2024年MathorCup妈妈杯数学建模思路D题思路解析+参考成品

1 赛题思路

(赛题出来以后第一时间在群内分享,点击下方群名片即可加群)

2 比赛日期和时间
报名截止时间:2024年4月11日(周四)12:00

比赛开始时间:2024年4月12日(周五)8:00

比赛结束时间:2024年4月16日(周二)9:00

3 组织机构
主办单位:中国优选法统筹法与经济数学研究会

中国优选法统筹法与经济数学研究会是在中国科学技术协会直接领导下的学术性社会团体,是国家一级学会。学会由华罗庚教授于1981年发起成立,至今成立了评价方法与应用、项目管理、计算机模拟、统筹、管理决策与信息系统、工业工程、高等教育管理、数学教育、经济数学与管理数学、应急管理、灰色系统研究,复杂系统研究等十余个专业分会。竞赛是由中国优选法统筹法与经济数学研究会主办,MathorCup高校数学建模挑战赛组委会具体负责竞赛的组织。

4 建模常见问题类型


趁现在赛题还没更新,给大家汇总一下建模经常使用到的数学模型,题目八九不离十基本属于一下四种问题

4.1 分类问题

神经网络分类:

BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

import numpy as np# 定义神经网络类
class NeuralNetwork:def __init__(self):# 随机初始化权重np.random.seed(1)self.weights = 2 * np.random.random((3, 1)) - 1# Sigmoid激活函数def sigmoid(self, x):return 1 / (1 + np.exp(-x))# Sigmoid的导数def sigmoid_derivative(self, x):return x * (1 - x)# 训练神经网络def train(self, inputs, outputs, iterations):for iteration in range(iterations):# 正向传播output = self.predict(inputs)# 计算误差error = outputs - output# 反向传播adjustment = np.dot(inputs.T, error * self.sigmoid_derivative(output))# 更新权重self.weights += adjustment# 预测def predict(self, inputs):return self.sigmoid(np.dot(inputs, self.weights))# 训练数据集
training_inputs = np.array([[0, 0, 1],[1, 1, 1],[1, 0, 1],[0, 1, 1]])training_outputs = np.array([[0, 1, 1, 0]]).T# 初始化神经网络
neural_network = NeuralNetwork()print("随机初始化的权重:")
print(neural_network.weights)# 训练神经网络
neural_network.train(training_inputs, training_outputs, 10000)print("训练后的权重:")
print(neural_network.weights)# 测试新数据
print("新数据预测结果:")
print(neural_network.predict(np.array([1, 0, 0])))

4.2 优化问题

研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。建模方法:列出约束条件及目标函数;画出约束条件所表示的可行域;在可行域内求目标函数的最优解及最优值。

非线性规划:

非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是 线性函数的情形则属于线性规划。

整数规划:

规划中的变量(全部或部分)限制为整数,称为整数规划。若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。一类要求问题的解中的全部或一部分变量为整数的数学规划。从约束条件的构成又可细分为线性,二次和非线性的整数规划。

from pulp import *# 创建整数规划问题
prob = LpProblem("Integer_Problem", LpMaximize)# 定义决策变量
x1 = LpVariable("x1", lowBound=0, cat='Integer')
x2 = LpVariable("x2", lowBound=0, cat='Integer')# 定义目标函数
prob += 3*x1 + 2*x2, "Objective_Function"# 添加约束条件
prob += 2*x1 + x2 <= 10
prob += x1 + 3*x2 <= 12# 解决问题
prob.solve()# 输出结果
print("Status:", LpStatus[prob.status])
print("Optimal values:")
for v in prob.variables():print(v.name, "=", v.varValue)
print("Optimal value of the objective function:", value(prob.objective))

4.3 预测问题

灰色预测

灰色预测是就灰色系统所做的预测。是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

import numpy as np# 灰色预测模型
def grey_prediction(data):n = len(data)# 累加生成序列accumulation = np.cumsum(data)# 计算累加生成序列的一次紧邻均值生成序列avg_accumulation = 0.5 * (accumulation[:-1] + accumulation[1:])# 建立累加生成序列的一次紧邻均值生成序列与原始数据的关系x0 = data[0]B = np.vstack((-avg_accumulation, np.ones(n-1))).TYn = data[1:]# 求解参数a, u = np.dot(np.linalg.inv(np.dot(B.T, B)), np.dot(B.T, Yn))# 模型检验Pn = (x0 - u/a) * np.exp(-a * np.arange(1, n + 1)) + u/a# 预测predict = np.hstack((x0, np.diff(Pn).cumsum()))return predict# 示例数据
data = np.array([120, 130, 125, 135, 140, 145])# 灰色预测
prediction = grey_prediction(data)# 输出预测结果
print("原始数据:", data)
print("灰色预测结果:", prediction)

