Three 之 three.js (webgl)GLSL-Card 中文手册相关知识

Three 之 three.js (webgl)GLSL-Card 中文手册相关知识

目录

Three 之 three.js (webgl)GLSL-Card 中文手册相关知识

一、简单介绍

二、GLSL 中文手册

1、基本类型

2、基本结构和数组

3、向量的分量访问

4、运算符

5、基础类型间的运算

6、变量限定符

7、函数参数限定符:

8、glsl的函数:

9、构造函数:

10、类型转换:

11、精度限定:

12、预编译指令:

13、内置的特殊变量

14、内置的常量

15、流控制

16、内置函数库

18、官方的shader范例:


一、简单介绍

Three js 开发的一些知识整理,方便后期遇到类似的问题,能够及时查阅使用。

本文简单记录 GLSL 的一些中文手册的基础知识,以便后期查阅。

GLSL-Card 地址:https://github.com/wshxbqq/GLSL-Card

二、GLSL 中文手册

1、基本类型

类型说明
void空类型,即不返回任何值
bool布尔类型 true,false
int带符号的整数 signed integer
float带符号的浮点数 floating scalar
vec2, vec3, vec4n维浮点数向量 n-component floating point vector
bvec2, bvec3, bvec4n维布尔向量 Boolean vector
ivec2, ivec3, ivec4n维整数向量 signed integer vector
mat2, mat3, mat42x2, 3x3, 4x4 浮点数矩阵 float matrix
sampler2D2D纹理 a 2D texture
samplerCube盒纹理 cube mapped texture

2、基本结构和数组

类型说明
结构struct type-name{} 类似c语言中的 结构体
数组float foo[3] glsl只支持1维数组,数组可以是结构体的成员

3、向量的分量访问

glsl中的向量(vec2,vec3,vec4)往往有特殊的含义,比如可能代表了一个空间坐标(x,y,z,w),或者代表了一个颜色(r,g,b,a),再或者代表一个纹理坐标(s,t,p,q) 所以glsl提供了一些更人性化的分量访问方式.

vector.xyzw 其中xyzw 可以任意组合

vector.rgba 其中rgba 可以任意组合

vector.stpq 其中rgba 可以任意组合

vec4 v=vec4(1.0,2.0,3.0,1.0);
float x = v.x; //1.0
float x1 = v.r; //1.0
float x2 = v[0]; //1.0vec3 xyz = v.xyz; //vec3(1.0,2.0,3.0)
vec3 xyz1 = vec(v[0],v[1],v[2]); //vec3(1.0,2.0,3.0)
vec3 rgb = v.rgb; //vec3(1.0,2.0,3.0)vec2 xyzw = v.xyzw; //vec4(1.0,2.0,3.0,1.0);
vec2 rgba = v.rgba; //vec4(1.0,2.0,3.0,1.0);

4、运算符

优先级(越小越高)运算符说明结合性
1()聚组:a*(b+c)N/A
2[] () . ++ --数组下标__[],方法参数__fun(arg1,arg2,arg3),属性访问__a.b__,自增/减后缀__a++ a--__L - R
3++ -- + - !自增/减前缀__++a --a__,正负号(一般正号不写)a ,-a,取反__!false__R - L
4* /乘除数学运算L - R
5+ -加减数学运算L - R
7< > <= >=关系运算符L - R
8== !=相等性运算符L - R
12&&逻辑与L - R
13^^逻辑排他或(用处基本等于!=)L - R
14||逻辑或L - R
15? :三目运算符L - R
16= += -= *= /=赋值与复合赋值L - R
17,顺序分配运算L - R

ps 左值与右值:

左值:表示一个储存位置,可以是变量,也可以是表达式,但表达式最后的结果必须是一个储存位置.右值:表示一个值, 可以是一个变量或者表达式再或者纯粹的值.操作符的优先级:决定含有多个操作符的表达式的求值顺序,每个操作的优先级不同.操作符的结合性:决定相同优先级的操作符是从左到右计算,还是从右到左计算。

5、基础类型间的运算

glsl中,没有隐式类型转换,原则上glsl要求任何表达式左右两侧(l-value),(r-value)的类型必须一致 也就是说以下表达式都是错误的:

int a =2.0; //错误,r-value为float 而 lvalue 为int.
int a =1.0+2;
float a =2;
float a =2.0+1;
bool a = 0; 
vec3 a = vec3(1.0, 2.0, 3.0) * 2;

下面来分别说说可能遇到的情况:

1)floatint:

float与float , int与int之间是可以直接运算的,但float与int不行.它们需要进行一次显示转换.即要么把float转成int: int(1.0) ,要么把int转成float: float(1) ,以下表达式都是正确的:

int a=int(2.0);
float a= float(2);int a=int(2.0)*2 + 1;
float a= float(2)*6.0+2.3;

2)floatvec(向量) mat(矩阵):

vec,mat这些类型其实是由float复合而成的,当它们与float运算时,其实就是在每一个分量上分别与float进行运算,这就是所谓的逐分量运算.glsl里 大部分涉及vec,mat的运算都是逐分量运算,但也并不全是. 下文中就会讲到特例.

