个人医疗开支预测项目

 注意:本文引用自专业人工智能社区Venus AI

更多AI知识请参考原站 ([www.aideeplearning.cn])

项目背景

随着医疗成本的持续上涨,个人医疗开支成为一个重要议题。理解影响医疗费用的多种因素对于医疗保险公司、政府机构以及个人都至关重要。利用数据分析和机器学习技术,我们能够更好地预测和管理个人医疗费用。

项目目标

本项目的主要目标是开发一个能够准确预测个人医疗费用的模型。通过分析影响医疗费用的各种因素,如年龄、性别、BMI、吸烟状态、居住地区等,我们希望提供给保险公司和政策制定者更深入的见解,以便他们制定更有效的策略和计划。

项目应用

  • 保险定价: 帮助保险公司基于客户的个人健康数据定制保险费率。
  • 政策制定: 为政府和医疗机构提供数据支持,以便制定更有效的医疗保健政策。
  • 个人医疗规划: 辅助个人基于他们的健康状况和生活方式来规划未来的医疗费用。

数据集(描述到特征)

数据集包含以下特征:

  • 年龄(age): 主要受益人的年龄。
  • 性别(sex): 保险合同者的性别,包括女性和男性。
  • BMI(bmi): 身体质量指数,衡量体重与身高的关系,理想范围是18.5至24.9。
  • 子女数量(children): 受健康保险覆盖的子女数量。
  • 吸烟状况(smoker): 是否吸烟。
  • 居住地区(region): 受益人在美国的居住地区,包括东北部、东南部、西南部和西北部。
  • 医疗费用(charges): 由健康保险账单的个人医疗费用。

模型和依赖库

项目中使用了多种模型和依赖库:

  • 模型:
    1. 线性回归模型(Linear Regression Model)
    2. 随机森林回归模型(Random Forest Regression Model)
    3. 带有GridSearchCV的支持向量回归模型(Support Vector Regression Model with GridSearchCV)
    4. 梯度提升模型(GradientBoost Model)
    5. 简单的密集神经网络(Simple Dense Neural Network)
  • 依赖库:
    • 数据预处理和探索性数据分析: pandas、seaborn、matplotlib、numpy
    • 模型训练: sklearn.linear_model、sklearn.tree、sklearn.ensemble、sklearn.svm、sklearn.model_selection、tensorflow

代码实现

数据分析

# 导入依赖
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# 读入数据集
df = pd.read_csv('insurance.csv')
df.head()
agesexbmichildrensmokerregioncharges
019female27.9000yessouthwest16884.92400
118male33.7701nosoutheast1725.55230
228male33.0003nosoutheast4449.46200
333male22.7050nonorthwest21984.47061
432male28.8800nonorthwest3866.85520
# 检查是否有空值
df.isnull().sum()
age         0
sex         0
bmi         0
children    0
smoker      0
region      0
charges     0
dtype: int64
# 在散点图上绘制医疗费用收费和年龄的关系,色调为吸烟者plt.figure(figsize = (14,7))
sns.scatterplot(x=df['age'] ,y=df['charges'] ,hue=df['smoker'] ,palette = 'bright' ,s=50)
plt.xticks(color='red' ,size=12)
plt.yticks(color='red' ,size= 12)
plt.xlabel('AGE' ,color='purple' ,size=17)
plt.ylabel('CHARGES' ,color='purple' ,size=17);

# 绘制绘制医疗费用收费和BMI的散点图,色调为“吸烟者”plt.figure(figsize = (14,7))
sns.scatterplot(x=df['bmi'] ,y=df['charges'] ,hue=df['smoker'] ,palette = 'bright' ,s=50)
plt.xticks(color='red' ,size=12)
plt.yticks(color='red' ,size= 12)
plt.xlabel('BMI' ,color='purple' ,size=17)
plt.ylabel('CHARGES' ,color='purple' ,size=17);

df['region'].unique()
array(['southwest', 'southeast', 'northwest', 'northeast'], dtype=object)
# 检查不同地区的医疗费用关系
plt.figure(dpi=150)
sns.boxplot(x=df['region'] ,y=df['charges'] )
plt.xticks(color='red' ,size=12)
plt.yticks(color='red' ,size= 12)
plt.xlabel('REGION' ,color='purple' ,size=17)
plt.ylabel('CHARGES' ,color='purple' ,size=17);

