C++版本的OpenCV实现二维图像的卷积定理(通过傅里叶变换实现二维图像的卷积过程,附代码!!)

C++版本的OpenCV库实现二维图像的卷积定理过程详解

  • 前言
  • 一、卷积定理简单介绍
  • 二、不同卷积过程对应的傅里叶变换过程
    • 1、“Same”卷积
    • 2、“Full”卷积
    • 3、“Valid”卷积
  • 三、基于OpenCV库实现的二维图像卷积定理
  • 四、基于FFTW库实现的二维图像卷积定理
  • 五、总结与讨论

前言

工作中用到许多卷积过程,需要转成C++代码的实现,使用OpenCV库自带的二维卷积过程所耗费的时间比较久,为了提升代码的运行效率可以考虑使用卷积定理实现二维图像的卷积过程。

一、卷积定理简单介绍

卷积定理是傅立叶变换满足的一个重要性质。卷积定理指出,函数卷积的傅立叶变换是函数傅立叶变换的乘积。具体分为时域卷积定理和频域卷积定理,时域卷积定理即时域内的卷积对应频域内的乘积;频域卷积定理即频域内的卷积对应时域内的乘积,两者具有对偶关系。

二、不同卷积过程对应的傅里叶变换过程

1、“Same”卷积

假设原始图像的大小为mxm,卷积核的大小为nxn。此时进行same卷积,则卷积后生成的图像大小为mxm,此时进行卷积是需要对原始图像进行padding操作,需要对原始图像周围进行n-1个补零操作,此时被卷积图像大小padding为(m+n-1)x(m+n-1),然后进行卷积操作,进行傅里叶变化是需要先将被卷积图像以及卷积核的大小都padding为(m+n-1)x(m+n-1),因为要进行傅里叶变换后的乘积操作,因此被卷积图像以及卷积核的大小需要相等。经过卷积定理的操作之后,将生成的(m+n-1)x(m+n-1)大小的图像按照padding的逆操作进行裁剪,得到mxm的图像即为same卷积得到的卷积图像。
Python代码验证

import numpy as np
from scipy import signal# 原始图像 f(x)
gray = np.uint16(np.random.randint(100, size=(7, 7)))
# 卷积核 g(x)
kenel = np.ones((3, 3))/9
# ----- Conv = f(x)*g(x) ----- #
# f(x)*g(x)
Conv = signal.convolve2d(gray, kenel, mode='same') # 使用full卷积类型,得到(M+N-1)X(M+N-1)大小#--------- ifft{ F(f(x))·F(g(x)) } ---------#
# 傅里叶变换前进行 padding 填充,图像和卷积核都补零到 (M+N-1)x(M+N-1)大小。
img_pad = np.pad(gray, ((1, 1), (1, 1)), 'constant')
kenel_pad = np.pad(kenel, ((3, 3),(3, 3)), 'constant')# F(f(x))
img_fft = np.fft.fftshift(np.fft.fft2(img_pad))
# F(g(x))
kenel_fft = np.fft.fftshift(np.fft.fft2(kenel_pad))
# ifft( F(f(x))·F(g(x)) )
FFT = np.fft.ifftshift(np.fft.ifft2(np.fft.fftshift(img_fft*kenel_fft)))#--------- 打印结果 ---------#
print(" f(x) ↓")
print(gray)
print(" g(x) ↓")
print(kenel)print("\n\n f(x)*g(x) ↓")
print(np.uint8(Conv))
print("\n ifft[F·G] ↓")
print(np.uint8(np.abs(FFT)))