逐分量运算是线性的,这就是说 vec 与 float 的运算结果是还是 vec.

int 与 vec,mat之间是不可运算的, 因为vec和mat中的每一个分量都是 float 类型的. 无法与int进行逐分量计算.

下面枚举了几种 float 与 vec,mat 运算的情况

vec3 a = vec3(1.0, 2.0, 3.0);
mat3 m = mat3(1.0);
float s = 10.0;
vec3 b = s * a; // vec3(10.0, 20.0, 30.0)
vec3 c = a * s; // vec3(10.0, 20.0, 30.0)
mat3 m2 = s * m; // = mat3(10.0)
mat3 m3 = m * s; // = mat3(10.0)

3)vec(向量)vec(向量):

两向量间的运算首先要保证操作数的阶数都相同.否则不能计算.例如: vec3*vec2 vec4+vec3 等等都是不行的.

它们的计算方式是两操作数在同位置上的分量分别进行运算,其本质还是逐分量进行的,这和上面所说的float类型的 逐分量运算可能有一点点差异,相同的是 vec 与 vec 运算结果还是 vec, 且阶数不变.

vec3 a = vec3(1.0, 2.0, 3.0);
vec3 b = vec3(0.1, 0.2, 0.3);
vec3 c = a + b; // = vec3(1.1, 2.2, 3.3)
vec3 d = a * b; // = vec3(0.1, 0.4, 0.9)

4) vec(向量)mat(矩阵):

要保证操作数的阶数相同,且vec与mat间只存在乘法运算.

它们的计算方式和线性代数中的矩阵乘法相同,不是逐分量运算.

vec2 v = vec2(10., 20.);
mat2 m = mat2(1., 2.,  3., 4.);
vec2 w = m * v; // = vec2(1. * 10. + 3. * 20., 2. * 10. + 4. * 20.)
...vec2 v = vec2(10., 20.);
mat2 m = mat2(1., 2.,  3., 4.);
vec2 w = v * m; // = vec2(1. * 10. + 2. * 20., 3. * 10. + 4. * 20.)

向量与矩阵的乘法规则如下:

5) mat(矩阵)mat(矩阵):

要保证操作数的阶数相同.

在mat与mat的运算中, 除了乘法是线性代数中的矩阵乘法外.其余的运算任为逐分量运算.简单说就是只有乘法是特殊的,其余都和vec与vec运算类似.

mat2 a = mat2(1., 2.,  3., 4.);
mat2 b = mat2(10., 20.,  30., 40.);
mat2 c = a * b; //mat2(1.*10.+3.*20.,2.*10.+4.*20.,1.* 30.+3.*40.,2.* 30.+4.*40.);mat2 d = a+b;//mat2(1.+10.,2.+20.,3.+30.,4.+40);

矩阵乘法规则如下:

6、变量限定符

修饰符说明
none(默认的可省略)本地变量,可读可写,函数的输入参数既是这种类型
const声明变量或函数的参数为只读类型
attribute只能存在于vertex shader中,一般用于保存顶点或法线数据,它可以在数据缓冲区中读取数据
uniform在运行时shader无法改变uniform变量, 一般用来放置程序传递给shader的变换矩阵,材质,光照参数等等.
varying主要负责在vertex 和 fragment 之间传递变量

const:

和C语言类似,被const限定符修饰的变量初始化后不可变,除了局部变量,函数参数也可以使用const修饰符.但要注意的是结构变量可以用const修饰, 但结构中的字段不行.

const变量必须在声明时就初始化 const vec3 v3 = vec3(0.,0.,0.)

局部变量只能使用const限定符.