# 检查费用分布
plt.figure(dpi=100)
sns.histplot(x=df['charges'] ,color='green')
plt.xticks(color='red' ,size=8)
plt.yticks(color='red' ,size= 8);

# 对所有分类列进行 one-hot 编码
df2 = pd.get_dummies(df ,drop_first = True)
df2.head()
agebmichildrenchargessex_malesmoker_yesregion_northwestregion_southeastregion_southwest
01927.900016884.9240001001
11833.77011725.5523010010
22833.00034449.4620010010
33322.705021984.4706110100
43228.88003866.8552010100
# 检查相关性
df2.corr()['charges']
age                 0.299008
bmi                 0.198341
children            0.067998
charges             1.000000
sex_male            0.057292
smoker_yes          0.787251
region_northwest   -0.039905
region_southeast    0.073982
region_southwest   -0.043210
Name: charges, dtype: float64
# 绘制上面的热图
plt.figure(dpi=160)
sns.heatmap(np.round(df2.corr() ,2) ,annot=True ,cmap='viridis');

使用 5 个不同模型进行建模实验

# 定义特征和标签
X = df2.drop('charges' ,axis=1)
y = df2['charges']
# 进行训练和测试分离
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
len(X_train) ,len(y_test)
(1070, 268)
# 进行一些预处理
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()scaled_X_train = scaler.fit_transform(X_train)
scaled_X_test = scaler.transform(X_test)

模型1:线性回归

from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(scaled_X_train ,y_train)

LinearRegression

LinearRegression()
# 检查性能
from sklearn.metrics import mean_squared_error ,r2_score
lr.score(scaled_X_test ,y_test)
0.7835929767120722
r2_score(y_test ,lr.predict(scaled_X_test))
0.7835929767120722

模型 2:随机森​​林模型

from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor(n_estimators = 140,criterion = 'squared_error',random_state = 42,n_jobs = -1)rf.fit(scaled_X_train,y_train)

RandomForestRegressor

RandomForestRegressor(n_estimators=140, n_jobs=-1, random_state=42)
forest_test_pred = rf.predict(scaled_X_test)
r2_score(y_pred = forest_test_pred ,y_true = y_test)
0.8650776528213561

所以分数从 0.78 提高到 0.87

模型 3:带有 GridSearchCV 的支持向量机

from sklearn.svm import SVR
from sklearn.model_selection import GridSearchCV
svr = SVR()
# 定义 gridsearchcv 的参数网格
param_grid = {'C':[0.001,0.01,0.1,0.5,1],'kernel':['linear','rbf','poly'],'gamma':['scale','auto'],'degree':[2,3,4],'epsilon':[0,0.01,0.1,0.5,1,2]}
grid = GridSearchCV(svr,param_grid=param_grid)
grid.fit(scaled_X_train,y_train)

# 检查最佳参数
grid.best_params_
{'C': 1, 'degree': 2, 'epsilon': 2, 'gamma': 'scale', 'kernel': 'linear'}
grid_preds = grid.predict(scaled_X_test)
r2_score(y_true = y_test ,y_pred=grid_preds)
0.019799220771840598

SVR 模型的性能非常差。猜测是出现了严重的过拟合

模型 4:GradientBoost 模型

from sklearn.ensemble import GradientBoostingRegressor
gb = GradientBoostingRegressor(random_state = 42)
gb.fit(scaled_X_train ,y_train)

GradientBoostingRegressor

GradientBoostingRegressor(random_state=42)
gb_preds = gb.predict(scaled_X_test)
r2_score(y_true = y_test ,y_pred = gb_preds)
0.8792571359795264

