堆排序四、总结 对于什么是堆&#xff0c;堆的概念分类以及堆的向上和向下两种调整算法可见&#xff1a; 堆的创建 一、堆排序思想 int a[] { 2,3,5,7,4,6 };对于这样一个数组来说&#xff0c;要想要用堆排序对它…

java.lang.ClassCastException: android.os.BinderProxy cannot be cast to ...

项目开发遇到下面这个报错了&#xff01; 问题原因 直接说原因&#xff0c;就是因为进程间不能直接传递对象&#xff0c;应该传递该Binder对象的映射&#xff08;代理对象&#xff09;&#xff0c;所以类型转换就出错了。如果在同一个进程中&#xff0c;直接传递对象没有关系&a…

9月15日作业

Qt代码 #include "mywnd.h"//构造函数的定义 mywnd::mywnd(QWidget *parent): QWidget(parent) //显性调用父类的有参构造完成对子类从父类继承下来成员的初始化工作 {//窗口设置this->resize(QSize(500, 433));this->setWindowTitle("Widget&quo…

安装GPU驱动,CUDA Toolkit和配置与CUDA对应的Pytorch

如果有帮助,记得回来点个赞 目录 1.安装指定GPU驱动如果安装的GPU CUDA Version和CUDA Toolkit版本已经冲突怎么办? 2.安装指定版本的CUDA Toolkit如果我安装了CUDA Toolkit之后nvcc -V仍然显示旧的CUDA Toolkit版本怎么办? 3.安装与CUDA对应的Pytorch已经安装了错乱版本的c…

《C++ primer plus》精炼(OOP部分)——对象和类(4)

“学习是人类进步的阶梯&#xff0c;也是个人成功的基石。” - 罗伯特肯尼迪 文章目录 友元函数利用友元函数重载<<运算符重载部分示例&#xff1a;矢量类 友元函数 先看看在上一章中我们作为例子的代码&#xff1a; class Student{string name;int grade;int operator…

第十九章、【Linux】开机流程、模块管理与Loader

19.1.1 开机流程一览 以个人计算机架设的 Linux 主机为例&#xff0c;当你按下电源按键后计算机硬件会主动的读取 BIOS 或 UEFI BIOS 来载入硬件信息及进行硬件系统的自我测试&#xff0c; 之后系统会主动的去读取第一个可开机的设备 &#xff08;由 BIOS 设置的&#xff09; …

如何实现wingftpserver部署到外网访问?快解析p2p内网穿透

不少朋友选择用wing FTP来搭建部署FTP服务管理文件共享。Wing FTP Server是一个跨平台ftp服务器端&#xff0c;它有不错的可靠性和一个友好的配置界面&#xff0c;Wing FTP Server除了能提供FTP的基本服务功能以外&#xff0c;还能提供管理员终端、任务计划、基于Web的管理端和…