函数参数只能使用const限定符.

struct light {vec4 color;vec3 pos;//const vec3 pos1; //结构中的字段不可用const修饰会报错.};
const light lgt = light(vec4(1.0), vec3(0.0)); //结构变量可以用const修饰

attribute:

attribute变量是全局只读的,它只能在vertex shader中使用,只能与浮点数,向量或矩阵变量组合, 一般attribute变量用来放置程序传递来的模型顶点,法线,颜色,纹理等数据它可以访问数据缓冲区 (还记得__gl.vertexAttribPointer__这个函数吧)

attribute vec4 a_Position;

uniform:

uniform变量是全局只读的,在整个shader执行完毕前其值不会改变,他可以和任意基本类型变量组合, 一般我们使用uniform变量来放置外部程序传递来的环境数据(如点光源位置,模型的变换矩阵等等) 这些数据在运行中显然是不需要被改变的.

uniform vec4 lightPosition;

varying:

varying类型变量是 vertex shader 与 fragment shader 之间的信使,一般我们在 vertex shader 中修改它然后在fragment shader使用它,但不能在 fragment shader中修改它.

//顶点着色器
varying vec4 v_Color;
void main(){ ...v_Color = vec4(1.,1.,1.,1);
}//片元着色器
...
varying vec4 v_Color;
void main() {gl_FragColor = v_Color;
}
...

要注意全局变量限制符只能为 const、attribute、uniform和varying中的一个.不可复合.

7、函数参数限定符:

函数的参数默认是以拷贝的形式传递的,也就是值传递,任何传递给函数参数的变量,其值都会被复制一份,然后再交给函数内部进行处理. 我们可以为参数添加限定符来达到传递引用的目的,glsl中提供的参数限定符如下:

限定符说明
< none: default >默认使用 in 限定符
in复制到函数中在函数中可读写
out返回时从函数中复制出来
inout复制到函数中并在返回时复制出来

in 是函数参数的默认限定符,最终真正传入函数形参的其实是实参的一份拷贝.在函数中,修改in修饰的形参不会影响到实参变量本身.

out 它的作用是向函数外部传递新值,out模式下传递进来的参数是write-only的(可写不可读).就像是一个"坑位",坑位中的值需要函数给他赋予. 在函数中,修改out修饰的形参会影响到实参本身.

inout inout下,形参可以被理解为是一个带值的"坑位",及可读也可写,在函数中,修改inout修饰的形参会影响到实参本身.

8、glsl的函数:

glsl允许在程序的最外部声明函数.函数不能嵌套,不能递归调用,且必须声明返回值类型(无返回值时声明为void) 在其他方面glsl函数与c函数非常类似.

vec4 getPosition(){ vec4 v4 = vec4(0.,0.,0.,1.);return v4;
}void doubleSize(inout float size){size= size*2.0  ;
}
void main() {float psize= 10.0;doubleSize(psize);gl_Position = getPosition();gl_PointSize = psize;
}

9、构造函数:

glsl中变量可以在声明的时候初始化,float pSize = 10.0 也可以先声明然后等需要的时候在进行赋值.

聚合类型对象如(向量,矩阵,数组,结构) 需要使用其构造函数来进行初始化. vec4 color = vec4(0.0, 1.0, 0.0, 1.0);

//一般类型
float pSize = 10.0;
float pSize1;
pSize1=10.0;
...//复合类型
vec4 color = vec4(0.0, 1.0, 0.0, 1.0);
vec4 color1;
color1 =vec4(0.0, 1.0, 0.0, 1.0);
...//结构
struct light {float intensity;vec3 position;
};
light lightVar = light(3.0, vec3(1.0, 2.0, 3.0));//数组
const float c[3] = float[3](5.0, 7.2, 1.1);

10、类型转换:

glsl可以使用构造函数进行显式类型转换,各值如下:

bool t= true;
bool f = false;int a = int(t); //true转换为1或1.0
int a1 = int(f);//false转换为0或0.0float b = float(t);
float b1 = float(f);bool c = bool(0);//0或0.0转换为false
bool c1 = bool(1);//非0转换为truebool d = bool(0.0);
bool d1 = bool(1.0);

11、精度限定:

glsl在进行光栅化着色的时候,会产生大量的浮点数运算,这些运算可能是当前设备所不能承受的,所以glsl提供了3种浮点数精度,我们可以根据不同的设备来使用合适的精度.

在变量前面加上 highp mediump lowp 即可完成对该变量的精度声明.

lowp float color;
varying mediump vec2 Coord;
lowp ivec2 foo(lowp mat3);
highp mat4 m;

我们一般在片元着色器(fragment shader)最开始的地方加上 precision mediump float; 便设定了默认的精度.这样所有没有显式表明精度的变量 都会按照设定好的默认精度来处理.