所以我们使用梯度提升模型得到了 0.88 的分数,这比之前的分数要高。

模型 5:密集神经网络

import tensorflow as tf
scaled_X_train.shape
(1070, 8)
import tensorflow as tf# Set the random seed for reproducibility
tf.random.set_seed(42)# Define the model
model = tf.keras.Sequential([tf.keras.layers.Dense(32, activation='relu'),  # First hidden layer with 32 neurons and ReLU activationtf.keras.layers.Dense(1)  # Output layer with 1 neuron (for regression)
])# Compile the model
model.compile(loss=tf.keras.losses.MeanAbsoluteError(),  # Using Mean Absolute Error for lossoptimizer=tf.keras.optimizers.Adam(learning_rate=0.1),  # Adam optimizer with a learning rate of 0.1metrics=['mae']  # Tracking Mean Absolute Error as a metric
)# Train the model
model.fit(scaled_X_train,y_train,epochs=500,validation_data=(scaled_X_test, y_test)
)
Epoch 1/500
34/34 [==============================] - 1s 5ms/step - loss: 13176.4053 - mae: 13176.4053 - val_loss: 12342.8604 - val_mae: 12342.8604
Epoch 2/500
34/34 [==============================] - 0s 1ms/step - loss: 11706.1855 - mae: 11706.1855 - val_loss: 9990.0645 - val_mae: 9990.0645
Epoch 3/500
34/34 [==============================] - 0s 2ms/step - loss: 8708.5283 - mae: 8708.5283 - val_loss: 6905.4297 - val_mae: 6905.4297
Epoch 4/500
34/34 [==============================] - 0s 2ms/step - loss: 5669.3076 - mae: 5669.3076 - val_loss: 4656.5684 - val_mae: 4656.5684
Epoch 5/500
34/34 [==============================] - 0s 2ms/step - loss: 4149.5723 - mae: 4149.5723 - val_loss: 3637.5278 - val_mae: 3637.5278
Epoch 6/500
34/34 [==============================] - 0s 2ms/step - loss: 3684.2610 - mae: 3684.2610 - val_loss: 3394.3816 - val_mae: 3394.3816
Epoch 7/500
34/34 [==============================] - 0s 2ms/step - loss: 3543.0925 - mae: 3543.0925 - val_loss: 3277.0593 - val_mae: 3277.0593
Epoch 8/500
34/34 [==============================] - 0s 2ms/step - loss: 3464.1858 - mae: 3464.1858 - val_loss: 3179.0710 - val_mae: 3179.0710
Epoch 9/500
34/34 [==============================] - 0s 2ms/step - loss: 3390.9805 - mae: 3390.9805 - val_loss: 3128.5288 - val_mae: 3128.5288
Epoch 10/500
34/34 [==============================] - 0s 2ms/step - loss: 3347.2905 - mae: 3347.2905 - val_loss: 3054.6538 - val_mae: 3054.6538
Epoch 11/500
34/34 [==============================] - 0s 2ms/step - loss: 3298.8059 - mae: 3298.8059 - val_loss: 3021.8582 - val_mae: 3021.8582
Epoch 12/500
34/34 [==============================] - 0s 2ms/step - loss: 3245.7239 - mae: 3245.7239 - val_loss: 2963.4739 - val_mae: 2963.4739
Epoch 13/500
34/34 [==============================] - 0s 2ms/step - loss: 3210.4692 - mae: 3210.4692 - val_loss: 2907.2910 - val_mae: 2907.2910
Epoch 14/500
34/34 [==============================] - 0s 2ms/step - loss: 3179.5813 - mae: 3179.5813 - val_loss: 2880.0723 - val_mae: 2880.0723
Epoch 15/500
34/34 [==============================] - 0s 2ms/step - loss: 3152.4485 - mae: 3152.4485 - val_loss: 2855.9231 - val_mae: 2855.9231
Epoch 16/500
