深度学习500问——Chapter05: 卷积神经网络(CNN)(4)

文章目录

5.18 卷积神经网络凸显共性的方法

5.18.1 局部连接

5.18.2 权值共享

5.18.3 池化操作

5.19 全连接、局部连接、全卷积与局部卷积

5.20 局部卷积的应用

5.21 NetVLAD池化

参考文献


5.18 卷积神经网络凸显共性的方法

5.18.1 局部连接

我们首先了解一个概念,感受野,即每个神经元仅与输入神经元相连接的一块区域。在图像卷积操作中,神经元在空间维度上是局部连接的,但在深度上是全连接。局部连接的思想,是受启发于身生物学里的视觉系统结构,视觉皮层的神经元就是仅用局部接受信息。对于二维图像,局部像素关联性较强。这种局部连接保证了训练后的滤波器能够对局部特征有最强的响应,使神经网络可以提取数据的局部特征。

下图是一个很经典的图示,左边是全连接,右边是局部连接。

对于一个1000\times 1000的输入图像而言,如果下一个隐藏层的神经元数目为10^6个,采用全连接则有1000\times 1000\times 10^6=10^{12}个权值参数,如此巨大的参数量几乎难以训练;而采用局部连接,隐藏层的每个神经元仅与图像中10\times 10的局部图像相连接,那么此时的权值参数数量为10\times 10\times 10^6=10^8,将直接减少4个数量级。

5.18.2 权值共享

权值共享,即计算同一深度的神经元时采用的卷积核参数是共享的。权值共享在一定程度上讲是有意义的,是由于在神经网络中,提取的底层边缘特征与其在图中的位置无关。但是在另一些场景中是无意的,如在人脸识别任务,我们期望在不同的位置学到不同的特征。需要注意的是,权重只是对于同一深度切片的神经元是共享的。在卷积层中,通常采用多组卷积核提取不同的特征,即对应的是不同深度切片的特征,而不同深度切片的神经元权重是不共享。

相反,偏置这一权值对于同一深度切片的所有神经元都是共享的。权值共享带来的好处是大大降低了网络的训练难度。如下图,假设在局部连接中隐藏层的每一个神经元连接的是一个10\times 10的局部图像,因此有10\times 10个权值参数,将这10\times 10个权值参数共享给剩下的神经元,也就是说隐藏层中10^6个神经元的权值参数相同,那么此时不管隐藏层神经元的数目是多少,需要训练的参数就是这10\times 10个权值参数(也就是卷积核的大小)。

这里就体现出了卷积神经网络的奇妙之处,使用少量的参数,却依然能有非常出色的性能。上述仅仅是提取图像一种特征的过程。如果要多提取出一些特征,可以增加多个卷积核,不同的卷积核能够得到图像不同尺度下的特征,称之为特征图(feature map)

5.18.3 池化操作

池化操作与多层次结构一起,实现了数据的降维,将低层次的局部特征组合成较高的层次的特征,从而对整个图片进行表示。如下图:

5.19 全连接、局部连接、全卷积与局部卷积

大多数神经网络中高层网络通常会采用全连接层(Global Connected Layer),通过多对多的连接方式对特征进行全局汇总,可以有效地提取全局信息。但是全连接的方式需要大量的参数,是神经网络中最占资源的部分之一,因此就需要由局部连接(Local Connected Layer),仅在局部区域范围内产生神经元连接,能够有效地减少参数量。根据卷积操作的作用范围可以分为全卷积(Global Convolution)和局部卷积(Local Convolution)。

实际上这里所说的全卷积就是标准卷积,即在整个输入特征维度范围内采用相同的卷积核参数进行运算,全局共享参数的连接方式可以使神经元之间的连接参数大大减少;

局部卷积又叫平铺卷积(Tiled Convolution)或非共享卷积(Unshared Convolution),是局部连接与全卷积的折中。四者的表示如表5.11所示。

表5.11 卷积网络中连接方式的对比
连接方式示意图说明
全连接层间神经元完全连接,每个输出神经元可以获取到所有输入神经元的信息,有利于信息汇总,常置于网络末层;连接与连接之间独立参数,大量的连接大大增加模型的参数规模。
局部连接层间神经元只有局部范围内的连接,在这个范围内采用全连接的方式,超过这个范围的神经元则没有连接;连接与连接之间独立参数,相比于全连接减少了感受域外的连接,有效减少参数规模。
全卷积层间神经元只有局部范围内的连接,在这个范围内采用全连接的方式,连接所采用的参数在不同感受域之间共享,有利于提取特定模式的特征;相比于局部连接,共用感受域之间的参数可以进一步减少参数量。
局部卷积层间神经元只有局部范围内的连接,感受域内采用全连接的方式,而感受域之间间隔采用局部连接与全卷积的连接方式;相比于全卷积成倍引入额外参数,但有更强的灵活性和表达能力;相比于局部连接,可以有效控制参数量。