如何确定精度:

变量的精度首先是由精度限定符决定的,如果没有精度限定符,则要寻找其右侧表达式中,已经确定精度的变量,一旦找到,那么整个表达式都将在该精度下运行.如果找到多个, 则选择精度较高的那种,如果一个都找不到,则使用默认或更大的精度类型.

uniform highp float h1;
highp float h2 = 2.3 * 4.7; //运算过程和结果都 是高精度
mediump float m;
m = 3.7 * h1 * h2; //运算过程 是高精度
h2 = m * h1; //运算过程 是高精度
m = h2 – h1; //运算过程 是高精度
h2 = m + m; //运算过程和结果都 是中等精度
void f(highp float p); // 形参 p 是高精度
f(3.3); //传入的 3.3是高精度

invariant关键字:

由于shader在编译时会进行一些内部优化,可能会导致同样的运算在不同shader里结果不一定精确相等.这会引起一些问题,尤其是vertx shader向fragmeng shader传值的时候. 所以我们需要使用invariant 关键字来显式要求计算结果必须精确一致. 当然我们也可使用 #pragma STDGL invariant(all)来命令所有输出变量必须精确一致, 但这样会限制编译器优化程度,降低性能.

#pragma STDGL invariant(all) //所有输出变量为 invariant
invariant varying texCoord; //varying在传递数据的时候声明为invariant

限定符的顺序:

当需要用到多个限定符的时候要遵循以下顺序:

1.在一般变量中: invariant > storage > precision

2.在参数中: storage > parameter > precision

我们来举例说明:

invariant varying lowp float color; // invariant > storage > precisionvoid doubleSize(const in lowp float s){ //storage > parameter > precisionfloat s1=s;
}

12、预编译指令:

以 # 开头的是预编译指令,常用的有:

#define #undef #if #ifdef #ifndef #else
#elif #endif #error #pragma #extension #version #line

比如 #version 100 他的意思是规定当前shader使用 GLSL ES 1.00标准进行编译,如果使用这条预编译指令,则他必须出现在程序的最开始位置.

内置的宏:

__LINE__ : 当前源码中的行号.

__VERSION__ : 一个整数,指示当前的glsl版本 比如 100 ps: 100 = v1.00

GL_ES : 如果当前是在 OPGL ES 环境中运行则 GL_ES 被设置成1,一般用来检查当前环境是不是 OPENGL ES.

GL_FRAGMENT_PRECISION_HIGH : 如果当前系统glsl的片元着色器支持高浮点精度,则设置为1.一般用于检查着色器精度.

实例:

1)如何通过判断系统环境,来选择合适的精度:

#ifdef GL_ES //
#ifdef GL_FRAGMENT_PRECISION_HIGH
precision highp float;
#else
precision mediump float;
#endif
#endif

2)自定义宏:

#define NUM 100
#if NUM==100
#endif

13、内置的特殊变量

glsl程序使用一些特殊的内置变量与硬件进行沟通.他们大致分成两种 一种是 input类型,他负责向硬件(渲染管线)发送数据. 另一种是output类型,负责向程序回传数据,以便编程时需要.

在 vertex Shader 中:

output 类型的内置变量:

变量说明单位
highp vec4 gl_Position;gl_Position 放置顶点坐标信息vec4
mediump float gl_PointSize;gl_PointSize 需要绘制点的大小,(只在gl.POINTS模式下有效)float

在 fragment Shader 中:

input 类型的内置变量:

变量说明单位
mediump vec4 gl_FragCoord;片元在framebuffer画面的相对位置vec4
bool gl_FrontFacing;标志当前图元是不是正面图元的一部分bool
mediump vec2 gl_PointCoord;经过插值计算后的纹理坐标,点的范围是0.0到1.0vec2

output 类型的内置变量:

变量说明单位
mediump vec4 gl_FragColor;设置当前片点的颜色vec4 RGBA color
mediump vec4 gl_FragData[n]设置当前片点的颜色,使用glDrawBuffers数据数组vec4 RGBA color

14、内置的常量

glsl提供了一些内置的常量,用来说明当前系统的一些特性. 有时我们需要针对这些特性,对shader程序进行优化,让程序兼容度更好.

在 vertex Shader 中:

1.const mediump int gl_MaxVertexAttribs>=8

gl_MaxVertexAttribs 表示在vertex shader(顶点着色器)中可用的最大attributes数.这个值的大小取决于 OpenGL ES 在某设备上的具体实现, 不过最低不能小于 8 个.

2.const mediump int gl_MaxVertexUniformVectors >= 128

gl_MaxVertexUniformVectors 表示在vertex shader(顶点着色器)中可用的最大uniform vectors数. 这个值的大小取决于 OpenGL ES 在某设备上的具体实现, 不过最低不能小于 128 个.