34/34 [==============================] - 0s 2ms/step - loss: 3140.8130 - mae: 3140.8130 - val_loss: 2866.1743 - val_mae: 2866.1743
Epoch 17/500
34/34 [==============================] - 0s 2ms/step - loss: 3133.6399 - mae: 3133.6399 - val_loss: 2838.6018 - val_mae: 2838.6018
Epoch 18/500
34/34 [==============================] - 0s 2ms/step - loss: 3093.8535 - mae: 3093.8535 - val_loss: 2822.5027 - val_mae: 2822.5027
Epoch 19/500
34/34 [==============================] - 0s 2ms/step - loss: 3074.4148 - mae: 3074.4148 - val_loss: 2802.2068 - val_mae: 2802.2068
Epoch 20/500
34/34 [==============================] - 0s 2ms/step - loss: 3036.4634 - mae: 3036.4634 - val_loss: 2768.5417 - val_mae: 2768.5417
Epoch 21/500
34/34 [==============================] - 0s 2ms/step - loss: 3009.5781 - mae: 3009.5781 - val_loss: 2767.8345 - val_mae: 2767.8345
Epoch 22/500
34/34 [==============================] - 0s 2ms/step - loss: 2991.8489 - mae: 2991.8489 - val_loss: 2776.9192 - val_mae: 2776.9192
Epoch 23/500
34/34 [==============================] - 0s 2ms/step - loss: 2967.2141 - mae: 2967.2141 - val_loss: 2740.1831 - val_mae: 2740.1831
Epoch 24/500
34/34 [==============================] - 0s 1ms/step - loss: 2918.3477 - mae: 2918.3477 - val_loss: 2701.7727 - val_mae: 2701.7727
Epoch 25/500
34/34 [==============================] - 0s 2ms/step - loss: 2885.5771 - mae: 2885.5771 - val_loss: 2691.2104 - val_mae: 2691.2104
Epoch 26/500
34/34 [==============================] - 0s 2ms/step - loss: 2853.4263 - mae: 2853.4263 - val_loss: 2690.2424 - val_mae: 2690.2424
Epoch 27/500
34/34 [==============================] - 0s 2ms/step - loss: 2824.5645 - mae: 2824.5645 - val_loss: 2648.8665 - val_mae: 2648.8665
Epoch 28/500
34/34 [==============================] - 0s 2ms/step - loss: 2787.7375 - mae: 2787.7375 - val_loss: 2627.9719 - val_mae: 2627.9719
Epoch 29/500
34/34 [==============================] - 0s 2ms/step - loss: 2762.5017 - mae: 2762.5017 - val_loss: 2613.2471 - val_mae: 2613.2471
Epoch 30/500
34/34 [==============================] - 0s 2ms/step - loss: 2717.3730 - mae: 2717.3730 - val_loss: 2591.0627 - val_mae: 2591.0627
Epoch 31/500
34/34 [==============================] - 0s 2ms/step - loss: 2696.9280 - mae: 2696.9280 - val_loss: 2583.0713 - val_mae: 2583.0713
Epoch 32/500
34/34 [==============================] - 0s 2ms/step - loss: 2668.2810 - mae: 2668.2810 - val_loss: 2560.2952 - val_mae: 2560.2952
Epoch 33/500
34/34 [==============================] - 0s 2ms/step - loss: 2635.6670 - mae: 2635.6670 - val_loss: 2542.4531 - val_mae: 2542.4531
Epoch 34/500
34/34 [==============================] - 0s 2ms/step - loss: 2621.8315 - mae: 2621.8315 - val_loss: 2525.4246 - val_mae: 2525.4246
Epoch 35/500
34/34 [==============================] - 0s 2ms/step - loss: 2602.8113 - mae: 2602.8113 - val_loss: 2522.4045 - val_mae: 2522.4045
Epoch 36/500
34/34 [==============================] - 0s 2ms/step - loss: 2560.2109 - mae: 2560.2109 - val_loss: 2488.8569 - val_mae: 2488.8569
Epoch 37/500