4.4 评价问题

主成分分析法(降维)

是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

import numpy as np
from sklearn.decomposition import PCA# 示例数据
data = np.array([[1, 2, 3],[4, 5, 6],[7, 8, 9],[10, 11, 12]])# 创建 PCA 模型,指定主成分数量
pca = PCA(n_components=2)# 拟合数据并进行主成分分析
pca.fit(data)# 转换数据到主成分空间
transformed_data = pca.transform(data)# 主成分
components = pca.components_# 方差解释比
explained_variance_ratio = pca.explained_variance_ratio_# 输出结果
print("原始数据:")
print(data)
print("\n主成分:")
print(components)
print("\n转换后的数据:")
print(transformed_data)
print("\n方差解释比:")
print(explained_variance_ratio)

5 建模资料 

六、获取方式

思路及参考成品将在下方名片群文件中更新。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/796995.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL-基本SQL语句编写:运算符练习

运算符练习 1.选择工资不在5000到12000的员工的姓名和工资 SELECT last_name,salary FROM employees #where salary not between 5000 and 12000; WHERE salary < 5000 OR salary > 12000;2.选择在20或50号部门工作的员工姓名和部门号 SELECT last_name,department_id…

Unity与CocosCreator对比学习二

一、锚点与适配 1.在Creator中 适配通过锚点、位置和Widget达到适配目的&#xff1b;锚点是节点在其父节点坐标系中坐标对其点&#xff0c;其x,y范围在[0, 1]之间&#xff1b; 锚点为(0, 0)时在节点自身的左下角&#xff0c;节点坐标指其左下角在父节点中的坐标&#xff1b;锚…

Python项目21:一个简单的记账系统(收入+支出+查询)

------------★Python练手项目源码★------------ Python项目源码20&#xff1a;银行管理系统&#xff08;开户、查询、取款、存款、转账、锁定、解锁、退出&#xff09; Python项目19&#xff1a;学员信息管理系统&#xff08;简易版&#xff09; Python项目18&#xff1a;…

【Linux-运维】查看操作系统的指定端口占用情况确定端口是哪个服务占用

不同的查看端口占用的方法&#xff0c;应用场景有所不同 一、查询某个端口是否被占用&#xff1f;lsof -i:端口号lsof -i:协议 查看某个协议的占用情况netstat -tlnp|grep 端口号ss -tlnp|grep 端口号fuser 端口号/协议ls -l /proc/$(lsof -t -i:端口号)|grep exe 二、确认指定…

C++ 【原型模式】

简单介绍 原型模式是一种创建型设计模式 | 它使你能够复制已有对象&#xff0c;客户端不需要知道要复制的对象是哪个类的实例&#xff0c;只需通过原型工厂获取该对象的副本。 以后需要更改具体的类或添加新的原型类&#xff0c;客户端代码无需改变&#xff0c;只需修改原型工…

[ 云计算 | AWS ] ChatGPT 竞争对手 Claude 3 上线亚马逊云,实测表现超预期

文章目录 一、前言二、Claude 3 介绍以及相关测试细节三、在亚马逊云科技上体验 Claude 33.1 在 Amazon Bedrock 服务中配置 Claude 33.2 为聊天配置使用 Claude 3 模型3.3 Caude 3 Sonet 聊天体验 四、文末总结五、参考文献 一、前言 3月4号&#xff0c;Anthropic 发布了号称…

第十四届蓝桥杯C/C++大学B组题解(一)

1、日期统计 #include <bits/stdc.h> using namespace std; int main() {int array[100] {5, 6, 8, 6, 9, 1, 6, 1, 2, 4, 9, 1, 9, 8, 2, 3, 6, 4, 7, 7,5, 9, 5, 0, 3, 8, 7, 5, 8, 1, 5, 8, 6, 1, 8, 3, 0, 3, 7, 9,2, 7, 0, 5, 8, 8, 5, 7, 0, 9, 9, 1, 9, 4, 4, 6,…

鸿蒙Lottie动画-实现控制动画的播放、暂停、倍速播放、播放顺序

介绍 本示例展示了lottie对动画的操作功能。引入Lottie模块&#xff0c;实现控制动画的播放、暂停、倍速播放、播放顺序、播放到指定帧停止或从指定帧开始播放、侦听事件等功能&#xff0c;动画资源路径必须是json格式。 效果预览 使用说明&#xff1a; 进入页面默认开始201…