3.const mediump int gl_MaxVaryingVectors >= 8

gl_MaxVaryingVectors 表示在vertex shader(顶点着色器)中可用的最大varying vectors数. 这个值的大小取决于 OpenGL ES 在某设备上的具体实现, 不过最低不能小于 8 个.

4.const mediump int gl_MaxVertexTextureImageUnits >= 0

gl_MaxVaryingVectors 表示在vertex shader(顶点着色器)中可用的最大纹理单元数(贴图). 这个值的大小取决于 OpenGL ES 在某设备上的具体实现, 甚至可以一个都没有(无法获取顶点纹理)

5.const mediump int gl_MaxCombinedTextureImageUnits >= 8

gl_MaxVaryingVectors 表示在 vertex Shader和fragment Shader总共最多支持多少个纹理单元. 这个值的大小取决于 OpenGL ES 在某设备上的具体实现, 不过最低不能小于 8 个.

在 fragment Shader 中:

1.const mediump int gl_MaxTextureImageUnits >= 8

gl_MaxVaryingVectors 表示在 fragment Shader(片元着色器)中能访问的最大纹理单元数,这个值的大小取决于 OpenGL ES 在某设备上的具体实现, 不过最低不能小于 8 个.

2.const mediump int gl_MaxFragmentUniformVectors >= 16

gl_MaxFragmentUniformVectors 表示在 fragment Shader(片元着色器)中可用的最大uniform vectors数,这个值的大小取决于 OpenGL ES 在某设备上的具体实现, 不过最低不能小于 16 个.

3.const mediump int gl_MaxDrawBuffers = 1

gl_MaxDrawBuffers 表示可用的drawBuffers数,在OpenGL ES 2.0中这个值为1, 在将来的版本可能会有所变化.

glsl中还有一种内置的uniform状态变量, gl_DepthRange 它用来表明全局深度范围.

结构如下:

struct gl_DepthRangeParameters {highp float near; // nhighp float far; // fhighp float diff; // f - n};uniform gl_DepthRangeParameters gl_DepthRange;

除了 gl_DepthRange 外的所有uniform状态常量都已在glsl 1.30 中废弃.

15、流控制

glsl的流控制和c语言非常相似,这里不必再做过多说明,唯一不同的是片段着色器中有一种特殊的控制流discard. 使用discard会退出片段着色器,不执行后面的片段着色操作。片段也不会写入帧缓冲区。

for (l = 0; l < numLights; l++)
{if (!lightExists[l]);continue;color += light[l];
}
...while (i < num)
{sum += color[i];i++;
}
...do{color += light[lightNum];lightNum--;
}while (lightNum > 0)...if (true)discard;

16、内置函数库

glsl提供了非常丰富的函数库,供我们使用,这些功能都是非常有用且会经常用到的. 这些函数按功能区分大改可以分成7类:

通用函数:

下文中的 类型 T可以是 float, vec2, vec3, vec4,且可以逐分量操作.

方法说明
T abs(T x)返回x的绝对值
T sign(T x)比较x与0的值,大于,等于,小于 分别返回 1.0 ,0.0,-1.0
T floor(T x)返回<=x的最大整数
T ceil(T x)返回>=等于x的最小整数
T fract(T x)获取x的小数部分
T mod(T x, T y)
T mod(T x, float y)
取x,y的余数
T min(T x, T y)
T min(T x, float y)
取x,y的最小值
T max(T x, T y)
T max(T x, float y)
取x,y的最大值
T clamp(T x, T minVal, T maxVal)
T clamp(T x, float minVal,float maxVal)
min(max(x, minVal), maxVal),返回值被限定在 minVal,maxVal之间
T mix(T x, T y, T a)
T mix(T x, T y, float a)
取x,y的线性混合,x*(1-a)+y*a
T step(T edge, T x)
T step(float edge, T x)
如果 x<edge 返回 0.0 否则返回1.0
T smoothstep(T edge0, T edge1, T x)
T smoothstep(float edge0,float edge1, T x)
如果x<edge0 返回 0.0 如果x>edge1返回1.0, 否则返回Hermite插值

角度&三角函数:

下文中的 类型 T可以是 float, vec2, vec3, vec4,且可以逐分量操作.

方法说明
T radians(T degrees)角度转弧度
T degrees(T radians)弧度转角度
T sin(T angle)正弦函数,角度是弧度
T cos(T angle)余弦函数,角度是弧度
T tan(T angle)正切函数,角度是弧度
T asin(T x)反正弦函数,返回值是弧度
T acos(T x)反余弦函数,返回值是弧度
T atan(T y, T x)
T atan(T y_over_x)
反正切函数,返回值是弧度

指数函数:

下文中的 类型 T可以是 float, vec2, vec3, vec4,且可以逐分量操作.