34/34 [==============================] - 0s 2ms/step - loss: 2538.4377 - mae: 2538.4377 - val_loss: 2474.2083 - val_mae: 2474.2083
Epoch 38/500
34/34 [==============================] - 0s 2ms/step - loss: 2520.7141 - mae: 2520.7141 - val_loss: 2435.9792 - val_mae: 2435.9792
Epoch 39/500
34/34 [==============================] - 0s 2ms/step - loss: 2484.6331 - mae: 2484.6331 - val_loss: 2415.0652 - val_mae: 2415.0652
Epoch 40/500
34/34 [==============================] - 0s 2ms/step - loss: 2465.1812 - mae: 2465.1812 - val_loss: 2370.2437 - val_mae: 2370.2437
Epoch 41/500
34/34 [==============================] - 0s 2ms/step - loss: 2437.7688 - mae: 2437.7688 - val_loss: 2371.4500 - val_mae: 2371.4500
Epoch 42/500
34/34 [==============================] - 0s 2ms/step - loss: 2425.9814 - mae: 2425.9814 - val_loss: 2343.7275 - val_mae: 2343.7275
Epoch 43/500
34/34 [==============================] - 0s 2ms/step - loss: 2392.9536 - mae: 2392.9536 - val_loss: 2330.2480 - val_mae: 2330.2480
Epoch 44/500
34/34 [==============================] - 0s 2ms/step - loss: 2371.0847 - mae: 2371.0847 - val_loss: 2289.7070 - val_mae: 2289.7070
Epoch 45/500
34/34 [==============================] - 0s 2ms/step - loss: 2348.7854 - mae: 2348.7854 - val_loss: 2292.7617 - val_mae: 2292.7617
Epoch 46/500
34/34 [==============================] - 0s 2ms/step - loss: 2334.8552 - mae: 2334.8552 - val_loss: 2241.6716 - val_mae: 2241.6716
Epoch 47/500
34/34 [==============================] - 0s 2ms/step - loss: 2315.0535 - mae: 2315.0535 - val_loss: 2210.4521 - val_mae: 2210.4521
Epoch 48/500
34/34 [==============================] - 0s 2ms/step - loss: 2297.7964 - mae: 2297.7964 - val_loss: 2171.4700 - val_mae: 2171.4700
Epoch 49/500
34/34 [==============================] - 0s 2ms/step - loss: 2294.3506 - mae: 2294.3506 - val_loss: 2151.6238 - val_mae: 2151.6238
Epoch 50/500
34/34 [==============================] - 0s 2ms/step - loss: 2263.3362 - mae: 2263.3362 - val_loss: 2142.9990 - val_mae: 2142.9990
Epoch 51/500
34/34 [==============================] - 0s 2ms/step - loss: 2253.5146 - mae: 2253.5146 - val_loss: 2134.1323 - val_mae: 2134.1323
Epoch 52/500
34/34 [==============================] - 0s 1ms/step - loss: 2237.9785 - mae: 2237.9785 - val_loss: 2098.9661 - val_mae: 2098.9661
Epoch 53/500
34/34 [==============================] - 0s 2ms/step - loss: 2236.9548 - mae: 2236.9548 - val_loss: 2071.0901 - val_mae: 2071.0901
Epoch 54/500
34/34 [==============================] - 0s 2ms/step - loss: 2215.9924 - mae: 2215.9924 - val_loss: 2061.3196 - val_mae: 2061.3196
Epoch 55/500
34/34 [==============================] - 0s 2ms/step - loss: 2205.8298 - mae: 2205.8298 - val_loss: 2040.3530 - val_mae: 2040.3530
Epoch 56/500
34/34 [==============================] - 0s 2ms/step - loss: 2188.2505 - mae: 2188.2505 - val_loss: 2021.0121 - val_mae: 2021.0121
Epoch 57/500
34/34 [==============================] - 0s 2ms/step - loss: 2177.3682 - mae: 2177.3682 - val_loss: 2021.2423 - val_mae: 2021.2423
Epoch 58/500