结果展示
上述代码的结果如下图所示,可见卷积定理得到的结果经过裁剪后的红框中的内容与same卷积得到的结果一致。
在这里插入图片描述

2、“Full”卷积

假设原始图像的大小为mxm,卷积核的大小为nxn。此时进行full卷积,则卷积后生成的图像大小为(m+n-1)x(m+n-1),此时进行卷积是需要对原始图像进行padding操作,需要对原始图像周围进行2n-2个补零操作,此时被卷积图像大小padding为(m+2n-2)x(m+2n-12),然后进行卷积操作,进行傅里叶变化是需要先将被卷积图像以及卷积核的大小都padding为(m+n-1)x(m+n-1),因为要进行傅里叶变换后的乘积操作,因此被卷积图像以及卷积核的大小需要相等。经过卷积定理的操作之后,得到(m+n-1)x(m+n-1)的图像即为full卷积得到的卷积图像。
Python代码验证

import numpy as np
from scipy import signal# 原始图像 f(x)
gray = np.uint16(np.random.randint(100, size=(9, 9)))
# 卷积核 g(x)
kenel = np.ones((5, 5))/9
# ----- Conv = f(x)*g(x) ----- #
# f(x)*g(x)
Conv = signal.convolve2d(gray, kenel, mode='full') # 使用full卷积类型,得到(M+N-1)X(M+N-1)大小#--------- ifft{ F(f(x))·F(g(x)) } ---------#
# 傅里叶变换前进行 padding 填充,图像和卷积核都补零到 (M+N-1)x(M+N-1)大小。
img_pad = np.pad(gray, ((2, 2), (2, 2)), 'constant')
kenel_pad = np.pad(kenel, ((4, 4), (4, 4)), 'constant')# F(f(x))
img_fft = np.fft.fftshift(np.fft.fft2(img_pad))
# F(g(x))
kenel_fft = np.fft.fftshift(np.fft.fft2(kenel_pad))
# ifft( F(f(x))·F(g(x)) )
FFT = np.fft.ifftshift(np.fft.ifft2(np.fft.fftshift(img_fft*kenel_fft)))#--------- 打印结果 ---------#
print(" f(x) ↓")
print(gray)
print(" g(x) ↓")
print(kenel)print("\n\n f(x)*g(x) ↓")
print(np.uint8(Conv))
print("\n ifft[F·G] ↓")
print(np.uint8(np.abs(FFT)))

结果展示
上述代码的结果如下图所示,可见卷积定理得到的结果与full卷积得到的结果一致。
在这里插入图片描述

3、“Valid”卷积

假设原始图像的大小为mxm,卷积核的大小为nxn。此时进行valid卷积,则卷积后生成的图像大小为(m-n+1)x(m-n+1),此时不需要对被卷积图像进行padding操作,直接进行卷积操作,进行傅里叶变化是需要先将卷积核的大小padding为mxm,因为要进行傅里叶变换后的乘积操作,因此被卷积图像以及卷积核的大小需要相等。经过卷积定理的操作之后,将生成的mxm的图像进行裁剪,得到(m-n+1)x(m-n+1)的图像即为valid卷积得到的卷积图像。
Python代码验证

import numpy as np
from scipy import signal# 原始图像 f(x)
gray = np.uint16(np.random.randint(100, size=(9, 9)))
# 卷积核 g(x)
kenel = np.ones((5, 5))/9
# ----- Conv = f(x)*g(x) ----- #
# f(x)*g(x)
Conv = signal.convolve2d(gray, kenel, mode='valid') # 使用full卷积类型,得到(M+N-1)X(M+N-1)大小#--------- ifft{ F(f(x))·F(g(x)) } ---------#
# 傅里叶变换前进行 padding 填充,图像和卷积核都补零到 (M+N-1)x(M+N-1)大小。
img_pad = np.pad(gray, ((0, 0), (0, 0)), 'constant')
kenel_pad = np.pad(kenel, ((2, 2), (2, 2)), 'constant')# F(f(x))
img_fft = np.fft.fftshift(np.fft.fft2(img_pad))
# F(g(x))
kenel_fft = np.fft.fftshift(np.fft.fft2(kenel_pad))
# ifft( F(f(x))·F(g(x)) )
FFT = np.fft.ifftshift(np.fft.ifft2(np.fft.fftshift(img_fft*kenel_fft)))#--------- 打印结果 ---------#
print(" f(x) ↓")
print(gray)
print(" g(x) ↓")
print(kenel)print("\n\n f(x)*g(x) ↓")
print(np.uint8(Conv))
print("\n ifft[F·G] ↓")
print(np.uint8(np.abs(FFT)))