方法说明
T pow(T x, T y)返回x的y次幂 xy
T exp(T x)返回x的自然指数幂 ex
T log(T x)返回x的自然对数 ln
T exp2(T x)返回2的x次幂 2x
T log2(T x)返回2为底的对数 log2
T sqrt(T x)开根号 √x
T inversesqrt(T x)先开根号,在取倒数,就是 1/√x

几何函数:

下文中的 类型 T可以是 float, vec2, vec3, vec4,且可以逐分量操作.

方法说明
float length(T x)返回矢量x的长度
float distance(T p0, T p1)返回p0 p1两点的距离
float dot(T x, T y)返回x y的点积
vec3 cross(vec3 x, vec3 y)返回x y的叉积
T normalize(T x)对x进行归一化,保持向量方向不变但长度变为1
T faceforward(T N, T I, T Nref)根据 矢量 N 与Nref 调整法向量
T reflect(T I, T N)返回 I - 2 * dot(N,I) * N, 结果是入射矢量 I 关于法向量N的 镜面反射矢量
T refract(T I, T N, float eta)返回入射矢量I关于法向量N的折射矢量,折射率为eta

矩阵函数:

mat可以为任意类型矩阵.

方法说明
mat matrixCompMult(mat x, mat y)将矩阵 x 和 y的元素逐分量相乘

向量函数:

下文中的 类型 T可以是 vec2, vec3, vec4, 且可以逐分量操作.

bvec指的是由bool类型组成的一个向量:

vec3 v3= vec3(0.,0.,0.);
vec3 v3_1= vec3(1.,1.,1.);
bvec3 aa= lessThan(v3,v3_1); //bvec3(true,true,true)
方法说明
bvec lessThan(T x, T y)逐分量比较x < y,将结果写入bvec对应位置
bvec lessThanEqual(T x, T y)逐分量比较 x <= y,将结果写入bvec对应位置
bvec greaterThan(T x, T y)逐分量比较 x > y,将结果写入bvec对应位置
bvec greaterThanEqual(T x, T y)逐分量比较 x >= y,将结果写入bvec对应位置
bvec equal(T x, T y)
bvec equal(bvec x, bvec y)
逐分量比较 x == y,将结果写入bvec对应位置
bvec notEqual(T x, T y)
bvec notEqual(bvec x, bvec y)
逐分量比较 x!= y,将结果写入bvec对应位置
bool any(bvec x)如果x的任意一个分量是true,则结果为true
bool all(bvec x)如果x的所有分量是true,则结果为true
bvec not(bvec x)bool矢量的逐分量取反

17、纹理查询函数:

图像纹理有两种 一种是平面2d纹理,另一种是盒纹理,针对不同的纹理类型有不同访问方法.

纹理查询的最终目的是从sampler中提取指定坐标的颜色信息. 函数中带有Cube字样的是指 需要传入盒状纹理. 带有Proj字样的是指带投影的版本.

以下函数只在vertex shader中可用:

vec4 texture2DLod(sampler2D sampler, vec2 coord, float lod);
vec4 texture2DProjLod(sampler2D sampler, vec3 coord, float lod);
vec4 texture2DProjLod(sampler2D sampler, vec4 coord, float lod);
vec4 textureCubeLod(samplerCube sampler, vec3 coord, float lod);

以下函数只在fragment shader中可用:

vec4 texture2D(sampler2D sampler, vec2 coord, float bias);
vec4 texture2DProj(sampler2D sampler, vec3 coord, float bias);
vec4 texture2DProj(sampler2D sampler, vec4 coord, float bias);
vec4 textureCube(samplerCube sampler, vec3 coord, float bias);

在 vertex shader 与 fragment shader 中都可用:

vec4 texture2D(sampler2D sampler, vec2 coord);
vec4 texture2DProj(sampler2D sampler, vec3 coord);
vec4 texture2DProj(sampler2D sampler, vec4 coord);
vec4 textureCube(samplerCube sampler, vec3 coord);

18、官方的shader范例:

下面的shader如果你可以一眼看懂,说明你已经对glsl语言基本掌握了.