34/34 [==============================] - 0s 2ms/step - loss: 2178.9595 - mae: 2178.9595 - val_loss: 2011.6056 - val_mae: 2011.6056
Epoch 59/500
34/34 [==============================] - 0s 2ms/step - loss: 2163.4875 - mae: 2163.4875 - val_loss: 1989.4083 - val_mae: 1989.4083
Epoch 60/500
34/34 [==============================] - 0s 2ms/step - loss: 2162.3979 - mae: 2162.3979 - val_loss: 1966.5223 - val_mae: 1966.5223
Epoch 61/500
34/34 [==============================] - 0s 2ms/step - loss: 2147.4280 - mae: 2147.4280 - val_loss: 1976.2264 - val_mae: 1976.2264
Epoch 62/500
34/34 [==============================] - 0s 2ms/step - loss: 2155.3154 - mae: 2155.3154 - val_loss: 1960.0067 - val_mae: 1960.0067
Epoch 63/500
34/34 [==============================] - 0s 2ms/step - loss: 2135.1248 - mae: 2135.1248 - val_loss: 1952.3442 - val_mae: 1952.3442
Epoch 64/500
34/34 [==============================] - 0s 2ms/step - loss: 2134.0422 - mae: 2134.0422 - val_loss: 1944.5605 - val_mae: 1944.5605
Epoch 65/500
34/34 [==============================] - 0s 1ms/step - loss: 2127.6821 - mae: 2127.6821 - val_loss: 1941.9708 - val_mae: 1941.9708
Epoch 66/500
34/34 [==============================] - 0s 2ms/step - loss: 2122.3645 - mae: 2122.3645 - val_loss: 1929.4570 - val_mae: 1929.4570
Epoch 67/500
34/34 [==============================] - 0s 2ms/step - loss: 2120.1699 - mae: 2120.1699 - val_loss: 1936.8811 - val_mae: 1936.8811
Epoch 68/500
34/34 [==============================] - 0s 1ms/step - loss: 2109.6860 - mae: 2109.6860 - val_loss: 1931.9760 - val_mae: 1931.9760
Epoch 69/500
34/34 [==============================] - 0s 2ms/step - loss: 2114.0178 - mae: 2114.0178 - val_loss: 1912.5884 - val_mae: 1912.5884
Epoch 70/500
34/34 [==============================] - 0s 1ms/step - loss: 2104.0676 - mae: 2104.0676 - val_loss: 1905.8671 - val_mae: 1905.8671
Epoch 71/500
34/34 [==============================] - 0s 1ms/step - loss: 2092.1143 - mae: 2092.1143 - val_loss: 1901.4152 - val_mae: 1901.4152
Epoch 72/500
34/34 [==============================] - 0s 2ms/step - loss: 2100.2505 - mae: 2100.2505 - val_loss: 1903.0378 - val_mae: 1903.0378
Epoch 73/500
34/34 [==============================] - 0s 2ms/step - loss: 2101.2200 - mae: 2101.2200 - val_loss: 1901.5217 - val_mae: 1901.5217
Epoch 74/500
34/34 [==============================] - 0s 2ms/step - loss: 2084.9080 - mae: 2084.9080 - val_loss: 1888.1274 - val_mae: 1888.1274
Epoch 75/500
34/34 [==============================] - 0s 1ms/step - loss: 2073.2085 - mae: 2073.2085 - val_loss: 1885.5505 - val_mae: 1885.5505
Epoch 76/500
34/34 [==============================] - 0s 2ms/step - loss: 2079.0083 - mae: 2079.0083 - val_loss: 1869.9961 - val_mae: 1869.9961
Epoch 77/500
34/34 [==============================] - 0s 2ms/step - loss: 2081.0576 - mae: 2081.0576 - val_loss: 1880.8708 - val_mae: 1880.8708
Epoch 78/500
34/34 [==============================] - 0s 2ms/step - loss: 2075.4822 - mae: 2075.4822 - val_loss: 1867.2734 - val_mae: 1867.2734
Epoch 79/500
