金融贷款批准预测项目

注意:本文引用自专业人工智能社区Venus AI

更多AI知识请参考原站 ([www.aideeplearning.cn])

在金融服务行业,贷款审批是一项关键任务,它不仅关系到资金的安全,还直接影响到金融机构的运营效率和风险管理。传统的审批流程往往依赖于人工审核,这不仅效率低下,而且容易受到主观判断的影响。为了解决这些问题,我们引入了一种基于机器学习的贷款预测模型,旨在提高贷款审批的准确性和效率。

项目背景

在当前的金融市场中,违约率的不断波动对贷款审批流程提出了新的挑战。传统方法往往无法有效预测和管理这些风险,因此需要一种更智能、更可靠的方法来评估贷款申请。通过使用机器学习,我们可以从大量历史数据中学习并识别违约的潜在风险,这不仅能提高贷款批准的准确性,还能大大降低金融机构的损失。

经过训练的模型将用于预测新的贷款申请是否有高风险。这将帮助金融机构在贷款批准过程中做出更加明智的决策,减少不良贷款的比例,提高整体的财务健康状况。

数据集

我们项目使用的数据集包括了广泛的客户特征,这些特征反映了贷款申请者的财务状况和背景。具体包括:

  1. 性别(Gender):申请人的性别。
  2. 婚姻状况(Married):申请人的婚姻状态。
  3. 受抚养人数(Dependents):申请人负责抚养的人数。
  4. 教育背景(Education):申请人的教育水平。
  5. 是否自雇(Self_Employed):申请人是否拥有自己的业务。
  6. 申请人收入(ApplicantIncome):申请人的月收入。
  7. 共同申请人收入(CoapplicantIncome):与申请人一同申请贷款的人的月收入。
  8. 贷款金额(LoanAmount):申请的贷款总额。
  9. 贷款期限(Loan_Amount_Term):预期的还款期限。
  10. 信用历史(Credit_History):申请人的信用记录。
  11. 财产区域(Property_Area):申请人财产所在的地理位置。

模型和依赖库

Models:

  1. RandomForestRegressor
  2. Decision Tree Regression
  3. logistic regression

Libraries:

  1. matplotlib==3.7.1
  2. numpy==1.24.3
  3. pandas==2.0.2
  4. scikit_learn==1.2.2
  5. seaborn==0.13.0

代码实现

金融贷款批准预测

项目背景

在金融领域,贷款审批是向任何人提供贷款之前需要执行的一项至关重要的任务。 这确保了批准的贷款将来可以收回。 然而,要确定一个人是否适合贷款或违约者,就很难确定有助于做出决定的性格和特征。

在这些情况下,使用机器学习的贷款预测模型成为非常有用的工具,可以根据过去的数据来预测该人是否违约。

我们获得了两个数据集(训练和测试),其中包含过去的交易,其中包括客户的一些特征以及显示客户是否违约的标签。 我们建立了一个模型,可以在训练数据集上执行,并可以预测贷款是否应获得批准。

About Data:

导入库并加载数据

#Impoting libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
df_train = pd.read_csv("train_u6lujuX_CVtuZ9i.csv")
df_test = pd.read_csv("test_Y3wMUE5_7gLdaTN.csv")
df_train.head()
Loan_IDGenderMarriedDependentsEducationSelf_EmployedApplicantIncomeCoapplicantIncomeLoanAmountLoan_Amount_TermCredit_HistoryProperty_AreaLoan_Status
0LP001002MaleNo0GraduateNo58490.0NaN360.01.0UrbanY
1LP001003MaleYes1GraduateNo45831508.0128.0360.01.0RuralN
2LP001005MaleYes0GraduateYes30000.066.0360.01.0UrbanY
3LP001006MaleYes0Not GraduateNo25832358.0120.0360.01.0UrbanY
4LP001008MaleNo0GraduateNo60000.0141.0360.01.0UrbanY
df_test.head()
Loan_IDGenderMarriedDependentsEducationSelf_EmployedApplicantIncomeCoapplicantIncomeLoanAmountLoan_Amount_TermCredit_HistoryProperty_Area
0LP001015MaleYes0GraduateNo57200110.0360.01.0Urban
1LP001022MaleYes1GraduateNo30761500126.0360.01.0Urban
2LP001031MaleYes2GraduateNo50001800208.0360.01.0Urban
3LP001035MaleYes2GraduateNo23402546100.0360.0NaNUrban
4LP001051MaleNo0Not GraduateNo3276078.0360.01.0Urban
#shape of data
df_train.shape
(614, 13)
#data summary
df_train.describe()
ApplicantIncomeCoapplicantIncomeLoanAmountLoan_Amount_TermCredit_History
count614.000000614.000000592.000000600.00000564.000000
mean5403.4592831621.245798146.412162342.000000.842199
std6109.0416732926.24836985.58732565.120410.364878
min150.0000000.0000009.00000012.000000.000000
25%2877.5000000.000000100.000000360.000001.000000
50%3812.5000001188.500000128.000000360.000001.000000
75%5795.0000002297.250000168.000000360.000001.000000
max81000.00000041667.000000700.000000480.000001.000000
df_train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):#   Column             Non-Null Count  Dtype  
---  ------             --------------  -----  0   Loan_ID            614 non-null    object 1   Gender             601 non-null    object 2   Married            611 non-null    object 3   Dependents         599 non-null    object 4   Education          614 non-null    object 5   Self_Employed      582 non-null    object 6   ApplicantIncome    614 non-null    int64  7   CoapplicantIncome  614 non-null    float648   LoanAmount         592 non-null    float649   Loan_Amount_Term   600 non-null    float6410  Credit_History     564 non-null    float6411  Property_Area      614 non-null    object 12  Loan_Status        614 non-null    object 
dtypes: float64(4), int64(1), object(8)
memory usage: 62.5+ KB