5.20 局部卷积的应用

并不是所有的卷积都会进行权重共享,在某些特定任务中,会使用不权重共享的卷积。下面通过人脸这一任务来进行详解。在读人脸方向的一些paper中,会发现很多都会在最后加入一个Local Connected Conv,也就是不进行权重共享的卷积层。总的来说,这一步的作用就是使用3D模型来将人脸对齐,从而使CNN发挥最大的效果。

截取论文中的一部分图,经过3D对齐以后,形成的图像均是512\times 512,输入到上述的网络结构中。该结构的参数如下:

  • Conv:32个11\times11 \times 3的卷积核
  • Max-pooling:3 \times 3,stride=2
  • Conv:16个9\times 9的卷积核
  • Local-Conv:16个9\times 9的卷积核
  • Local-Conv:16个7\times 7的卷积核
  • Local-Conv:16个5\times 5的卷积核
  • Fully-connected:4096维
  • Softmax:4030维

前三层的目的在于提取低层次的特征,比如简单的边和纹理。其中Max-pooling层使得卷积的输出对微小的偏移情况更加鲁棒。但不能使用更多的Max-pooling层,因为太多的Max-pooling层会使得网络损失图像信息。全连接层将上一层的每个单元和本层的所有单元相连,用来捕捉人脸图像不同位置特征之间的相关性。最后使用softmax层用于人脸分类。中间三层都是使用参数不共享的卷积核,之所以使用参数不共享,有如下原因:

  1. 对齐的人脸图片中,不同的区域会有不同的统计特征,因此并不存在特征的局部稳定性,所以使用相同的卷积核会导致信息的丢失。
  2. 不共享的卷积核并不增加inference时特征的计算量,仅会增加训练时的计算量。使用不共享的卷积核,由于需要训练的参数量大大增加,因此往往需要通过其他方法增加数据量。

5.21 NetVLAD池化

NetVLAD是论文[15]提出的一个局部特征聚合的方法。

在传统的网络里面,例如VGG,最后一层卷积层输出的特征都是类似于Batchsize x 3 x 3 x 512这种东西,然后会经过FC聚合,或者进行一个Global Average Pooling(NIN里的做法),或者怎么样,变成一个向量型的特征,然后进行Softmax 或者其他的 Loss。

这种方法说简单点也就是输入一个图片或者什么的结构性数据,然后经过特征提取得到一个长度固定的向量,之后可以用度量的方法去进行后续的操作,比如分类啊,检索啊,相似度对比等等。

那么NetVLAD考虑的主要是最后一层卷积层输出的特征这里,我们不想直接进行欠采样或者全局映射得到特征,对于最后一层输出的W x H x D,设计一个新的池化,去聚合一个“局部特征“,这即是NetVLAD的作用。

NetVLAD的一个输入是一个W x H x D的图像特征,例如VGG-Net最后的3 x 3 x 512这样的矩阵,在网络中还需加一个维度为Batchsize。

NetVLAD还需要另输入一个标量K即表示VLAD的聚类中心数量,它主要是来构成一个矩阵C,是通过原数据算出来的每一个W \times H特征的聚类中心,C的shape即C:K \times D,然后根据三个输入,VLAD是计算下式的V:

V(j,k) = \sum_{i=1}^{N} a_i(x_i)(x_i(j) - c_k(j))

其中j表示维度,从1到D,可以看到V的j是和输入与c对应的,对每个类别k,都对所有的x进行了计算,如果x_i属于当前类别ka_k=1,否则a_k=0,计算每一个x和它聚类中心的残差,然后把残差加起来,即是每个类别k的结果,最后分别L2正则后拉成一个长向量后再做L2正则,正则非常的重要,因为这样才能统一所有聚类算出来的值,而残差和的目的主要是消减不同聚类上的分布不均,两者共同作用才能得到最后正常的输出。

输入与输出如下图所示:

中间得到的K个D维向量即是对D个x都进行了与聚类中心计算残差和的过程,最终把K个D维向量合起来后进行即得到最终输出的K \times D长度的一维向量。

而VLAD本身是不可微的,因为上面的a要么是0要么是1,表示要么当前描述x是当前聚类,要么不是,是个离散的,NetVLAD为了能够在深度卷积网络里使用反向传播进行训练,对a进行了修正。

那么问题就是如何重构一个a,使其能够评估当前的这个x和各个聚类的关联程度?用softmax来得到:

a_k = \frac{e^{W_k^T x_i + b_k}}{ e^{W_{k'}^T x_i + b_{k'}}}

将这个把上面的a替换后,即是NetVLAD的公式,可以进行反向传播更新参数。

所以一共有三个可训练参数,上式a中的W: K \times D,上式a中的b: K \times 1,聚类中心c: K \times D,而原始VLAD只有一个参数c。

