数据挖掘入门项目二手交易车价格预测之建模调参

文章目录

  • 目标
  • 步骤
    • 1. 调整数据类型,减少数据在内存中占用的空间
    • 2. 使用线性回归来简单建模
    • 3. 五折交叉验证
    • 4. 模拟真实业务情况
    • 5. 绘制学习率曲线与验证曲线
    • 6. 嵌入式特征选择
    • 6. 非线性模型
    • 7. 模型调参
      • (1) 贪心调参
      • (2)Grid Search 调参
      • (3)贝叶斯调参
  • 总结

本文数据集来自阿里天池:https://tianchi.aliyun.com/competition/entrance/231784/information
主要参考了Datawhale的整个操作流程:https://tianchi.aliyun.com/notebook/95460
小编也是第一次接触数据挖掘,所以先跟着Datawhale写的教程操作了一遍,不懂的地方加了一点点自己的理解,感谢Datawhale!

目标

了解常用的机器学习模型,并掌握机器学习模型的建模与调参流程

步骤

1. 调整数据类型,减少数据在内存中占用的空间

具体方法定义如下:
对每一列循环,将每一列的转化为对应的数据类型,在不损失数据的情况下,尽可能地减少DataFrame中每列的内存占用

def reduce_mem_usage(df):""" iterate through all the columns of a dataframe and modify the data typeto reduce memory usage.        """start_mem = df.memory_usage().sum()  # memory_usage() 方法返回每一列的内存使用情况,sum() 将它们相加。print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))# 对每一列循环for col in df.columns:col_type = df[col].dtype # 获取列类型if col_type != object:# 获取当前列的最小值和最大值c_min = df[col].min()c_max = df[col].max()if str(col_type)[:3] == 'int':# np.int8 是 NumPy 中表示 8 位整数的数据类型。# np.iinfo(np.int8) 返回一个描述 np.int8 数据类型的信息对象。# .min 是该信息对象的一个属性,用于获取该数据类型的最小值。if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:df[col] = df[col].astype(np.int8)elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:df[col] = df[col].astype(np.int16)elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:df[col] = df[col].astype(np.int32)elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:df[col] = df[col].astype(np.int64)  else:if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:df[col] = df[col].astype(np.float16)elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:df[col] = df[col].astype(np.float32)else:df[col] = df[col].astype(np.float64)else:df[col] = df[col].astype('category') # 将当前列的数据类型转换为分类类型,以节省内存end_mem = df.memory_usage().sum() print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))return df

调用上述函数查看效果:
其中,data_for_tree.csv保存的是我们在特征工程步骤中简单处理过的特征

sample_feature = reduce_mem_usage(pd.read_csv('data_for_tree.csv'))

在这里插入图片描述

2. 使用线性回归来简单建模

因为上述特征当时是为树模型分析保存的,所以没有对空值进行处理,这里简单处理一下

sample_feature.head()

在这里插入图片描述
可以看到notRepairedDamage这一列有异常值‘-’:

sample_feature = sample_feature.dropna().replace('-', 0).reset_index(drop=True)
sample_feature['notRepairedDamage'] = sample_feature['notRepairedDamage'].astype(np.float32)

建立训练数据和标签:

train_X = sample_feature.drop('price',axis=1)
train_y = sample_feature['price']

简单建模:

from sklearn.linear_model import LinearRegression
model = LinearRegression()
model = model.fit(train_X, train_y)
'intercept:'+ str(model.intercept_) # 这一行代码用于输出模型的截距(即常数项)
sorted(dict(zip(sample_feature.columns, model.coef_)).items(), key=lambda x:x[1], reverse=True) # 这行代码是用于输出模型的系数,并按照系数的大小进行排序
# sample_feature.columns 是特征的列名。
# model.coef_ 是线性回归模型的系数。
# zip(sample_feature.columns, model.coef_) 将特征列名与对应的系数打包成元组。
# dict(...) 将打包好的元组转换为字典。
# sorted(..., key=lambda x:x[1], reverse=True) 对字典按照值(系数)进行降序排序。