数据清洗

# 检测空值
df_train.isna().sum()
Loan_ID               0
Gender               13
Married               3
Dependents           15
Education             0
Self_Employed        32
ApplicantIncome       0
CoapplicantIncome     0
LoanAmount           22
Loan_Amount_Term     14
Credit_History       50
Property_Area         0
Loan_Status           0
dtype: int64

有很多空值,Credit_History 的最大值为 50。

去除所有空值

# Dropping all the null values
drop_list = ['Gender','Married','Dependents','Self_Employed','LoanAmount','Loan_Amount_Term','Credit_History']
for col in drop_list:df_train = df_train[~df_train[col].isna()]
df_train.isna().sum()
Loan_ID              0
Gender               0
Married              0
Dependents           0
Education            0
Self_Employed        0
ApplicantIncome      0
CoapplicantIncome    0
LoanAmount           0
Loan_Amount_Term     0
Credit_History       0
Property_Area        0
Loan_Status          0
dtype: int64

Loan_ID 列没用,这里删除它

# dropping Loan_ID
df_train.drop(columns='Loan_ID',axis=1, inplace=True)
df_train.shape
(480, 12)
#data summary
df_train.describe()
ApplicantIncomeCoapplicantIncomeLoanAmountLoan_Amount_TermCredit_History
count480.000000480.000000480.000000480.000000480.000000
mean5364.2312501581.093583144.735417342.0500000.854167
std5668.2512512617.69226780.50816465.2124010.353307
min150.0000000.0000009.00000036.0000000.000000
25%2898.7500000.000000100.000000360.0000001.000000
50%3859.0000001084.500000128.000000360.0000001.000000
75%5852.5000002253.250000170.000000360.0000001.000000
max81000.00000033837.000000600.000000480.0000001.000000

数据分析(EDA)

df_train.head()
GenderMarriedDependentsEducationSelf_EmployedApplicantIncomeCoapplicantIncomeLoanAmountLoan_Amount_TermCredit_HistoryProperty_AreaLoan_Status
1MaleYes1GraduateNo45831508.0128.0360.01.0RuralN
2MaleYes0GraduateYes30000.066.0360.01.0UrbanY
3MaleYes0Not GraduateNo25832358.0120.0360.01.0UrbanY
4MaleNo0GraduateNo60000.0141.0360.01.0UrbanY
5MaleYes2GraduateYes54174196.0267.0360.01.0UrbanY
#distribution of Churn data
sns.displot(data=df_train,x='Loan_Status')
<seaborn.axisgrid.FacetGrid at 0x1f54d853bb0>

数据集是不平衡的,但是不是非常严重

自变量相对于因变量的分布.

# 设置分类特征
categorical_features=list(df_train.columns)
numeical_features = list(df_train.describe().columns)
for elem in numeical_features:categorical_features.remove(elem)
categorical_features = categorical_features[:-1]
categorical_features
['Gender','Married','Dependents','Education','Self_Employed','Property_Area']
# Set categorical and numerical features
categorical_features = list(df_train.columns)
numerical_features = list(df_train.describe().columns)
for elem in numerical_features:categorical_features.remove(elem)
categorical_features.remove('Loan_Status')  # Assuming 'Loan_Status' is not a feature to plot# Determine the layout of subplots
n_cols = 2  # Can be adjusted based on preference
n_rows = (len(categorical_features) + 1) // n_cols# Create a grid of subplots
fig, axes = plt.subplots(nrows=n_rows, ncols=n_cols, figsize=(12, n_rows * 4))# Flatten the axes array for easy iteration
axes = axes.flatten()# Plot each bar chart
for i, col in enumerate(categorical_features):df_train.groupby([col, 'Loan_Status']).size().unstack().plot(kind='bar', stacked=True, ax=axes[i])axes[i].set_title(f'Total count of Loan_Status grouped by {col}')axes[i].set_ylabel('Count')# Adjust layout and display the plot
plt.tight_layout()
plt.show()