最终池化得到的输出是一个恒定的K x D的一维向量(经过了L2正则),如果带Batchsize,输出即为Batchsize x (K x D)的二维矩阵。

NetVLAD作为池化层嵌入CNN网络即如下图所示:

原论文中采用将传统图像检索方法VLAD进行改进后应用在CNN的池化部分作为一种另类的局部特征池化,在场景检索上取得了很好的效果。

后续相继又提出了ActionVLAD、ghostVLAD等改进。

参考文献

[1] 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6):1229-1251.

[2] 常亮, 邓小明, 周明全,等. 图像理解中的卷积神经网络[J]. 自动化学报, 2016, 42(9):1300-1312.

[3] Chua L O. CNN: A Paradigm for Complexity[M]// CNN a paradigm for complexity /. 1998.

[4] He K, Gkioxari G, Dollar P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, PP(99):1-1.

[5] Hoochang S, Roth H R, Gao M, et al. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning[J]. IEEE Transactions on Medical Imaging, 2016, 35(5):1285-1298.

[6] 许可. 卷积神经网络在图像识别上的应用的研究[D]. 浙江大学, 2012.

[7] 陈先昌. 基于卷积神经网络的深度学习算法与应用研究[D]. 浙江工商大学, 2014.

[8] CS231n Convolutional Neural Networks for Visual Recognition, Stanford

[9] Machine Learning is Fun! Part 3: Deep Learning and Convolutional Neural Networks

[10] cs231n 动态卷积图:Convolution demo

[11] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.

[12] Sun Y, Wang X, Tang X. Deep learning face representation from predicting 10,000 classes[C]//Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE, 2014: 1891-1898.

[13] 魏秀参.解析深度学习——卷积神经网络原理与视觉实践[M].电子工业出版社, 2018

[14] Jianxin W U , Gao B B , Wei X S , et al. Resource-constrained deep learning: challenges and practices[J]. Scientia Sinica(Informationis), 2018.

[15] Arandjelovic R , Gronat P , Torii A , et al. [IEEE 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - Las Vegas, NV, USA (2016.6.27-2016.6.30)] 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - NetVLAD: CNN Architecture for Weakly Supervised Place Recognition[C]// 2016:5297-5307.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/796038.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue 打包 插槽 inject reactive draggable 动画 foreach pinia状态管理

在Vue项目中,当涉及到打包、插槽(Slots)、inject/reactive、draggable、transition、foreach以及pinia时,这些都是Vue框架的不同特性和库,它们各自在Vue应用中有不同的用途。下面我将逐一解释这些概念,并说…

8、滑动窗口-无重复字符的最长子串

解析: 遍历 判断map是否包含当前字符,如果包含: 获取重复的index下标在哪里获取len长度重新设置L指针,其中L指针不回退,也就是如果这个重复值在L前面那就忽略,如果是在后面那就设置为index1。 代码如下: …

二叉树算法练习day.2

102.二叉树的层序遍历 链接:. - 力扣(LeetCode) 题目描述: 给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。 示例 1: 输入&a…

小米手机澎湃OS,不Root查看电池健康

首先,在键盘拨号界面,输入*#*#284#*#*,会调用问题反馈APP来生成当前系统的故障日志,如果提示你需要授权什么就点确认 稍等几分钟,会得到一个压缩包,保存在目录MIUI/debug_log下 这里为了方便,我…

Shell编程初识

Shell初识 ShellShell 脚本Shell 环境第一个shell脚本实例 运行 Shell 脚本方法:1、作为可执行程序2、作为解释器参数3.使用 . (空格)脚本名称来执行4.使用 source 来执行(主要用于生效配置文件)区别1.关于执行权限2.关于是否开启子shell线程 脚本排错及问题判断she…

LLM推理参数(top_k,top_p, temperature, num_beams)

正常LLM做 next token predicate 时,对输出的 logits 做 softmax,选择概率最大的token。 num_beams :当我们设置 num_beams2 后,就使用了 beam search 的方法,每次不是只直接选择概率最大的 token,而是保留…

三子棋游戏----C语言版【超级详细 + 视频演示 + 完整源码】

㊙️小明博客主页:➡️ 敲键盘的小明 ㊙️ ✅关注小明了解更多知识☝️ 文章目录 前言一、三子棋的实现思路二、三子棋的实现步骤2.1 先显示游戏的菜单2.2 游戏的具体实现2.2.1 棋盘的初始化2.2.2 展示棋盘2.2.3 下棋🔴玩家下棋🔴电脑下棋2.2…

