具身智能机器人实现新里程碑!新型3D世界模型问世

随着人工智能技术的不断进步,视觉-语言-动作(VLA)模型在机器人控制、自动驾驶、智能助手等领域展现出了广阔的应用前景。这类模型能够将视觉、语言、动作等多模态信息进行融合,实现从感知到决策的端到端学习。然而,现有的VLA模型大多基于二维视觉输入,缺乏对三维物理世界的深入理解和交互能力。此外,它们往往采用从感知到动作的直接映射方式进行决策,忽略了复杂环境动态和行动后果之间的关联。这与人类先建立内在世界模型,再基于想象和预演来规划行动的认知过程存在明显差异。

为了构建更接近人类认知的VLA模型,来自马萨诸塞州大学阿默斯特分校、MIT等机构的提出了3D-VLA,这是一种新型的、具有里程碑式意义的具身基础模型(embodied foundation model),能够通过生成式世界模型无缝连接三维感知、推理和行动!与之前的工作不同,3D-VLA在视觉-语言大模型(VLM)中引入了3D特征,使其能够直接对三维场景进行理解和交互。同时,该模型还具备目标导向的多模态生成能力,能想象未来状态并据此指导动作规划。这一创新框架有望在机器人操控、虚拟助手、元宇宙等场景中得到广泛应用。

论文地址: https://arxiv.org/abs/2403.09631

▍一种新颖的3D视觉-语言-动作生成模型

3D-VLA的核心是建立一个通用的生成式世界模型,将3D感知、推理、预测和规划有机结合。具体而言,该模型以3D-LLM(3D大语言模型)为骨干,通过在其词表中引入一系列交互令牌,如场景、物体、动作等,增强了模型与3D环境互动的能力。在处理输入时,模型先将RGB图像或视频转换为深度图和点云等3D表征,提取关键物体的三维边界框等语义信息。基于这些3D特征,模型能执行空间推理、回答问题、生成目标等多种下游任务。

值得一提的是,3D-VLA还融合了扩散模型来实现多模态目标生成。通过预训练RGB-D到RGB-D、点云到点云的扩散模型,并用对齐器将其与语言编码器的输出对齐,3D-VLA能根据指令灵活地想象未来图像、深度图、点云等表征。相比从高维潜空间采样,这种可控的目标生成方式极大提升了规划的可解释性和针对性。在后续的决策阶段,代理将生成的目标重新输入世界模型,迭代预测和优化行动序列,最终输出可执行的机器人控制指令。

在这里插入图片描述

总的来说,3D-VLA开创了VLA模型与三维世界交互的新范式,使其更贴近真实环境中感知、思考和行动的流程。通过3D感知、多模态推理、目标想象、动作规划的无缝衔接,该模型在建模物理常识、因果关系、时序依赖等方面展现出了初步的类人智能特征。未来,这一具身基础模型有望进一步扩展到实际机器人系统和虚拟人交互中,推动人工智能在环境适应、任务泛化、快速学习等方面的突破。

▍大规模3D具身指令数据集的构建

训练3D-VLA这样大规模的生成式世界模型,离不开海量的多模态数据支持。然而,现有的VLA数据集大多聚焦在视频-文本对上,缺乏精细的3D标注。为此,研究者们从公开的机器人操控、人体-物体交互等数据集中,自动化地提取了丰富的3D-语言-动作三元组。

具体而言,他们先利用ZoeDepth等方法从RGB视频中估计深度信息,将其还原为点云;接着采用基于Grounded-SAM的目标检测模型获取物体的3D边界框;并通过光流估计、遮挡分析等手段从视频中确定关键帧作为子目标。-cloud>等特殊令牌标记图像内容。最终,该团队构建了一个包含200万数据对、涵盖目标检测、动作生成、多模态对齐等10多个任务的3D具身指令数据集。如此规模和质量的数据集,为3D-VLA的训练和评估提供了坚实基础。