从上面的图中观察到的结果:

  • 与女性相比,男性获得贷款批准的比例更高。
  • 与非毕业生相比,贷款审批对毕业生更有利。

  • 与受雇者相比,个体经营者获得贷款批准的机会较少。

  • 城乡结合部的贷款批准率最高。

让我们看看按因变量分组的连续自变量

numerical_features = df_train.describe().columns# Determine the layout of subplots
n_cols = 2  # Adjust based on preference
n_rows = (len(numerical_features) + 1) // n_cols# Create a grid of subplots
fig, axes = plt.subplots(nrows=n_rows, ncols=n_cols, figsize=(12, n_rows * 4))# Flatten the axes array for easy iteration
axes = axes.flatten()# Plot each boxplot
for i, col in enumerate(numerical_features):sns.boxplot(x='Loan_Status', y=col, data=df_train, ax=axes[i])axes[i].set_title(f'Distribution of {col} grouped by Loan_Status')# Adjust layout and display the plot
plt.tight_layout()
plt.show()

我们可以在数据中观察到很多异常值。

从上面的箱线图中无法得出任何正确的结论。

相关性分析

 ## Correlation between variables
plt.figure(figsize=(15,8))
correlation = df_train.corr()
sns.heatmap((correlation), annot=True, cmap='coolwarm')
<Axes: >

没有观察到任何显着的相关性。

数据预处理

df_train.head()
GenderMarriedDependentsEducationSelf_EmployedApplicantIncomeCoapplicantIncomeLoanAmountLoan_Amount_TermCredit_HistoryProperty_AreaLoan_Status
1MaleYes1GraduateNo45831508.0128.0360.01.0RuralN
2MaleYes0GraduateYes30000.066.0360.01.0UrbanY
3MaleYes0Not GraduateNo25832358.0120.0360.01.0UrbanY
4MaleNo0GraduateNo60000.0141.0360.01.0UrbanY
5MaleYes2GraduateYes54174196.0267.0360.01.0UrbanY
df_train['Property_Area'].value_counts()
Semiurban    191
Urban        150
Rural        139
Name: Property_Area, dtype: int64
df_train['Credit_History'].value_counts()
1.0    410
0.0     70
Name: Credit_History, dtype: int64
df_train['Dependents'].value_counts()
0     274
2      85
1      80
3+     41
Name: Dependents, dtype: int64

使用标签编码将分类列转换为数字

#Label encoding for some categorical features
df_train_new = df_train.copy()
label_col_list = ['Married','Self_Employed']
for col in label_col_list:df_train_new=df_train_new.replace({col:{'Yes':1,'No':0}})
df_train_new=df_train_new.replace({'Gender':{'Male':1,'Female':0}})
df_train_new=df_train_new.replace({'Education':{'Graduate':1,'Not Graduate':0}})
df_train_new=df_train_new.replace({'Loan_Status':{'Y':1,'N':0}})

对于其余的分类特征,我们将进行一种热编码:

#one hot encoding
df_train_new = pd.get_dummies(df_train_new, columns=["Dependents","Property_Area"])
df_train_new.head()
GenderMarriedEducationSelf_EmployedApplicantIncomeCoapplicantIncomeLoanAmountLoan_Amount_TermCredit_HistoryLoan_StatusDependents_0Dependents_1Dependents_2Dependents_3+Property_Area_RuralProperty_Area_SemiurbanProperty_Area_Urban
1111045831508.0128.0360.01.000100100
2111130000.066.0360.01.011000001
3110025832358.0120.0360.01.011000001
4101060000.0141.0360.01.011000001
5111154174196.0267.0360.01.010010001