34/34 [==============================] - 0s 2ms/step - loss: 2071.6575 - mae: 2071.6575 - val_loss: 1891.7242 - val_mae: 1891.7242
Epoch 80/500
34/34 [==============================] - 0s 2ms/step - loss: 2079.9980 - mae: 2079.9980 - val_loss: 1863.6963 - val_mae: 1863.6963
Epoch 81/500
34/34 [==============================] - 0s 2ms/step - loss: 2067.2991 - mae: 2067.2991 - val_loss: 1872.7144 - val_mae: 1872.7144
Epoch 82/500
34/34 [==============================] - 0s 1ms/step - loss: 2055.6555 - mae: 2055.6555 - val_loss: 1879.2584 - val_mae: 1879.2584
Epoch 83/500
34/34 [==============================] - 0s 2ms/step - loss: 2059.4839 - mae: 2059.4839 - val_loss: 1863.3885 - val_mae: 1863.3885
Epoch 84/500
34/34 [==============================] - 0s 2ms/step - loss: 2063.1194 - mae: 2063.1194 - val_loss: 1862.5278 - val_mae: 1862.5278
Epoch 85/500
34/34 [==============================] - 0s 2ms/step - loss: 2051.0049 - mae: 2051.0049 - val_loss: 1854.5962 - val_mae: 1854.5962
Epoch 86/500
34/34 [==============================] - 0s 2ms/step - loss: 2042.3267 - mae: 2042.3267 - val_loss: 1850.3087 - val_mae: 1850.3087
Epoch 87/500
34/34 [==============================] - 0s 2ms/step - loss: 2041.6899 - mae: 2041.6899 - val_loss: 1850.6119 - val_mae: 1850.6119
Epoch 88/500
34/34 [==============================] - 0s 2ms/step - loss: 2035.3190 - mae: 2035.3190 - val_loss: 1847.2694 - val_mae: 1847.2694
Epoch 89/500
34/34 [==============================] - 0s 2ms/step - loss: 2037.0938 - mae: 2037.0938 - val_loss: 1850.0952 - val_mae: 1850.0952
Epoch 90/500
34/34 [==============================] - 0s 2ms/step - loss: 2041.1196 - mae: 2041.1196 - val_loss: 1844.9628 - val_mae: 1844.9628
Epoch 91/500
34/34 [==============================] - 0s 2ms/step - loss: 2044.2196 - mae: 2044.2196 - val_loss: 1843.0162 - val_mae: 1843.0162
Epoch 92/500
34/34 [==============================] - 0s 2ms/step - loss: 2032.8231 - mae: 2032.8231 - val_loss: 1851.4753 - val_mae: 1851.4753
Epoch 93/500
34/34 [==============================] - 0s 2ms/step - loss: 2036.5299 - mae: 2036.5299 - val_loss: 1855.1908 - val_mae: 1855.1908
Epoch 94/500
34/34 [==============================] - 0s 1ms/step - loss: 2029.4299 - mae: 2029.4299 - val_loss: 1858.8723 - val_mae: 1858.8723
Epoch 95/500
34/34 [==============================] - 0s 2ms/step - loss: 2024.9934 - mae: 2024.9934 - val_loss: 1849.4526 - val_mae: 1849.4526
Epoch 96/500
34/34 [==============================] - 0s 2ms/step - loss: 2033.5105 - mae: 2033.5105 - val_loss: 1840.8606 - val_mae: 1840.8606
Epoch 97/500
34/34 [==============================] - 0s 1ms/step - loss: 2048.5264 - mae: 2048.5264 - val_loss: 1831.0789 - val_mae: 1831.0789
Epoch 98/500
34/34 [==============================] - 0s 2ms/step - loss: 2036.3689 - mae: 2036.3689 - val_loss: 1852.7601 - val_mae: 1852.7601
Epoch 99/500
34/34 [==============================] - 0s 2ms/step - loss: 2023.3348 - mae: 2023.3348 - val_loss: 1828.0614 - val_mae: 1828.0614
Epoch 100/500