结果展示
上述代码的结果如下图所示,可见卷积定理得到的结果经过裁剪后的红框中的内容与valid卷积得到的结果一致。
在这里插入图片描述

三、基于OpenCV库实现的二维图像卷积定理

//本代码实现的是使用193x193大小的卷积核对193x193大小的被卷积图像进行卷积操作
Conv2Kernel(kernelImage, inputImage, outputImage, n, n);
cv::Mat matPaded1;
cv::Mat matPaded2;
cv::Mat kernelPaded;
cv::Mat fftKernel;
cv::Mat fftMat1;
cv::Mat fftMat2;
cv::Mat result1;
cv::Mat result2;cv::copyMakeBorder(matKernel, kernelPaded, 192, 215, 192, 215, cv::BORDER_CONSTANT, cv::Scalar(0.f));
cv::copyMakeBorder(matConv1, matPaded1, 192, 215, 192, 215, cv::BORDER_CONSTANT, cv::Scalar(0.f));cv::Mat planes1[] = { cv::Mat_<float>(kernelPaded),cv::Mat::zeros(kernelPaded.size(),CV_32F)
};
cv::Mat planes2[] = { cv::Mat_<float>(matPaded1),cv::Mat::zeros(matPaded1.size(),CV_32F)
};
cv::merge(planes1, 2, fftKernel);
cv::merge(planes2, 2, fftMat1);cv::dft(fftKernel, fftKernel, cv::DFT_COMPLEX_OUTPUT);
cv::dft(fftMat1, fftMat1, cv::DFT_COMPLEX_OUTPUT);fftshift(fftKernel);
fftshift(fftMat1);
cv::Mat fftMultiplication1;
cv::mulSpectrums(fftKernel, fftMat1, fftMultiplication1, cv::DFT_ROWS);
cv::idft(fftMultiplication1, result1, cv::DFT_INVERSE + cv::DFT_SCALE + cv::DFT_COMPLEX_OUTPUT);ifftshift(result1);
cv::split(result1, planes1);
cv::magnitude(planes1[0], planes1[1], planes1[0]);cv::Mat matConv3 = planes1[0](cv::Rect(192, 192, 193, 193)).clone();

代码详解
1、对被卷积图像和卷积核执行padding操作
由于使用的是same卷积,按照上文same卷积的过程对其进行padding操作,图像上下左右四个方向都补上192个0。下述代码右边和下面之所以补零数不是192,是因为在进行傅里叶变换时,特定长度的矩阵速度更快,因此补了更多的0。但是我在实验过程中并没有发现速度有变快
2、对padding后的图像矩阵进行傅里叶变换
对padding后的卷积核以及被卷积图像执行傅里叶变换,然后进行fftshift操作。
3、对傅里叶变换后的图像矩阵进行点乘操作
4、对点乘后的举证进行傅里叶逆变换
对点乘后的矩阵执行傅里叶逆变换,然后进行ifftshift操作。
5、截取合适位置的图像,具体位置根据padding过程确定,得到的图像矩阵即为卷积后的图像矩阵。

四、基于FFTW库实现的二维图像卷积定理

                fftw_complex* pImgOut = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * 600 * 600);fftw_plan pRef;pRef = fftw_plan_dft_2d(600, 600, pImgIn, pImgOut, FFTW_FORWARD, FFTW_ESTIMATE);fftw_execute(pRef);fftw_destroy_plan(pRef);fftw_free(pImgIn);fftw_free(pImgOut);

五、总结与讨论

经过不懈努力终于使用C++实现了卷积定理,想要进一步提升卷积过程的速度,优化代码性能。但是天不遂人愿,在我的任务中使用卷积定义实现卷积过程和使用OpenCV库中的卷积操作接口速度相差无几,几乎没有看到在计算速度上有提升,忙了半天白忙活了,难受~。分析原因可能是由于本次任务的卷积过程比较特殊,卷积核、被卷积图像的大小一致,导致进行padding操作时,padding后的图像几乎是原图像的9倍大小,造成傅里叶变换以及傅里叶逆变换的过程速度变慢,影响了整体流程的速度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/79747.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pgzrun 拼图游戏制作过程详解(6,7)