标准化连续变量。

#standardize continuous features
from scipy.stats import zscore
df_train_new[['ApplicantIncome','CoapplicantIncome','LoanAmount','Loan_Amount_Term']]=df_train_new[['ApplicantIncome','CoapplicantIncome','LoanAmount','Loan_Amount_Term']].apply(zscore) 
df_train_new.head()
GenderMarriedEducationSelf_EmployedApplicantIncomeCoapplicantIncomeLoanAmountLoan_Amount_TermCredit_HistoryLoan_StatusDependents_0Dependents_1Dependents_2Dependents_3+Property_Area_RuralProperty_Area_SemiurbanProperty_Area_Urban
11110-0.137970-0.027952-0.2080890.2755421.000100100
21111-0.417536-0.604633-0.9790010.2755421.011000001
31100-0.4911800.297100-0.3075620.2755421.011000001
410100.112280-0.604633-0.0464460.2755421.011000001
511110.0093190.9999781.5202450.2755421.010010001
# Repositioning the dependent variable to last index
last_column = df_train_new.pop('Loan_Status')
df_train_new.insert(16, 'Loan_Status', last_column)
df_train_new.head()
GenderMarriedEducationSelf_EmployedApplicantIncomeCoapplicantIncomeLoanAmountLoan_Amount_TermCredit_HistoryDependents_0Dependents_1Dependents_2Dependents_3+Property_Area_RuralProperty_Area_SemiurbanProperty_Area_UrbanLoan_Status
11110-0.137970-0.027952-0.2080890.2755421.001001000
21111-0.417536-0.604633-0.9790010.2755421.010000011
31100-0.4911800.297100-0.3075620.2755421.010000011
410100.112280-0.604633-0.0464460.2755421.010000011
511110.0093190.9999781.5202450.2755421.000100011

数据处理完毕,准备训练模型

数据集划分

由于我们的数据仅用于训练,其他数据可用于测试。 我们仍然会进行训练测试分割,因为测试数据没有标记,并且有必要根据未见过的数据评估模型。

X= df_train_new.iloc[:,:-1]
y= df_train_new.iloc[:,-1]
from sklearn.model_selection import train_test_split 
X_train, X_test, y_train, y_test = train_test_split( X,y , test_size = 0.2, random_state = 0) 
print(X_train.shape)
print(X_test.shape)
(384, 16)
(96, 16)
y_train.value_counts()
1    271
0    113
Name: Loan_Status, dtype: int64
y_test.value_counts()
1    61
0    35
Name: Loan_Status, dtype: int64

对训练数据进行逻辑回归拟合

#Importing and fitting Logistic regression
from sklearn.linear_model import LogisticRegressionlr = LogisticRegression(fit_intercept=True, max_iter=10000,random_state=0)
lr.fit(X_train, y_train)

LogisticRegression

LogisticRegression(max_iter=10000, random_state=0)
# Get the model coefficients
lr.coef_
array([[ 0.23272114,  0.57128602,  0.26384918, -0.24617035,  0.15924191,-0.14703758, -0.19280038, -0.16392914,  2.97399665, -0.18202629,-0.27741114,  0.17256535,  0.28601466, -0.30275813,  0.64592912,-0.3440284 ]])
#model intercept
lr.intercept_
array([-2.1943974])