画图查看真实值与预测值之间的差距:

from matplotlib import pyplot as plt
subsample_index = np.random.randint(low=0, high=len(train_y), size=50) # 从训练数据中随机选择 50 个样本的索引
plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black') # 绘制真实价格与特征 'v_9' 之间的散点图
plt.scatter(train_X['v_9'][subsample_index], model.predict(train_X.loc[subsample_index]), color='blue') # 绘制模型预测价格与特征 'v_9' 之间的散点图
plt.xlabel('v_9')
plt.ylabel('price')
plt.legend(['True Price','Predicted Price'],loc='upper right')
print('The predicted price is obvious different from true price')
plt.show()

在这里插入图片描述
通过作图我们发现数据的标签(price)呈现长尾分布,不利于我们的建模预测。
对标签进行进一步分析:
画图显示标签的分布:左边是所有标签数据的一个分布,右边是去掉最大的10%标签数据之后的一个分布

import seaborn as sns
print('It is clear to see the price shows a typical exponential distribution')
plt.figure(figsize=(15,5))
plt.subplot(1,2,1) # 创建一个包含 1 行 2 列的子图,并将当前子图设置为第一个子图
sns.distplot(train_y) # 显示价格数据的直方图以及拟合的密度曲线
plt.subplot(1,2,2)
# quantile 函数来计算价格数据的第 90%分位数,然后通过布尔索引选取低于第 90 百分位数的价格数据
sns.distplot(train_y[train_y < np.quantile(train_y, 0.9)])

在这里插入图片描述
对标签进行 log(x+1) 变换,使标签贴近于正态分布:

train_y_ln = np.log(train_y + 1)

显示log变化之后的数据分布:

import seaborn as sns
print('The transformed price seems like normal distribution')
plt.figure(figsize=(15,5))
plt.subplot(1,2,1)
sns.distplot(train_y_ln)
plt.subplot(1,2,2)
sns.distplot(train_y_ln[train_y_ln < np.quantile(train_y_ln, 0.9)])

在这里插入图片描述
然后我们重新训练,再可视化

model = model.fit(train_X, train_y_ln)
print('intercept:'+ str(model.intercept_))
sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True)
plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black')
plt.scatter(train_X['v_9'][subsample_index], np.exp(model.predict(train_X.loc[subsample_index])), color='blue')
plt.xlabel('v_9')
plt.ylabel('price')
plt.legend(['True Price','Predicted Price'],loc='upper right')
print('The predicted price seems normal after np.log transforming')
plt.show()

可以看出结果要比上面的好一点:
在这里插入图片描述

3. 五折交叉验证

在使用训练集对参数进行训练的时候,一般会将整个训练集分为三个部分:训练集(train_set),评估集(valid_set),测试集(test_set)这三个部分。这其实是为了保证训练效果而特意设置的。

  • 测试集很好理解,其实就是完全不参与训练的数据,仅仅用来观测测试效果的数据。
  • 在实际的训练中,训练的结果对于训练集的拟合程度通常还是挺好的(初始条件敏感),但是对于训练集之外的数据的拟合程度通常就不那么令人满意了。因此我们通常并不会把所有的数据集都拿来训练,而是分出一部分来(这一部分不参加训练)对训练集生成的参数进行测试,相对客观的判断这些参数对训练集之外的数据的符合程度。这种思想就称为交叉验证(Cross Validation)