Vertex Shader:

uniform mat4 mvp_matrix; //透视矩阵 * 视图矩阵 * 模型变换矩阵
uniform mat3 normal_matrix; //法线变换矩阵(用于物体变换后法线跟着变换)
uniform vec3 ec_light_dir; //光照方向
attribute vec4 a_vertex; // 顶点坐标
attribute vec3 a_normal; //顶点法线
attribute vec2 a_texcoord; //纹理坐标
varying float v_diffuse; //法线与入射光的夹角
varying vec2 v_texcoord; //2d纹理坐标
void main(void)
{//归一化法线vec3 ec_normal = normalize(normal_matrix * a_normal);//v_diffuse 是法线与光照的夹角.根据向量点乘法则,当两向量长度为1是 乘积即cosθ值v_diffuse = max(dot(ec_light_dir, ec_normal), 0.0);v_texcoord = a_texcoord;gl_Position = mvp_matrix * a_vertex;
}

Fragment Shader:

precision mediump float;
uniform sampler2D t_reflectance;
uniform vec4 i_ambient;
varying float v_diffuse;
varying vec2 v_texcoord;
void main (void)
{vec4 color = texture2D(t_reflectance, v_texcoord);//这里分解开来是 color*vec3(1,1,1)*v_diffuse + color*i_ambient//色*光*夹角cos + 色*环境光gl_FragColor = color*(vec4(v_diffuse) + i_ambient);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/796941.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

南京观海微电子---Vitis HLS设计流程(实例演示)——Vitis HLS教程

1. 前言 课时2我们介绍了Vitis HLS的设计流程&#xff0c;如下图所示&#xff1a; 算法或软件的设计和仿真都基于C/C&#xff0c;通过HLS平台导出打包好的IP RTL代码&#xff0c;最后将该打包的IP加入到主工程使用。 本课时&#xff0c;我们通过一个具体的实例&#xff0c;演示…

Dapr(三) Dapr核心组件的使用一

结合前两期 Dapr(一) 基于云原生了解Dapr(Dapr(一) 基于云原生了解Dapr-CSDN博客) Dapr(二) 分布式应用运行时搭建及服务调用(Dapr(二) 分布式应用运行时搭建及服务调用-CSDN博客) 下篇推出dapr服务注册与发现&#xff0c;dapr组件绑定&#xff0c;dapr Actor功能。 目录 1.…

中颖51芯片学习2. IO端口操作

一、SH79F9476 I/O端口介绍 1. 特性 SH79F9476提供了30/26位可编程双向 I/O 端口&#xff1b;端口数据在寄存器Px中&#xff1b;端口控制寄存器PxCRy是控制端口作为输入还是输出&#xff1b;端口作为输入时&#xff0c;每个I/O端口均带有PxPCRy控制的内部上拉电阻。有些I/O引…

超详细!211页网络协议与管理,看完终于明白了(建议收藏)

与其说计算机改变了世界&#xff0c;不如说是计算机网络改变了世界。作为计算机网络通信实体之间的语言&#xff0c;网络通信协议对计算机正常通信起着极大的作用。 那么到底什么是网络协议与管理呢&#xff1f;今天给大家分享一份211页网络协议与管理文档&#xff0c;包含概念…

碧桂园服务净利降两成,关联交易收入仅占2.9%,发力增值服务充电桩日进超10万

自2018年分拆上市以来&#xff0c;碧桂园服务经历过非常高速的发展&#xff0c;曾是物管市场的“并购王”&#xff0c;但从2023年开始&#xff0c;希望从外延式的增长向内生式增长转型&#xff0c;将往期的经验与教训&#xff0c;通过投后管理沉淀下来&#xff0c;向高质量发展…

nginx多https证书配置精简

其实有很多方式&#xff0c;网上看到一个这个方法&#xff0c;给大家介绍一下。 首先&#xff0c;开启支持-TLS SNI support Nginx开启单IP多SSL证书支持-TLS SNI support Nginx支持单IP多域名SSL证书需要OpenSSL支持&#xff0c;首先需要编译安装一个高版本的openssl。 检查…

04 Python进阶:MySQL-PyMySQL

什么是 PyMySQL&#xff1f; PyMySQL 是一个用于 Python 的纯 Python MySQL 客户端库&#xff0c;提供了与 MySQL 数据库进行交互的功能。PyMySQL 允许 Python 开发人员连接到 MySQL 数据库服务器&#xff0c;并执行诸如查询、插入、更新和删除等数据库操作。 以下是 PyMySQL …

第29篇:秒表计时器

Q&#xff1a;本期我们采用计数器来实现秒表计时器&#xff0c;循环进行0~9计时。 A&#xff1a;在数码管HEX0上循环从0到9计数&#xff0c;间隔时间为1s&#xff0c;使用计数器实现1s时间间隔。 DE2-115开发板提供了50MHz时钟&#xff0c;触发器直接以50MHz信号作为同步时钟…

过亿级别的用户数据如何检查用户名是否存在?