评价训练模型的性能

# Get the predicted probabilities
train_preds = lr.predict_proba(X_train)
test_preds = lr.predict_proba(X_test)
test_preds
array([[0.23916396, 0.76083604],[0.24506751, 0.75493249],[0.04933527, 0.95066473],[0.20146124, 0.79853876],[0.2347122 , 0.7652878 ],[0.05817427, 0.94182573],[0.17668886, 0.82331114],[0.21352909, 0.78647091],[0.39015173, 0.60984827],[0.1902079 , 0.8097921 ],[0.20590091, 0.79409909],[0.184445  , 0.815555  ],[0.80677694, 0.19322306],[0.23024539, 0.76975461],[0.23674387, 0.76325613],[0.32409412, 0.67590588],[0.08612609, 0.91387391],[0.20502754, 0.79497246],[0.71006169, 0.28993831],[0.05818474, 0.94181526],[0.16546532, 0.83453468],[0.1191243 , 0.8808757 ],[0.16412334, 0.83587666],[0.14471253, 0.85528747],[0.49082632, 0.50917368],[0.37484189, 0.62515811],[0.20042593, 0.79957407],[0.07289182, 0.92710818],[0.10696878, 0.89303122],[0.27313905, 0.72686095],[0.07661587, 0.92338413],[0.07911086, 0.92088914],[0.32357856, 0.67642144],[0.24855278, 0.75144722],[0.25736849, 0.74263151],[0.10330185, 0.89669815],[0.27934665, 0.72065335],[0.23504431, 0.76495569],[0.37235234, 0.62764766],[0.82612173, 0.17387827],[0.25597195, 0.74402805],[0.07027974, 0.92972026],[0.21138903, 0.78861097],[0.30656929, 0.69343071],[0.12859877, 0.87140123],[0.22422238, 0.77577762],[0.19222405, 0.80777595],[0.33904961, 0.66095039],[0.21169609, 0.78830391],[0.12783677, 0.87216323],[0.21562742, 0.78437258],[0.1003408 , 0.8996592 ],[0.39205576, 0.60794424],[0.10298106, 0.89701894],[0.34917087, 0.65082913],[0.31848606, 0.68151394],[0.46697536, 0.53302464],[0.83005638, 0.16994362],[0.84749511, 0.15250489],[0.82240763, 0.17759237],[0.08938059, 0.91061941],[0.38214865, 0.61785135],[0.62202628, 0.37797372],[0.1124887 , 0.8875113 ],[0.29371977, 0.70628023],[0.12829643, 0.87170357],[0.30152976, 0.69847024],[0.12669798, 0.87330202],[0.07601492, 0.92398508],[0.06068026, 0.93931974],[0.05461916, 0.94538084],[0.10209121, 0.89790879],[0.20592351, 0.79407649],[0.56190874, 0.43809126],[0.19828342, 0.80171658],[0.20171019, 0.79828981],[0.11960918, 0.88039082],[0.25602438, 0.74397562],[0.18013843, 0.81986157],[0.37225288, 0.62774712],[0.21781716, 0.78218284],[0.10365239, 0.89634761],[0.29076172, 0.70923828],[0.59602673, 0.40397327],[0.39435357, 0.60564643],[0.40070233, 0.59929767],[0.88224869, 0.11775131],[0.22235351, 0.77764649],[0.1765423 , 0.8234577 ],[0.75247369, 0.24752631],[0.20366031, 0.79633969],[0.85207477, 0.14792523],[0.3873617 , 0.6126383 ],[0.12318258, 0.87681742],[0.06667711, 0.93332289],[0.17440779, 0.82559221]])
# Get the predicted classes
train_class_preds = lr.predict(X_train)
test_class_preds = lr.predict(X_test)
train_class_preds
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1,1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1,1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1,1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1,0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,1, 1, 1, 0, 1, 0, 1, 1, 1, 0], dtype=int64)

准确率

from sklearn.metrics import accuracy_score, confusion_matrix ,classification_report
# Get the accuracy scores
train_accuracy = accuracy_score(train_class_preds,y_train)
test_accuracy = accuracy_score(test_class_preds,y_test)print("The accuracy on train data is ", train_accuracy)
print("The accuracy on test data is ", test_accuracy)
The accuracy on train data is  0.8229166666666666
The accuracy on test data is  0.7604166666666666

由于我们的数据有些不平衡,准确性可能不是一个好的指标。 让我们使用 roc_auc 分数。

# Get the roc_auc scores
train_roc_auc = accuracy_score(y_train,train_class_preds)
test_roc_auc = accuracy_score(y_test,test_class_preds)print("The accuracy on train data is ", train_roc_auc)
print("The accuracy on test data is ", test_roc_auc)
The accuracy on train data is  0.8229166666666666
The accuracy on test data is  0.7604166666666666
# Other evaluation metrics for train data
print(classification_report(train_class_preds,y_train))
              precision    recall  f1-score   support0       0.45      0.89      0.60        571       0.98      0.81      0.89       327accuracy                           0.82       384macro avg       0.71      0.85      0.74       384
weighted avg       0.90      0.82      0.84       384

# Other evaluation metrics for train data
print(classification_report(y_test,test_class_preds))
              precision    recall  f1-score   support0       1.00      0.34      0.51        351       0.73      1.00      0.84        61accuracy                           0.76        96macro avg       0.86      0.67      0.68        96
weighted avg       0.83      0.76      0.72        96

训练集和测试集上的混淆矩阵

# Get the confusion matrix for trained datalabels = ['Notapproved', 'approved']
cm = confusion_matrix(y_train, train_class_preds)
print(cm)ax= plt.subplot()
sns.heatmap(cm, annot=True, ax = ax) #annot=True to annotate cells# labels, title and ticks
ax.set_xlabel('Predicted labels')
ax.set_ylabel('True labels')
ax.set_title('Confusion Matrix on trained data')
ax.xaxis.set_ticklabels(labels)
ax.yaxis.set_ticklabels(labels)
plt.show()# Get the confusion matrix for test datalabels = ['Notapproved', 'approved']
cm = confusion_matrix(y_test, test_class_preds)
print(cm)ax= plt.subplot()
sns.heatmap(cm, annot=True, ax = ax); #annot=True to annotate cells# labels, title and ticks
ax.set_xlabel('Predicted labels')
ax.set_ylabel('True labels')
ax.set_title('Confusion Matrix on test data')
ax.xaxis.set_ticklabels(labels)
ax.yaxis.set_ticklabels(labels)
[[ 51  62][  6 265]]