(1)使用线性回归模型,对未处理标签的特征数据进行五折交叉验证

from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_absolute_error,  make_scorer
# 下面这个函数主要实现对参数进行对数转换输入目标函数
def log_transfer(func):def wrapper(y, yhat):# np.nan_to_num 函数用于将对数转换后可能出现的 NaN 值转换为 0result = func(np.log(y), np.nan_to_num(np.log(yhat)))return result# 返回内部函数 wrapper,这是一个对原始函数的包装器,它将对传入的参数进行对数转换后再调用原始函数return wrapper
# 计算5折交叉验证得分
scores = cross_val_score(model, X=train_X, y=train_y, verbose=1, cv = 5, scoring=make_scorer(log_transfer(mean_absolute_error)))
# model 是要评估的模型对象。
# train_X 是训练数据的特征,train_y 是训练数据的目标变量。
# verbose=1 设置为 1 时表示打印详细信息。
# cv=5 表示进行 5 折交叉验证。
# scoring=make_scorer(log_transfer(mean_absolute_error)) 指定了评分标准
# 使用了 make_scorer 函数将一个自定义的评分函数 log_transfer(mean_absolute_error) 转换为一个可用于评分的评估器。
# log_transfer(mean_absolute_error) 这一步的作用就是将真实值和预测值在输入到mean_absolute_error之前进行log转换
# mean_absolute_error 是一个回归问题中常用的评估指标,用于衡量预测值与实际值之间的平均绝对误差
print('AVG:', np.mean(scores))

结果展示:
在这里插入图片描述
使用线性回归模型,对处理过标签的特征数据进行五折交叉验证:

scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=1, cv = 5, scoring=make_scorer(mean_absolute_error))
print('AVG:', np.mean(scores))

结果展示:
在这里插入图片描述
可以看见,调整之后的数据,误差明显变小
查看scores:

scores = pd.DataFrame(scores.reshape(1,-1))
scores.columns = ['cv' + str(x) for x in range(1, 6)]
scores.index = ['MAE']
scores

在这里插入图片描述

4. 模拟真实业务情况

交叉验证在某些与时间相关的数据集上可能反映了不真实的情况,比如我们不能通过2018年的二手车价格来预测2017年的二手车价格。这个时候我们可以采用时间顺序对数据集进行分隔。在本例中,我们可以选用靠前时间的4/5样本当作训练集,靠后时间的1/5当作验证集
具体操作如下:

import datetime
sample_feature = sample_feature.reset_index(drop=True)
split_point = len(sample_feature) // 5 * 4
train = sample_feature.loc[:split_point].dropna()
val = sample_feature.loc[split_point:].dropna()
train_X = train.drop('price',axis=1)
train_y_ln = np.log(train['price'] + 1)
val_X = val.drop('price',axis=1)
val_y_ln = np.log(val['price'] + 1)
model = model.fit(train_X, train_y_ln)
mean_absolute_error(val_y_ln, model.predict(val_X))

结果展示:
在这里插入图片描述

5. 绘制学习率曲线与验证曲线

def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,n_jobs=1, train_size=np.linspace(.1, 1.0, 5 )): """模型估计器 estimator图的标题 title特征数据 X目标数据 yy轴的范围 ylim交叉验证分割策略 cv并行运行的作业数 n_jobs 训练样本的大小 train_size"""plt.figure()  plt.title(title)  if ylim is not None:  plt.ylim(*ylim)  # 设置 y 轴的范围为 ylimplt.xlabel('Training example')  plt.ylabel('score')  # 使用 learning_curve 函数计算学习曲线的训练集得分和交叉验证集得分train_sizes, train_scores, test_scores = learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_size, scoring = make_scorer(mean_absolute_error))  train_scores_mean = np.mean(train_scores, axis=1)  # 计算训练集得分的均值train_scores_std = np.std(train_scores, axis=1)  # 计算训练集得分的标准差test_scores_mean = np.mean(test_scores, axis=1)  test_scores_std = np.std(test_scores, axis=1)  plt.grid()#区域  # 使用红色填充训练集得分的方差范围plt.fill_between(train_sizes, train_scores_mean - train_scores_std,  train_scores_mean + train_scores_std, alpha=0.1,  color="r")  # 使用绿色填充交叉验证集得分的方差范围plt.fill_between(train_sizes, test_scores_mean - test_scores_std,  test_scores_mean + test_scores_std, alpha=0.1,  color="g")  # 绘制训练集得分曲线plt.plot(train_sizes, train_scores_mean, 'o-', color='r',  label="Training score")  # 绘制交叉验证集得分曲线plt.plot(train_sizes, test_scores_mean,'o-',color="g",  label="Cross-validation score")  plt.legend(loc="best")  return plt 
plot_learning_curve(LinearRegression(), 'Liner_model', train_X[:1000], train_y_ln[:1000], ylim=(0.0, 0.5), cv=5, n_jobs=1)  