Python人工智能应用---中文分词词频统计

目录 1.中文分词 2.循环分别处理列表 &#xff08;1&#xff09;分析 &#xff08;2&#xff09;代码解决 3.词袋模型的构建 &#xff08;1&#xff09;分析需求 &#xff08;2&#xff09;处理分析 1.先实现字符串的连接 2.字符串放到新的列表里面 4.提取高频词语 &…

一些好玩的东西

这里写目录标题 递归1.递归打印数组和链表?代码实现原理讲解二叉树的 前 中 后 序位置 参考文章 递归 1.递归打印数组和链表? 平常我们打印数组和链表都是 迭代 就好了今天学到一个新思路–>不仅可以轻松正着打印数组和链表 , 还能轻松倒着打印(用的是二叉树的前中后序遍…

Linux基础篇:Linux第三方软件仓库——可以让Linux变得有趣的软件仓库

Linux第三方软件仓库——可以让Linux变得有趣的软件仓库 一、epel源介绍 EPEL&#xff08;Extra Packages for Enterprise Linux&#xff09;源是一个由Fedora项目组维护的第三方软件仓库&#xff0c;为企业级Linux发行版&#xff08;如Red Hat Enterprise Linux&#xff08;…

清明作业 c++

1.封装一个类&#xff0c;实现对一个数求累和阶乘质数 #include <iostream>using namespace std; int mproduct(int a){if(a>1){return a*mproduct((a-1));}else{return 1;} } class number{int a; public:number():a(5){};number(int a):a(a){}void set(int a){thi…

ChatGLM-6B实战微调(P-tuning-v2、LORA)

硬件准备 GPU: NVIDIA Tesla A30 24GB python 3.10 pytorch 1.11 transformers 4.27.1 实验环境 Change your pip source pip config set global.extra-index-url https://pypi.tuna.tsinghua.edu.cn/simple # Writing to /opt/conda/pip.conf pip config set global.inde…

浏览器工作原理与实践--DOM树:JavaScript是如何影响DOM树构建的

在上一篇文章中&#xff0c;我们通过开发者工具中的网络面板&#xff0c;介绍了网络请求过程的几种性能指标以及对页面加载的影响。 而在渲染流水线中&#xff0c;后面的步骤都直接或者间接地依赖于DOM结构&#xff0c;所以本文我们就继续沿着网络数据流路径来介绍DOM树是怎么生…

MATLAB实现数值求解高阶常微分方程组

一、高阶常微分方程组 高阶常微分方程是指包含多个高阶常微分方程的系统。这些方程通常涉及多个未知函数及其高阶导数。解决高阶常微分方程组通常比解决单个高阶常微分方程更为复杂&#xff0c;因为需要同时考虑多个方程和多个未知函数之间的关系。 一般来说&#xff0c;解决…

【PyQt5篇】使用QtDesigner添加控件和槽

文章目录 &#x1f354;使用QtDesigner进行设计&#x1f6f8;在代码中添加信号和槽 &#x1f354;使用QtDesigner进行设计 我们首先使用QtDesigner设计界面 得到代码login.ui <?xml version"1.0" encoding"UTF-8"?> <ui version"4.0&q…

金融中的数学模型

平稳时间序列 时间序列的基本统计特性&#xff0c;如均值、方差和自相关等&#xff0c;在时间上不随时间的推移而发生显著的变化。 平稳时间序列通常具有以下特征&#xff1a; 均值不随时间变化&#xff1a;序列的均值在时间上保持恒定。方差不随时间变化&#xff1a;序列的…

CSS属性计算逻辑

CSS 属性计算逻辑 首先&#xff0c;假设在 HTML 中有这么一段代码&#xff0c;在 body 中有一个 h1 标题&#xff1a; <body><h1>这是一个h1标题</h1> </body>目前我们没有设置该 h1 的任何样式&#xff0c;但是却能看到该 h1 有一定的默认样式&…

2024 年最新使用 Python 部署腾讯云服务器搭建企业微信机器人应用详细教程

企业微信机器人是一种可以在企业微信工作群中执行特定任务的自动化工具。它具备丰富的功能&#xff0c;可以帮助企业提高团队协作效率&#xff0c;简化工作流程&#xff0c;并为员工提供更好的工作体验。 获取企业 ID 信息 企业信息页面链接地址&#xff1a;https://work.wei…

Xshell Mobaxterm等终端工具连接不上服务器,显示 SSH服务器拒绝密码。请再试一次。解决办法

问题解决办法&#xff1a; &#xff08;1&#xff09;需要查看配置SSH密钥时&#xff0c;输入的password密码和当前users_name cd /home/: 查看当前系统下的用户名 注意上图中的登录名是服务器端linux下自己设置的user_name用户名&#xff1a; 所以需要将fl改为&#xff1a…