[[12 23][ 0 61]]
[Text(0, 0.5, 'Notapproved'), Text(0, 1.5, 'approved')]

决策树

#Importing libraries
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV
# applying GreadsearchCV to identify best parameters
decision_tree = DecisionTreeClassifier()
tree_para = {'criterion':['gini','entropy'],'max_depth':[4,5,6,7,8,9,10,11,12,15,20,30,40,50,70,90,120,150]}
clf = GridSearchCV(decision_tree, tree_para, cv=5)
clf.fit(X_train, y_train)

clf.best_params_
{'criterion': 'gini', 'max_depth': 4}
#applying decision tree classifier
dt = DecisionTreeClassifier(criterion='gini',max_depth=4,random_state=0)
dt.fit(X_train, y_train)

train_class_preds = dt.predict(X_train)
test_class_preds = dt.predict(X_test)

Accuracy Score

# Get the accuracy scores
train_accuracy = accuracy_score(train_class_preds,y_train)
test_accuracy = accuracy_score(test_class_preds,y_test)print("The accuracy on train data is ", train_accuracy)
print("The accuracy on test data is ", test_accuracy)
The accuracy on train data is  0.8463541666666666
The accuracy on test data is  0.71875

roc_auc score

# Get the roc_auc scores
train_roc_auc = accuracy_score(y_train,train_class_preds)
test_roc_auc = accuracy_score(y_test,test_class_preds)print("The accuracy on train data is ", train_roc_auc)
print("The accuracy on test data is ", test_roc_auc)
The accuracy on train data is  0.8463541666666666
The accuracy on test data is  0.71875
# Other evaluation metrics for train data
print(classification_report(train_class_preds,y_train))
              precision    recall  f1-score   support0       0.54      0.90      0.67        681       0.97      0.84      0.90       316accuracy                           0.85       384macro avg       0.76      0.87      0.79       384
weighted avg       0.90      0.85      0.86       384
# Other evaluation metrics for train data
print(classification_report(y_test,test_class_preds))
              precision    recall  f1-score   support0       0.70      0.40      0.51        351       0.72      0.90      0.80        61accuracy                           0.72        96macro avg       0.71      0.65      0.66        96
weighted avg       0.72      0.72      0.70        96

Confusion matrix on trained and test data

# Get the confusion matrix for trained datalabels = ['Notapproved', 'approved']
cm = confusion_matrix(y_train, train_class_preds)
print(cm)ax= plt.subplot()
sns.heatmap(cm, annot=True, ax = ax) #annot=True to annotate cells# labels, title and ticks
ax.set_xlabel('Predicted labels')
ax.set_ylabel('True labels')
ax.set_title('Confusion Matrix on trained data')
ax.xaxis.set_ticklabels(labels)
ax.yaxis.set_ticklabels(labels)
plt.show()# Get the confusion matrix for test datalabels = ['Notapproved', 'approved']
cm = confusion_matrix(y_test, test_class_preds)
print(cm)ax= plt.subplot()
sns.heatmap(cm, annot=True, ax = ax); #annot=True to annotate cells# labels, title and ticks
ax.set_xlabel('Predicted labels')
ax.set_ylabel('True labels')
ax.set_title('Confusion Matrix on test data')
ax.xaxis.set_ticklabels(labels)
ax.yaxis.set_ticklabels(labels)
[[ 61  52][  7 264]]

[[14 21][ 6 55]]
[Text(0, 0.5, 'Notapproved'), Text(0, 1.5, 'approved')]

随机森林

# applying Random forrest classifier with Hyperparameter tuning
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
grid_values = {'n_estimators':[50, 80,  100], 'max_depth':[4,5,6,7,8,9,10]}
rf_gd = GridSearchCV(rf, param_grid = grid_values, scoring = 'roc_auc', cv=5)# Fit the object to train dataset
rf_gd.fit(X_train, y_train)

train_class_preds = rf_gd.predict(X_train)
test_class_preds = rf_gd.predict(X_test)

Accuracy Score

# Get the accuracy scores
train_accuracy = accuracy_score(train_class_preds,y_train)
test_accuracy = accuracy_score(test_class_preds,y_test)print("The accuracy on train data is ", train_accuracy)
print("The accuracy on test data is ", test_accuracy)
The accuracy on train data is  0.890625
The accuracy on test data is  0.75

roc_auc Score

# Get the roc_auc scores
train_roc_auc = accuracy_score(y_train,train_class_preds)
test_roc_auc = accuracy_score(y_test,test_class_preds)print("The accuracy on train data is ", train_roc_auc)
print("The accuracy on test data is ", test_roc_auc)
The accuracy on train data is  0.890625
The accuracy on test data is  0.75