在这里插入图片描述

▍交互令牌和扩散模型的引入

传统的VLM主要通过文本和图像特征的交叉注意力实现多模态对齐。为了更好地建模3D环境,3D-VLA在其语言编码器中引入了一系列特殊的交互令牌。例如,用、标记输入的三维场景,用、突出关注的物体,以及用[action]、[/action]标识执行的动作等。这些可解释的令牌使得模型能够灵活地关联3D环境要素,动态地调整注意力机制。此外,为了赋予世界模型目标导向的想象能力,研究者将DDPM、Stable Diffusion等扩散模型的生成范式引入其中。通过在大规模3D数据上预训练从RGB-D到RGB-D、从点云到点云的扩散模型,并学习语言-视觉-动作三者的联合分布,3D-VLA能根据输入的文本指令和环境表征,直接采样生成可感知的未来状态。在推理阶段,该模型还设计了一个对齐器模块,用于在隐空间中动态地对齐扩散解码器和语言编码器的输出。这使得模型能灵活地插入不同形式的subgoal,并自适应地调整输出模态。

在这里插入图片描述

▍实验结果

在模型训练和评估中,研究者在3D-VLA和多个SOTA的VLA基线模型上进行了广泛的实验。一方面,在传统的具身问答、视觉定位、指令生成等理解型任务上,3D-VLA的各项指标都大幅领先于BLIP2、OpenFlamingo等视觉语言模型。以视觉问答为例,3D-VLA在对话式VQA和视觉推理VQA上的TOP-1准确率分别达到了65.8%和59.3%,相比BLIP2提升了4.5%和6.2%。这表明融入三维表征和空间推理能力,能显著提升模型对场景的语义理解。在指令生成任务中,3D-VLA生成的任务描述在流畅性、信息完整性等人工评估维度上也全面超越基线方法。

在这里插入图片描述

另一方面,研究者还设计了一系列新颖的生成型任务来考察3D-VLA的规划和想象能力。在目标深度图生成中,该模型根据输入RGB图像和目标文本,重构出了形状、位置、视角基本正确的深度表征。在机器人动作规划任务中,3D-VLA先根据指令预测3D目标场景,并用此作为subgoal进行路径搜索和运动规划,最终生成可执行的低层控制指令。在三个具身交互数据集上的测试显示,该模型完成任务的成功率达到85%以上,大幅超过了传统的VLA规划算法。

在这里插入图片描述

这些实验结果充分证明了3D-VLA在感知、推理、规划等认知能力上的优势。通过从大规模3D-语言-动作数据中学习物理和语义知识,并将其编码为通用的世界模型,该框架能够在多个应用场景中实现较好的任务迁移和零样本泛化能力。

在这里插入图片描述

▍结语与展望

3D-VLA的提出标志着VLA模型向三维世界迈进了关键一步。通过将视觉-语言大模型与3D表征、扩散生成等前沿技术相结合,该框架初步实现了从3D感知到规划的端到端建模。一方面,模型能理解和推理三维场景,回答空间指令;另一方面,它还能想象目标状态,并用生成的subgoal来指导行动序列的规划。这种高度整合的世界模型极大拓展了VLA的应用边界,为构建更智能、更鲁棒的具身智能体铺平了道路。

当然,3D-VLA仍有不少改进空间。首先,如何在保证语义对齐的前提下,进一步提升3D感知和生成的效果,是一个值得研究的问题。其次,在实际机器人系统中,模型输出的离散动作令牌需要解码为连续控制,这需要与运动规划等模块进行更紧密的适配。此外,3D-VLA还需要在更大规模、更多样化的数据集上进行训练,以增强知识的丰富性和鲁棒性。

展望未来,3D-VLA有望在更多垂直领域得到应用和创新。在家庭服务机器人中,该模型可作为高层控制器,感知、推理家居环境,并规划执行日常家务。在工业无人机巡检等任务中,3D-VLA可根据用户指令,自主地对关键部件进行定位、检测和分析。在虚拟助理和元宇宙场景中,具备三维世界模型的对话代理将能提供更自然、更具情境感知力的交互体验。总的来说,3D-VLA代表了VLA模型发展的新方向,虽然尚处于起步阶段,但其在机器人、智能助理、虚拟现实等领域已初现广阔的应用前景。相信随着技术的不断进步,这一赋予机器以三维想象力的框架,将为人机协作开辟更多可能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/795332.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于SpringBoot和Vue的校园周边美食探索以及分享系统