6. 检查拼图完成 初始化标记成功的变量Is_Win Is_WinFalse 当鼠标点击小拼图时&#xff0c;判断所有小拼图是否都在正确的位置&#xff0c;并更新Is_Win。 def on_mouse_down(pos,button): # 当鼠标被点击时# 略is_win Truefor i in range(6):for j in range(4):Square S…

【Java|golang】210. 课程表 II---拓扑排序

一、拓扑排序的定义&#xff1a; 先引用一段百度百科上对于拓扑排序的定义&#xff1a; 对一个有向无环图 ( Directed Acyclic Graph 简称 DAG ) G 进行拓扑排序&#xff0c;是将 G 中所有顶点排成一个线性序列&#xff0c;使得图中任意一对顶点 u 和 v &#xff0c;若边 <…

春秋云镜 CVE-2013-2134

春秋云镜 CVE-2013-2134 S2-015 靶标介绍 2.3.14.3 之前的 Apache Struts 2 允许远程攻击者通过标记在通配符匹配期间未正确处理的所提出的操作名称的请求执行任何 OGNL 代码&#xff0c;这是与 CVE-2013-2135 不同的漏洞。 启动场景 漏洞利用 工具利用 得到flag flag{b92…

01目标检测-问题引入

目录 一、目标检测问题定义 二、目标检测过程中的常见的问题 三、目标检测VS图像分类区别 目标检测&#xff1a; 图像分类&#xff1a; 总结&#xff1a; 四、目标检测VS目标分割 目标分割&#xff1a; 目标检测是计算机视觉领域的一个重要任务&#xff0c;旨在从图像或…

Django系列:Django开发环境配置与第一个Django项目

Django系列 Django开发环境配置与第一个Django项目 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/article/details/1328…

RFID电厂物资管理系统,助力智慧电厂升级改造

应用背景 随着智能化技术的快速发展&#xff0c;电力行业也面临着升级改造的需求&#xff0c;传统的电厂物资管理方式存在着诸多问题&#xff0c;如信息不透明、物资丢失和错误管理等&#xff0c;为了解决这些问题&#xff0c;RFID技术被广泛应用于电厂物资管理系统中。 传统…

Android 官方屏幕适配之ScreenMatch

背景&#xff1a; Android 项目的一个app需要适配手机平板&#xff0c;为了一套UI和可以适配2个不同屏幕&#xff0c;记录一个适配的技巧&#xff1a; 前提&#xff0c;使用这个框架&#xff1a;GitHub - wildma/ScreenAdaptation: :fire:一种非常好用的 Android 屏幕适配——…

第9节-PhotoShop基础课程-移动抓手缩放工具

文章目录 前言1. 移动工具1.移动工具1.自动选择&#xff08;图层和组&#xff09;2.显示变换控件 &#xff08;Shift 变换/ Ctrl 变换&#xff09;3.自由变换 Ctrl T &#xff08;Shift 变换/ Ctrl 变换&#xff09;4.对齐功能 2.画板工具 V1. 创建画板并作图2.导出画板 2.路…

Blender批量修改名称

假如在Blender里按顺序添加了多个mesh&#xff0c;名字后缀按照数字1,2,3…编号&#xff0c;此时又要插入一个新的mesh&#xff0c;那么这个mesh之后的其它mesh名字都要加1&#xff0c;此时该怎么办呢&#xff1f; 比较简单的办法是把新mesh后面的mesh名称一个一个手动加1&…

20230912在ubuntu18.04下使用pigz来提高tar命令压缩解压缩的速度

20230912在ubuntu18.04下使用pigz来提高tar命令压缩解压缩的速度 2023/9/15 22:19 https://blog.csdn.net/wb4916/article/details/128447298 20221226编译Toybrick的TB-RK3588X开发板的Android12系统2-SDK预处理 4、单线程压缩。 建议使用&#xff1a;pigz多线程压缩&#xf…