Confusion Matrix

# Get the confusion matrix for trained datalabels = ['Notapproved', 'approved']
cm = confusion_matrix(y_train, train_class_preds)
print(cm)ax= plt.subplot()
sns.heatmap(cm, annot=True, ax = ax) #annot=True to annotate cells# labels, title and ticks
ax.set_xlabel('Predicted labels')
ax.set_ylabel('True labels')
ax.set_title('Confusion Matrix on trained data')
ax.xaxis.set_ticklabels(labels)
ax.yaxis.set_ticklabels(labels)
plt.show()# Get the confusion matrix for test datalabels = ['Notapproved', 'approved']
cm = confusion_matrix(y_test, test_class_preds)
print(cm)ax= plt.subplot()
sns.heatmap(cm, annot=True, ax = ax); #annot=True to annotate cells# labels, title and ticks
ax.set_xlabel('Predicted labels')
ax.set_ylabel('True labels')
ax.set_title('Confusion Matrix on test data')
ax.xaxis.set_ticklabels(labels)
ax.yaxis.set_ticklabels(labels)
plt.show()
[[ 72  41][  1 270]]

[[13 22][ 2 59]]

  • 最佳 roc_auc 分数源于随机森林分类器,因此随机森林是该模型的最佳预测模型。

代码与数据集下载

详情请见金融贷款批准预测项目-VenusAI (aideeplearning.cn)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/792837.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

8000预算可以购买阿里云服务器配置整理

一个月8000元预算如何选择阿里云服务器配置&#xff1f;八千预算可选的阿里云服务器配置相当高了&#xff0c;这个预算可以购买阿里云企业级独享型云服务器&#xff0c;至少8核以上的配置&#xff0c;这个预算可以支持复杂、高负载或大规模的业务需求。阿里云服务器网整理8000元…

微信小程序python+uniapp高校图书馆图书借阅管理系统ljr9i

根据日常实际需要&#xff0c;一方面需要在系统中实现基础信息的管理&#xff0c;同时还需要结合实际情况的需要&#xff0c;提供图书信息管理功能&#xff0c;方便图书管理工作的展开&#xff0c;综合考虑&#xff0c;本套系统应该满足如下要求&#xff1a; 首先&#xff0c;在…

C之结构体初始化10种写法总结(九十)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

基于Java微信小程序的医院挂号小程序,附源码

博主介绍&#xff1a;✌IT徐师兄、7年大厂程序员经历。全网粉丝15W、csdn博客专家、掘金/华为云//InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&#x1f3…

Spring Boot 整合 RabbitMQ 实现延迟消息

关于 RabbitMQ 消息队列&#xff08;Message Queuing&#xff0c;简写为 MQ&#xff09;最初是为了解决金融行业的特定业务需求而产生的。慢慢的&#xff0c;MQ 被应用到了更多的领域&#xff0c;然而商业 MQ 高昂的价格让很多初创公司望而却步&#xff0c;于是 AMQP&#xff0…

网络基础二——传输层协议UDP与TCP

九、传输层协议 ​ 传输层协议有UDP协议、TCP协议等&#xff1b; ​ 两个远端机器通过使用"源IP"&#xff0c;“源端口号”&#xff0c;“目的IP”&#xff0c;“目的端口号”&#xff0c;"协议号"来标识一次通信&#xff1b; 9.1端口号的划分 ​ 0-10…

2024年腾讯云4核8G服务器性能可以满足哪些使用场景?

腾讯云4核8G服务器多少钱&#xff1f;腾讯云4核8G轻量应用服务器12M带宽租用价格646元15个月&#xff0c;活动页面 txybk.com/go/txy 活动链接打开如下图所示&#xff1a; 腾讯云4核8G服务器优惠价格 这台4核8G服务器是轻量应用服务器&#xff0c;详细配置为&#xff1a;轻量4核…

【Redis】分布式锁及其他常见问题

分布式锁及其他常见问题 1. 我看你的项目都用到了 Redis&#xff0c;你在最近的项目的哪些场景下用到了 Redis 呢&#xff1f; 一定要结合业务场景来回答问题&#xff01;要是没有不要硬讲&#xff0c;除非面试官问&#xff1b; 接下来面试官将深入发问。 你没用到的也可能会…

【opencv】教程代码 —video(2) optical_flow (稀疏光流、稠密光流)

1. optical_flow.cpp 稀疏光流 #include <iostream> // 引入输入输出流库 #include <opencv2/core.hpp> // 引入OpenCV的核心功能模块 #include <opencv2/highgui.hpp> // 引入OpenCV的高级GUI模块&#xff0c;提供显示图像的功能 #include <opencv2/imgp…