今天要和大家聊的是基于SpringBoot和Vue的校园周边美食探索以及分享系统 !!! 有需要的小伙伴可以通过文章末尾名片咨询我哦!!! 💕💕作者:李同学 💕&#x1f…

Linux目录结构知识

一、认识Linux目录 1) Linux目录结构知识 1) win: 目录顶点是盘符 C/D/E 。所有的目录结构都在不同的盘符下面,不同的盘之间不能沟通的。 2) Linux: 目录顶点是 / ,称为根。所有的目录结构都在根下面,他的目录之间都…

SaaS模式Java版云HIS系统源码 覆盖医院所有业务的HIS信息管理系统源码

SaaS模式Java版云HIS系统源码 覆盖医院所有业务的HIS信息管理系统源码 HIS(Hospital Information System)是覆盖医院所有业务和业务全过程的信息管理系统。 HIS系统以财务信息、病人信息和物资信息为主线,通过对信息的收集、存储、传递、统…

2024年最新版FL Studio21.2.3 Build 4004 for Mac 版激活下载和图文激活教程

FL studio21中文别名水果编曲软件,是一款全能的音乐制作软件,包括编曲、录音、剪辑和混音等诸多功能,让你的电脑编程一个全能的录音室,它为您提供了一个集成的开发环境,使用起来非常简单有效,您的工作会变得…

某虚假交友APP(信息窃取)逆向分析

应用初探 在群里水群的时候 群u发了一个交友APP 于是拿来分析一下 可以看到应用打开后又一个登录的界面 需要用户输入手机号与验证码进行登录 #在线云沙箱分析 将APK放入某安信云沙箱中分析 提示应用请求了过多的敏感权限 逆向分析 直接拖入Jadx分析 好在程序没有加固 也没…

docker部署在线流程图

下载镜像 docker pull registry.cn-beijing.aliyuncs.com/wuxingge123/drawio:latestdocker-compose部署 vim docker-compose.yml version: 3 services:drawio:container_name: drawioimage: registry.cn-beijing.aliyuncs.com/wuxingge123/drawio:latestports:- 8083:8080v…

探索未来智慧酒店网项目接口架构

在数字化时代,智慧酒店已成为酒店业发展的重要趋势之一。智慧酒店网项目接口架构作为支撑智慧酒店运营的核心技术之一,其设计和优化对于提升用户体验、提高管理效率具有重要意义。本文将深入探讨智慧酒店网项目接口架构的设计理念和关键要素。 ### 智慧…

vivado 有关 SVF 链的操作

按正确顺序创建反映所有器件及其配置存储器的 SVF 链之后 , 即可开始向 SVF 链中的器件添加编程操作。 例如, 您可右键单击链中的赛灵思 a200t 器件 , 然后选择“添加器件编程操作 (Add Program Device Operation) ”对话 框, …

Logback日志框架(超详细)

logback-classic-1.2.3.jarhttp://链接: https://pan.baidu.com/s/1cA3gVB_6DEA-cSFJN6MDGw 提取码: sn8i 复制这段内容后打开百度网盘手机App,操作更方便哦 logback-core-1.2.3.jarhttp://链接: https://pan.baidu.com/s/19eCsvsO72a9PTqpXvXxrgg 提取码: 5yp…

PHP实现nginxPhp错误日志提取统计工具(路径+错误行+报错信息+次数排序)

粘贴PHP错误日志内容(NGINX 下PHP网站错误日志)。 作用:提取PHP Warning/Notice:路径错误行报错信息按出现次数排序。 以上已满足本人自己LNMP环境的调试需求&#xff0c;其他环境自己评估是否可用。 <?php //整理与分享&#xff1a;yujianyue<15058593138qq.com> $…