在这里插入图片描述

6. 嵌入式特征选择

在过滤式和包裹式特征选择方法中,特征选择过程与学习器训练过程有明显的分别。而嵌入式特征选择在学习器训练过程中自动地进行特征选择。嵌入式选择最常用的是L1正则化与L2正则化。在对线性回归模型加入两种正则化方法后,他们分别变成了岭回归与Lasso回归

对上述三种模型进行交叉验证训练,并对比结果:

from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
# 创建一个模型实力列表
models = [LinearRegression(),Ridge(),Lasso()]
result = dict()
for model in models:model_name = str(model)[:-2] # 获取模型名称# 训练模型scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))# 收集各模型训练得分result[model_name] = scoresprint(model_name + ' is finished')
result = pd.DataFrame(result)
result.index = ['cv' + str(x) for x in range(1, 6)]
result

结果展示:
在这里插入图片描述
分别对三个模型训练得到的参数进行分析:

  • 一般线性回归
import seaborn as sns
model = LinearRegression().fit(train_X, train_y_ln)
print('intercept:', model.intercept_)
# 组合数据
data = pd.DataFrame({'coef_abs': abs(model.coef_), 'feature': train_X.columns})
# 画图
sns.barplot(x='coef_abs', y='feature', data=data)

展示:
在这里插入图片描述

  • 岭回归

L2正则化在拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』

import seaborn as sns
model = Ridge().fit(train_X, train_y_ln)
print('intercept:', model.intercept_)
# 组合数据
data = pd.DataFrame({'coef_abs': abs(model.coef_), 'feature': train_X.columns})
sns.barplot(x='coef_abs', y='feature', data=data)

展示:
在这里插入图片描述

  • Lasso回归
    L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择
import seaborn as sns
model = Lasso().fit(train_X, train_y_ln)
print('intercept:', model.intercept_)
# 组合数据
data = pd.DataFrame({'coef_abs': abs(model.coef_), 'feature': train_X.columns})
sns.barplot(x='coef_abs', y='feature', data=data)

展示:
在这里我们可以看到power、used_time等特征非常重要
在这里插入图片描述

6. 非线性模型

决策树通过信息熵或GINI指数选择分裂节点时,优先选择的分裂特征也更加重要,这同样是一种特征选择的方法。XGBoost与LightGBM模型中的model_importance指标正是基于此计算的

下面我们选择部分模型进行对比:

from sklearn.linear_model import LinearRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.neural_network import MLPRegressor
from xgboost.sklearn import XGBRegressor
from lightgbm.sklearn import LGBMRegressor
models = [LinearRegression(),DecisionTreeRegressor(),RandomForestRegressor(),GradientBoostingRegressor(),MLPRegressor(solver='lbfgs', max_iter=100), XGBRegressor(n_estimators = 100, objective='reg:squarederror'), LGBMRegressor(n_estimators = 100)]
result = dict()
for model in models:model_name = str(model).split('(')[0]scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))result[model_name] = scoresprint(model_name + ' is finished')
result = pd.DataFrame(result)
result.index = ['cv' + str(x) for x in range(1, 6)]
result

结果:
在这里插入图片描述
可以看到随机森林模型在每一个fold中均取得了更好的效果!!!

7. 模型调参

在这里主要介绍三种调参方法

(1) 贪心调参

所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,它所做出的仅仅是在某种意义上的局部最优解。

以lightgbm模型为例:

## LGB的参数集合:
# 损失函数
objective = ['regression', 'regression_l1', 'mape', 'huber', 'fair']
# 叶子节点数
num_leaves = [3,5,10,15,20,40, 55]
# 最大深度
max_depth = [3,5,10,15,20,40, 55]
bagging_fraction = []
feature_fraction = []
drop_rate = []
best_obj = dict()
# 计算不同选择下对应结果,其中 score最小时为最优结果
for obj in objective:model = LGBMRegressor(objective=obj)score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))best_obj[obj] = scorebest_leaves = dict()
for leaves in num_leaves:model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0], num_leaves=leaves)score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))best_leaves[leaves] = scorebest_depth = dict()
for depth in max_depth:model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0],num_leaves=min(best_leaves.items(), key=lambda x:x[1])[0],max_depth=depth)score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))best_depth[depth] = score
# 画出各选择下,损失的变化
sns.lineplot(x=['0_initial','1_turning_obj','2_turning_leaves','3_turning_depth'], y=[0.143 ,min(best_obj.values()), min(best_leaves.values()), min(best_depth.values())])