关于 firefox 不能访问 http 的解决

情景&#xff1a; 我在虚拟机 192.168.x.111 上配置了 DNS 服务器&#xff0c;在 kali 上设置 192.168.x.111 为 DNS 服务器后&#xff0c;使用 firefox 地址栏搜索域名 www.xxx.com &#xff0c;访问在 192.168.x.111 搭建的网站&#xff0c;本来经 192.168.x.111 DNS 服务器解…

DBeaver 下载、安装与数据库连接(MySQL)详细教程【超详细,保姆级教程!!!】

本文介绍DBeaver 下载、安装与数据库连接&#xff08;MySQL&#xff09;的详细教程 一、DBeaver 下载 官网下载地址&#xff1a;https://dbeaver.io/download/ 二、安装 1、双击下载的安装包&#xff0c;选择中文 2、点击下一步 3、点击我接受 4、如下勾选&#xff0c;…

javascript检测网页缩放演示代码

一、为什么会提示浏览器显示比例不正常&#xff1f; 在网上冲浪&#xff0c;有时在打某个网站时&#xff0c;会提示你的浏览器显示比例不是100%&#xff0c;建议你将浏览器显示比例恢复为100%&#xff0c;以便获得最佳显示效果。 二、检测网页缩放比例的方法 那么这些网站是如…

基于MSP430 红外避障-遥控小车(电赛必备 附项目代码)

文章目录 一、硬件清单二、模块连接三、程序设计四、项目源码 项目环境&#xff1a; 1. MSP430F55292. Code Composer Studio3. 蓝牙调试助手 项目简介&#xff1a; 小车可分为3种工作模式&#xff0c;每种工作模式都会打印在OLED显示屏上&#xff0c;通过按键转换工作模式。 模…

752. 打开转盘锁

链接&#xff1a; 752. 打开转盘锁 题解&#xff1a; class Solution { public:int openLock(vector<string>& deadends, string target) {std::unordered_set<std::string> table(deadends.begin(), deadends.end());if (table.find("0000") ! t…

华为云云服务器云耀L实例评测 | 华为云云服务器实例新品全面解析

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

零基础学前端(四)重点讲解 CSS

1. 该篇适用于从零基础学习前端的小白 2. 初学者不懂代码得含义也要坚持模仿逐行敲代码&#xff0c;以身体感悟带动头脑去理解新知识 3. 初学者切忌&#xff0c;不要眼花缭乱&#xff0c;不要四处找其它文档&#xff0c;要坚定一个教授者的方式&#xff0c;将其学通透&#xff…

【数据结构】串的模式匹配:简单的模式匹配算法,KMP算法

欢~迎~光~临~^_^ 目录 知识树 1、什么是串的模式匹配 2、简单的模式匹配算法 3、KMP算法 3.1 算法原理 3.2 C语言实现KMP算法 3.3 求next数组 3.4 KMP算法优化&#xff08;对next数组的优化&#xff09; 知识树 1、什么是串的模式匹配 串的模式匹配是在一个字符串中…

vscode和HBuilderx设置快捷键注释

一、vscode设置快捷键注释 1.打开vscode&#xff0c;使用快捷键&#xff1a;ctrlshiftp mac的话快捷键是&#xff1a;commandshiftp 然后在行中输入snippets 2.选择“新建”&#xff0c;选择将要配置的文件类型&#xff08;以vue类型为例&#xff09;我这里创建的名字为vue.…

使用docker创建minio镜像并上传文件,提供demo

使用docker创建minio镜像并上传文件&#xff0c;提供demo 1. 整体描述2. 环境搭建2.1 windows环境搭建2.2 docker部署 3. spring集成3.1 添加依赖3.2 配置文件3.3 创建config类3.4 创建minio操作类3.5 创建启动类3.6 测试controller 4. 测试操作4.1 demo运行4.2 页面查看4.3 上…