STL中各类容器详细介绍

STL介绍 STL&#xff08;Standard Template Library&#xff09;&#xff0c;即标准模板库&#xff0c;是一个具有工业强度的&#xff0c;高效的C程序库。它被容纳于C标准程序库&#xff08;C Standard Library&#xff09;中&#xff0c;是ANSI/ISO C标准中最新的也是极具革命…

前端学习<四>JavaScript基础——06-基本数据类型:String 和 Boolean

今天这篇文章&#xff0c;我们详细讲一下基本数据类型。 String 字符串 语法 字符串型可以是引号中的任意文本&#xff0c;其语法为&#xff1a;双引号 "" 或者单引号 。 来看个示例。下面的这些&#xff0c;都是字符串&#xff1a; var a abcde;var b 千古壹号…

Photoshop 2024 中文---专业图像处理软件的又一次飞跃

Photoshop 2024是一款功能强大的图像处理软件&#xff0c;广泛应用于创意设计和图像处理领域。它提供了丰富的绘画和编辑工具&#xff0c;包括画笔、铅笔、颜色替换、混合器画笔等&#xff0c;使用户能够轻松进行图片编辑、合成、校色、抠图等操作&#xff0c;实现各种视觉效果…

云备份day03

&#x1f4df;作者主页&#xff1a;慢热的陕西人 &#x1f334;专栏链接&#xff1a;C云备份项目 &#x1f4e3;欢迎各位大佬&#x1f44d;点赞&#x1f525;关注&#x1f693;收藏&#xff0c;&#x1f349;留言 主要内容介绍了第三方库httplib的一些内容&#xff0c;以及实现…

Java 进程状态

一&#xff0c;进程介绍 定义&#xff1a;进程是计算机中运行中的程序的实例。它包含了程序的代码、数据以及程序运行时所需的各种资源&#xff0c;如内存空间、CPU时间等。 特征&#xff1a; 动态性&#xff1a;进程是动态创建、执行和销毁的。并发性&#xff1a;在多道程序环…

VSCode好用插件

由于现在还是使用vue2&#xff0c;所以本文只记录vue2开发中好用的插件。 美化类插件不介绍了&#xff0c;那些貌似对生产力起不到什么大的帮助&#xff0c;纯粹的“唯心主义”罢了&#xff0c;但是如果你有兴趣的话可以查看上一篇博客&#xff1a;VSCode美化 1. vuter 简介&…

【opencv】示例-barcode.cpp 条形码检测和解码

#include <iostream> // 引入标准输入输出流库 #include "opencv2/objdetect.hpp" // 引入OpenCV物体检测库 #include "opencv2/imgproc.hpp" // 引入OpenCV图像处理库 #include "opencv2/highgui.hpp" // 引入OpenCV高层GUI库using names…

169.乐理基础-调式板块总结、调式判断

如果到这五线谱还没记住还不认识的话去看102.五线谱-高音谱号与103.五线谱-低音谱号这两个里&#xff0c;这里面有五线谱对应的音名&#xff0c;对比着看 如果不认识调号去看112.五线谱的调号&#xff08;一&#xff09;、113.五线谱的调号&#xff08;二&#xff09;、114.快…

如何使用 Midjourney?2024年最新更新

一&#xff1a;基础篇 1&#xff1a;注册 首先&#xff0c;你需要注册一个 Discord 账号&#xff0c;然后加入 Midjourney 的 Discord 服务器。或者去 Midjourney 的官网点击右下角的 Join the Beta&#xff1a; ​ 2&#xff1a;在 Discord 公共服务器里使用 注册并进入到…

JVM基础

初识JAM JVM就是JAVA虚拟机&#xff0c;本质上是一个运行在计算机上的程序&#xff0c;他的职责是运行JAVA字节码文件. 下面是java代码执行过程 JVM的功能 1.解释和运行 对字节码文件中的指令实时的解释成机器码 2.内存管理 自动为对象&#xff0c;方法等分配内存自动的垃圾回…