Python | NCL风格 | EOF | 相关 | 回归

这里在linux系统上使用geocat实现NCL风格的图片绘制 geocat Linux上安装 geocat conda update condaconda create -n geocat -c conda-forge geocat-vizconda activate geocatconda update geocat-viz Dataset - NOAA Optimum Interpolation (OI) SST V2 # 海温月平均数据- lsm…

C++核心高级编程 --- 4.类和对象

文章目录 第四章&#xff1a;4.类和对象4.1 封装4.1.1 封装的意义4.1.2 struct与class的区别 4.2 对象的初始化和清理4.2.1 构造函数和析构函数4.2.2 构造函数的分类及调用4.2.3 拷贝构造函数调用时机4.2.4 构造函数调用规则4.2.5 深拷贝与浅拷贝4.2.6 初始化列表4.2.7 类对象作…

基础之重蹈覆辙

MESI缓存一致性协议 前&#x1f33d;&#xff1a; 高速缓存底层数据结构&#xff1a;拉链散列表的结构 bucket - cache entry - tag主内存地址 cache line缓存数据 flag缓存行状态 cache line64字节 有效引用主内存地址&#xff0c;连续的相邻的数据结构 读取特别快 处理器…

关于Tomcat双击startup.bat 闪退的解决⽅法

详解Tomcat双击startup.bat 闪退的解决⽅法 作为⼀个刚学习Tomcat的程序猿来说&#xff0c;这是会经常出现的错误。 1.环境变量问题 1.1 ⾸先需要确认java环境是否配置正确&#xff0c;jdk是否安装正确 winR打开cmd&#xff0c;输⼊java 或者 javac 出现下图所⽰就说明jdk配置正…

spark-hive连接操作流程、踩坑及解决方法

文章目录 1 简介2 版本匹配3 spark hive支持版本源码编译3.1 spark-src下载3.2 maven换源3.3 spark编译 4 hive 安装与mysql-metastore配置4.1 mysql下载安装4.1.1 为mysql设置系统环境变量4.1.2 初次登陆更改root身份密码4.1.3 安装后直接更改密码 4.2 hive初始化4.2.1 编写hi…

pycharm pyspark连接虚拟机的hive表 读取数据

方法&#xff1a; hive配置hiveserver2和metastore url <!-- 指定hiveserver2连接的host --> <property><name>hive.server2.thrift.bind.host</name><value>hadoop111</value> </property><!-- 指定hiveserver2连接的端口号 -…

langchain + azure chatgpt组合配置并运行

首先默认你已经有了azure的账号。 最重要的是选择gpt-35-turbo-instruct模型、api_version&#xff1a;2023-05-15&#xff0c;就这两个参数谷歌我尝试了很久才成功。 我们打开https://portal.azure.com/#home&#xff0c;点击更多服务&#xff1a; 我们点击Azure OpenAI&#…

华为ensp中ospf多区域管理 原理及配置命令(详解)

作者主页&#xff1a;点击&#xff01; ENSP专栏&#xff1a;点击&#xff01; ————前言———— OSPF 多区域的主要作用是缩小链路状态数据库和路由表的规模&#xff0c;减少路由更新的频率&#xff0c;提高网络的可扩展性&#xff0c;实现路由过滤和路由汇总&#xff0…

A First Course in the Finite Element Method【Daryl L.】|PDF电子书

专栏导读 作者简介&#xff1a;工学博士&#xff0c;高级工程师&#xff0c;专注于工业软件算法研究本文已收录于专栏&#xff1a;《有限元编程从入门到精通》本专栏旨在提供 1.以案例的形式讲解各类有限元问题的程序实现&#xff0c;并提供所有案例完整源码&#xff1b;2.单元…

zdpcss_transparent_animation_login:使用纯HTML+CSS+JS开发支持设置主题和带动画的科技风登录界面

废话不多说&#xff0c;先上图&#xff0c;有图有真相&#xff1a; 在左下角有一排颜色&#xff0c;点击可以设置主题色&#xff1a; 比如&#xff0c;我这里点击了橙色&#xff0c;登录界面就变成了如下样子&#xff1a; 另外&#xff0c;在输入账号和密码的时候&#x…

使用 ChatGPT 创建在线课程:一步一步指南与提示模板

原文&#xff1a;Creating Online Courses with ChatGPT 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 谢谢 作为对你支持的感谢&#xff0c;随意定制本书中列出的任何提示&#xff0c;并将其作为你自己的重新销售。是的&#xff0c;对你免费。 它们都结构良好且用…