在这里插入图片描述

(2)Grid Search 调参

GridSearchCV:一种调参的方法,当你算法模型效果不是很好时,可以通过该方法来调整参数,通过循环遍历,尝试每一种参数组合,返回最好的得分值的参数组合

from sklearn.model_selection import GridSearchCV
parameters = {'objective': objective , 'num_leaves': num_leaves, 'max_depth': max_depth}
model = LGBMRegressor()
clf = GridSearchCV(model, parameters, cv=5)
clf = clf.fit(train_X, train_y_ln)
clf.best_params_

得到的最佳参数为:{'max_depth': 10, 'num_leaves': 55, 'objective': 'huber'}
我们再用最佳参数来训练模型:

model = LGBMRegressor(objective='huber',num_leaves=55,max_depth=10)
np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))

结果跟之前的调参是相当的:
在这里插入图片描述

(3)贝叶斯调参

贝叶斯优化通过基于目标函数的过去评估结果建立替代函数(概率模型),来找到最小化目标函数的值。贝叶斯方法与随机或网格搜索的不同之处在于,它在尝试下一组超参数时,会参考之前的评估结果,因此可以省去很多无用功。

from bayes_opt import BayesianOptimization
def rf_cv(num_leaves, max_depth, subsample, min_child_samples):#num_leaves: 决策树上的叶子节点数量。较大的值可以提高模型的复杂度,但也容易导致过拟合。# max_depth: 决策树的最大深度。控制树的深度可以限制模型的复杂度,有助于防止过拟合。# subsample: 训练数据的子样本比例。该参数可以用来控制每次迭代时使用的数据量,有助于加速训练过程并提高模型的泛化能力。# min_child_samples: 每个叶子节点所需的最小样本数。通过限制叶子节点中的样本数量,可以控制树的生长,避免过拟合。val = cross_val_score(LGBMRegressor(objective = 'regression_l1',num_leaves=int(num_leaves),max_depth=int(max_depth),subsample = subsample,min_child_samples = int(min_child_samples)),X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)).mean()return 1 - valrf_bo = BayesianOptimization(rf_cv,{'num_leaves': (2, 100),'max_depth': (2, 100),'subsample': (0.1, 1),'min_child_samples' : (2, 100)}
)
# 最大化 rf_cv 函数返回的值,即最小化负的平均绝对误差
rf_bo.maximize()

结果:

1 - rf_bo.max['target']

在这里插入图片描述

总结

  • 上述我们主要通过log转换正则化模型选择参数微调等方法来提高预测的精度
  • 最后附上一些学习链接供大家参考:
  • 线性回归模型:https://zhuanlan.zhihu.com/p/49480391
  • 决策树模型:https://zhuanlan.zhihu.com/p/65304798
  • GBDT模型:https://zhuanlan.zhihu.com/p/45145899
  • XGBoost模型:https://zhuanlan.zhihu.com/p/86816771
  • LightGBM模型:https://zhuanlan.zhihu.com/p/89360721
  • 用简单易懂的语言描述「过拟合 overfitting」?https://www.zhihu.com/question/32246256/answer/55320482
  • 模型复杂度与模型的泛化能力:http://yangyingming.com/article/434/
  • 正则化的直观理解:https://blog.csdn.net/jinping_shi/article/details/52433975
  • 贪心算法: https://www.jianshu.com/p/ab89df9759c8
  • 网格调参: https://blog.csdn.net/weixin_43172660/article/details/83032029
  • 贝叶斯调参: https://blog.csdn.net/linxid/article/details/81189154

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/795440.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