目录 引言用户名存在性检查的挑战用户规模庞大带来的性能挑战数据一致性与并发性问题防止恶意行为的挑战 常见的解决方案基于数据库的方案基于缓存的方案基于分布式系统的方案基于搜索引擎的方案 案例分析与实践经验分享社交媒体平台的用户名检查方案 引言 随着互联网的普及和数…

PS从入门到精通视频各类教程整理全集,包含素材、作业等(9)复发

PS从入门到精通视频各类教程整理全集&#xff0c;包含素材、作业等 最新PS以及插件合集&#xff0c;可在我以往文章中找到 由于阿里云盘有分享次受限制和文件大小限制&#xff0c;今天先分享到这里&#xff0c;后续持续更新 第一课 ——第三课素材文件 https://www.alipan.c…

怎么在UE过场动画中加入振动效果

我们已经学会了怎么在游戏中加入振动效果&#xff0c;比较典型的交互场景如&#xff1a;在开枪时让手柄同步振动&#xff0c;实现起来真的很简单&#xff0c;就是定义场景和事件&#xff0c;然后在游戏事件发生时播放特定的振动资源文件&#xff0c;跟播放音效是极其相似的&…

探索Linux的挂载操作

在Linux这个强大的操作系统中&#xff0c;挂载操作是一个基本而重要的概念。它涉及到文件系统、设备和数据访问&#xff0c;对于理解Linux的工作方式至关重要。那么&#xff0c;挂载操作究竟是什么&#xff0c;为什么我们需要它&#xff0c;如果没有它&#xff0c;我们将面临什…

基因组de novo组装

分以下几个部分&#xff1a; CLR组装 HIFI组装 ONT组装 二、三代数据矫正 组装结果评估 一、CLR组装 下机数据&#xff1a; 主要用那个bam文件 软件&#xff1a;wtdbg2 第一步&#xff1a;bam转fasta文件 参考&#xff1a;https://www.jianshu.com/p/03c7eb11102d # 进行基…

基于单片机放大电路程控放大特性参数设计

**单片机设计介绍&#xff0c;基于单片机放大电路程控放大特性参数设计 文章目录 一 概要二、功能设计三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机放大电路程控放大特性参数设计是一个结合了单片机编程和放大电路技术的综合性项目。以下是对该设计项目的概…

第⑪讲:Ceph集群OSD扩容方案及实现横向和纵向扩容

文章目录 1.Ceph集群OSD扩容方案2.实现OSD的横向扩容4.实现OSD的纵向扩容 1.Ceph集群OSD扩容方案 Ceph集群OSD的扩容支持两种方式&#xff1a; 横向扩容 通过增加OSD节点来达到扩容的目的。使用横向扩容要完成以下几个步骤&#xff1a; 在新的机器中进行初始化操作、配置Yum源…

AJAX —— 学习(三)(完结)

目录 一、jQuery 中的 AJAX &#xff08;一&#xff09;get 方法 1.语法介绍 2.结果实现 &#xff08;二&#xff09;post 方法 1.语法介绍 2.结果实现 &#xff08;三&#xff09;通用型的 AJAX 方法 1.语法介绍 2.结果实现 二、AJAX 工具库 axios &#xff08…

idea开发 java web 高校学籍管理系统bootstrap框架web结构java编程计算机网页

一、源码特点 java 高校学籍管理系统是一套完善的完整信息系统&#xff0c;结合java web开发和bootstrap UI框架完成本系统 &#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。 前段主要技术 css jq…

人工智能、深度伪造和数字身份:企业网络安全的新前沿

深度伪造&#xff08;Deepfakes&#xff09;的出现打响了网络安全军备竞赛的发令枪。对其影响的偏执已经波及到一系列领域&#xff0c;包括政治错误信息、假新闻和社交媒体操纵。 深度伪造将加剧公共领域对信任和沟通的本已严峻的压力。这将理所当然地引起监管机构和政策制定者…

Ubuntu22.04安装Anaconda

一、下载安装包 下载地址&#xff1a;https://www.anaconda.com/download#Downloads 参考&#xff1a;Ubuntu下安装Anaconda的步骤&#xff08;带图&#xff09; - 知乎 下载Linux 64-Bit (x86) installer 二、安装 在当前路径下&#xff0c;执行命令&#xff1a; bash Ana…

每日面经:计算机网络part1

1. 计算机网络的组成部分有哪些&#xff1f; a. 硬件设备&#xff1a;计算机网络由各种硬件设备组成&#xff0c;包括计算机、服务器、路由器、交换机、网卡等。这些设备通过物理连接&#xff08;如网线、光纤&#xff09;相互连接。 b. 协议&#xff1a;计算机网络中的通信需…