申请SSL证书

有很多方法可以确保您的网站安全。添加SSL证书可针对恶意攻击提供额外且关键的保护层。 即使网站不接受交易,您仍然需要保护用户的登录详细信息、地址和其他个人信息。 没有SSL证书的网站使用HTTP(一种基于文本的协议),这意味着…

网络编程套接字应用分享【Linux C/C++ 】【UDP应用 | TCP应用 | TCP线程池小项目】

目录 前提知识 1. 理解源ip,目的ip和Macip 2. 端口号 3. 初识TCP,UDP协议 4. 网络字节序 5. socket 编程 sockaddr类型 一,基于udp协议编程 1. socket——创建套接字 2. bind——将套接字强绑定 3. recvfrom——接受数据 4. s…

AI跟踪报道第36期-新加坡内哥谈技术-这周的AI新闻铺天盖地

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

从多模态生物图数据中学习Gene的编码-MuSeGNN

由于数据的异质性,在不同的生物医学背景下发现具有相似功能的基因对基因表示学习提出了重大挑战。在本研究中,作者通过引入一种称为多模态相似性学习图神经网络的新模型来解决这个问题,该模型结合了多模态机器学习和深度图神经网络&#xff0…

JS 利用 webcam访问摄像头 上传到服务器

webcam JS 较为详细的指南 定义标题 <!doctype html> <html> <head><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>How to capture picture from webcam with Webcam.js</title></…

stm32开发之threadx使用记录(主逻辑分析)

前言 threadx的相关参考资料 论坛资料、微软官网本次使用的开发板为普中科技–麒麟&#xff0c;核心芯片为 stm32f497zgt6开发工具选择的是stm32cubemx(代码生成工具)clion(代码编写工具)编译构建环境选择的是arm-none-gcc编译 本次项目结构 CMakeList对应的配置 set(CMAKE_…

Thinkphp5萤火商城B2C小程序源码

源码介绍 Thinkphp5萤火商城B2C小程序源码&#xff0c;是一款开源的电商系统&#xff0c;为中小企业提供最佳的新零售解决方案。采用稳定的MVC框架开发&#xff0c;执行效率、扩展性、稳定性值得信赖。 环境要求 Nginx/Apache/IIS PHP5.4 MySQL5.1 建议使用环境&#xff…

微信小程序开发学习笔记——4.6tabBar底部tab栏配置用法

>>跟着b站up主“咸虾米_”学习微信小程序开发中&#xff0c;把学习记录存到这方便后续查找。 一、tabBar https://developers.weixin.qq.com/miniprogram/dev/reference/configuration/app.html#tabBar 二、icon下载 https://www.iconfont.cn/collections/index?spma…

C++学习——指针篇

本篇文章记录我学习C的指针内容&#xff0c;希望我的分享能给你带来不一样的收获&#xff01; 目录 一、指针有什么好处 二、什么是指针 三、C指针内容详解 &#xff08;一&#xff09;、空指针&#xff08;Null&#xff09; &#xff08;二&#xff09;、指针的算数运算 …

DL00198-基于3DUnet的脑肿瘤语义分割完整代码+数据集含输出结果

完整代码数据集见文末 3DUNet是一种卷积神经网络&#xff08;CNN&#xff09;&#xff0c;专为处理3D图像而设计。它基于U-Net架构&#xff0c;是一种对称的卷积网络&#xff0c;具有上采样和下采样的过程。PyTorch 3DUNet在U-Net的基础上添加了更多的卷积层和跳跃连接&#xf…

在git上先新建仓库-把本地文件提交远程

一.在git新建远程项目库 1.选择新建仓库 以下以gitee为例 2.输入仓库名称&#xff0c;点击创建 这个可以选择仓库私有化还公开权限 3.获取仓库clone链接 这里选择https模式就行&#xff0c;就不需要配置对电脑进行sshkey配置了。只是需要每次提交输入账号密码 二、远…

网站基本建设基本上步骤

网站基本建设基本上步骤 一.领取一个免费域名和SSL证书&#xff0c;和CDN 1.打开网站链接&#xff1a;https://www.rainyun.com/ycpcp_ 首先创建一个CDN&#xff0c;这里以我加速域名“cdntest.biliwind.com 1”为例 这里就要填写 cdntest.biliwind.com 1 &#xff0c;而不是…

4.1 JavaScript的使用

JavaScript有两种使用方式&#xff1a;一是在HTML文档中直接添加代码&#xff1b;二是将JavaScript脚本代码写到外部的JavaScript文件中&#xff0c;再在HTML文档中引用该文件的路径地址。 这两种使用方式的效果完全相同&#xff0c;可以根据使用率和代码量选择相应的开发方式。…