浮动辊位移测量功能块(CODESYS ST代码)

1、张力测量+标定(ST代码) 张力测量+标定(ST代码)_动态舞轮控制张力-CSDN博客文章浏览阅读804次。跳舞轮对应张力调节范围,我们可以通过改变气缸的气压方式间接改变,张力跳舞轮在收放卷闭环控制上的详细应用,可以参看下面的文章链接,这里我们主要讨论精密可调气阀的模拟量…

每日五道java面试题之ZooKeeper篇(三)

目录&#xff1a; 第一题. 会话管理第二题. 服务器角色第三题. Zookeeper 下 Server 工作状态第四题. 数据同步第五题. zookeeper 是如何保证事务的顺序一致性的&#xff1f; 第一题. 会话管理 分桶策略&#xff1a;将类似的会话放在同一区块中进行管理&#xff0c;以便于 Zoo…

autovacuum

相关查询语句 select relname,reltuples from pg_class where relnamepgbench_accounts; show autovacuum_vacuum_scale_factor ; select count(*) from pgbench_accounts; \dt pgbench_accounts SELECT * FROM pgstattuple(pgbench_accounts); --需要开启插件 SELECT relnam…

微软云学习环境

微软公有云 - Microsoft Azure 本文介绍通过微软学习中心Microsoft Learn来免费试用Azure上的服务&#xff0c;也不需要绑定信用卡。不过每天只有几个小时的时间。 官网 https://docs.microsoft.com/zh-cn/learn/ 实践 比如创建虚拟机&#xff0c;看到自己的账号下多了Learn的…

Javascript/Node.JS中如何用多种方式避免属性为空(cannot read property of undefined ERROR)

>>>>>>问题 "cannot read property of undefined" 是一个常见的 JavaScript 错误&#xff0c;包含我在内很多人都会遇到&#xff0c;表示你试图访问一个未定义&#xff08;undefined&#xff09;对象的属性。这通常是因为你在访问一个不存在的对象…

(ISPRS,2023)深度语义-视觉对齐用于zero-shot遥感图像场景分类

文章目录 相关论文摘要引言类别嵌入局限性——问题1普通ZSL模型局限性——问题2自动属性注释过程——对应问题1深度语义-视觉对齐&#xff08;DSVA&#xff09;模型——对应问题2 基于遥感多模态相似性的自动属性标注属性词汇表构造使用CLIP模型自动标注属性对CLIP模型进行训练…

ideaSSM 网上选课管理系统bootstrap开发mysql数据库web结构java编程计算机网页源码maven项目

一、源码特点 idea 开发 SSM 网上选课管理系统是一套完善的信息管理系统&#xff0c;结合SSM框架和bootstrap完成本系统&#xff0c;对理解JSP java编程开发语言有帮助系统采用SSM框架&#xff08;MVC模式开发&#xff09;&#xff0c;系统具有完整的源代码和数据库&#xff…

哈希-字母异位词分组

字母异位词&#xff0c;词频一样&#xff0c;但是顺序不一样&#xff0c;可以进行排序&#xff0c;获取一个key&#xff0c;放在map中即可。 class Solution {public List<List<String>> groupAnagrams(String[] strs) {Map<String, List<String>> ma…

清明的商标从已注册到不良影响的变化!

清明时节雨纷纷&#xff0c;“清明”可以申请注册商标不&#xff0c;普推知产老杨经检索发现&#xff0c;2022年还有以“清明”通过初审下证的&#xff0c;在这之前更多&#xff0c;还有“清明”在方便食品类别上是著名商标&#xff0c;那个2022年通过初审的正在无效程序中。 2…

mbti,INTJ型人格的心理问题分析

什么是INTJ型人格&#xff1f; INTJ来自mbti职业性格测试&#xff0c;16种人格类型之一&#xff0c;INTJ分别代表内向&#xff0c;直觉&#xff0c;理智&#xff0c;独立&#xff0c;而INTJ型人格是一种以冷静和理性著称的人格&#xff0c;这种人格的人总给人一种比较理智&…

图解大型网站多级缓存的分层架构

前言 缓存技术存在于应用场景的方方面面。从浏览器请求&#xff0c;到反向代理服务器&#xff0c;从进程内缓存到分布式缓存&#xff0c;其中缓存策略算法也是层出不穷。 假设一个网站&#xff0c;需要提高性能&#xff0c;缓存可以放在浏览器&#xff0c;可以放在反向代理服…

【智能排班系统】雪花算法生成分布式ID

文章目录 雪花算法介绍起源与命名基本原理与结构优势与特点应用场景 代码实现代码结构自定义机器标识RandomWorkIdChooseLocalRedisWorkIdChooselua脚本 实体类SnowflakeIdInfoWorkCenterInfo 雪花算法类配置类雪花算法工具类 说明 雪花算法介绍 在复杂而庞大的分布式系统中&a…

小坤二次元导航HTML源码

源码介绍 小坤二次元导航HTML源码&#xff0c;很好看的一个htmlの引导页/导航页&#xff01;需要的上&#xff01; 源码下载 小坤二次元导航HTML源码

游戏攻略|基于Springboot和vue的游戏分享平台系统设计与实现(源码+数据库+文档)

游戏攻略分享平台 目录 基于Springboot和vue的游戏分享平台系统设计与实现 一、前言 二、系统设计 三、系统功能设计 1、前台&#xff1a; 2、后台 管理员功能模块 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取&#xff1a…

python绘制子图(旭日图、渐变堆积面积图、多数据折线图、比例关系图)

大家好&#xff0c;我是带我去滑雪&#xff01; 子图可以更清晰地展示和理解复杂的数据关系&#xff0c;通过将数据分成多个小图&#xff0c;有助于观察数据间的关系和趋势。减少数据之间的重叠和混淆&#xff0c;使得每个子图更易于理解和解释。不同类型的子图可以呈现数据的不…

蓝鲸6.1 CMDB 事件推送的开源替代方案

本文来自腾讯蓝鲸智云社区用户&#xff1a;木讷大叔爱运维 背景 在蓝鲸社区“社区问答”帖子中发现这么一个需求&#xff1a; 究其原因&#xff0c;我在《不是CMDB筑高墙&#xff0c;运维需要一定的开发能力&#xff01;》一文中已经介绍&#xff0c;在此我再简单重复下&#…

mysql知识点梳理

mysql知识点梳理 一、InnoDB引擎中的索引策略&#xff0c;了解过吗&#xff1f;二、一条 sql 执行过长的时间&#xff0c;你如何优化&#xff0c;从哪些方面入手&#xff1f;三、索引有哪几种类型&#xff1f;四、SQL 约束有哪几种呢&#xff1f;五、drop、delete、truncate的区…

勒索病毒最新变种.rmallox勒索病毒来袭,如何恢复受感染的数据?

导言&#xff1a; 随着信息技术的飞速发展&#xff0c;网络安全问题日益突出&#xff0c;其中勒索病毒便是近年来备受关注的网络安全威胁之一。在众多勒索病毒中&#xff0c;.rmallox勒索病毒以其独特的传播方式和强大的加密能力&#xff0c;给广大用户带来了极大的困扰。本文…

2024 批量下载公众号文章内容/阅读数/在看数/点赞数/留言数/粉丝数导出pdf文章备份(带留言):公众号混知近2000篇历史文章在线查看,找文章方便了

关于公众号文章批量下载&#xff0c;我之前写过很多文章&#xff1a; 视频更新版&#xff1a;批量下载公众号文章内容/话题/图片/封面/音频/视频&#xff0c;导出html&#xff0c;pdf&#xff0c;excel包含阅读数/点赞数/留言数 2021陶博士2006/caoz的梦呓/刘备我祖/六神读金…

大型语言模型(LLMs)面试常见问题解析

概述 这篇文章[1]是关于大型语言模型&#xff08;LLMs&#xff09;的面试问题和答案&#xff0c;旨在帮助读者准备相关职位的面试。 token&#xff1f; 在大型语言模型中&#xff0c;token 指的是什么&#xff1f; 分词&#xff08;Tokenization&#xff09;&#xff1a;可以将…