34/34 [==============================] - 0s 2ms/step - loss: 2017.7542 - mae: 2017.7542 - val_loss: 1815.4932 - val_mae: 1815.4932
Epoch 101/500
34/34 [==============================] - 0s 2ms/step - loss: 2014.7932 - mae: 2014.7932 - val_loss: 1822.2697 - val_mae: 1822.2697
Epoch 102/500
34/34 [==============================] - 0s 1ms/step - loss: 2012.9108 - mae: 2012.9108 - val_loss: 1817.1342 - val_mae: 1817.1342
Epoch 103/500
34/34 [==============================] - 0s 2ms/step - loss: 2012.9425 - mae: 2012.9425 - val_loss: 1816.2031 - val_mae: 1816.2031
Epoch 104/500
34/34 [==============================] - 0s 2ms/step - loss: 2017.9021 - mae: 2017.9021 - val_loss: 1846.4427 - val_mae: 1846.4427
Epoch 105/500
34/34 [==============================] - 0s 2ms/step - loss: 2014.4573 - mae: 2014.4573 - val_loss: 1821.5594 - val_mae: 1821.5594
Epoch 106/500
34/34 [==============================] - 0s 2ms/step - loss: 2012.5148 - mae: 2012.5148 - val_loss: 1824.1171 - val_mae: 1824.1171
Epoch 107/500
34/34 [==============================] - 0s 2ms/step - loss: 2015.5453 - mae: 2015.5453 - val_loss: 1811.1664 - val_mae: 1811.1664
Epoch 108/500
34/34 [==============================] - 0s 2ms/step - loss: 2005.4918 - mae: 2005.4918 - val_loss: 1812.3279 - val_mae: 1812.3279
Epoch 109/500
34/34 [==============================] - 0s 2ms/step - loss: 2001.3566 - mae: 2001.3566 - val_loss: 1822.6973 - val_mae: 1822.6973
Epoch 110/500
34/34 [==============================] - 0s 2ms/step - loss: 2010.9276 - mae: 2010.9276 - val_loss: 1817.7332 - val_mae: 1817.7332
Epoch 111/500
34/34 [==============================] - 0s 2ms/step - loss: 2001.7743 - mae: 2001.7743 - val_loss: 1811.4060 - val_mae: 1811.4060
Epoch 112/500
34/34 [==============================] - 0s 2ms/step - loss: 2002.9131 - mae: 2002.9131 - val_loss: 1821.4413 - val_mae: 1821.4413
Epoch 113/500
34/34 [==============================] - 0s 2ms/step - loss: 2003.3796 - mae: 2003.3796 - val_loss: 1824.0438 - val_mae: 1824.0438
Epoch 114/500
34/34 [==============================] - 0s 2ms/step - loss: 2016.0397 - mae: 2016.0397 - val_loss: 1823.3734 - val_mae: 1823.3734
Epoch 115/500
34/34 [==============================] - 0s 2ms/step - loss: 2004.9606 - mae: 2004.9606 - val_loss: 1803.3007 - val_mae: 1803.3007
Epoch 116/500
34/34 [==============================] - 0s 2ms/step - loss: 2008.6638 - mae: 2008.6638 - val_loss: 1800.9580 - val_mae: 1800.9580
Epoch 117/500
34/34 [==============================] - 0s 2ms/step - loss: 2001.8729 - mae: 2001.8729 - val_loss: 1791.9836 - val_mae: 1791.9836
Epoch 118/500
34/34 [==============================] - 0s 2ms/step - loss: 1993.7715 - mae: 1993.7715 - val_loss: 1797.1489 - val_mae: 1797.1489
Epoch 119/500
34/34 [==============================] - 0s 2ms/step - loss: 1991.6925 - mae: 1991.6925 - val_loss: 1801.9685 - val_mae: 1801.9685
Epoch 120/500
34/34 [==============================] - 0s 2ms/step - loss: 2005.2185 - mae: 2005.2185 - val_loss: 1806.2285 - val_mae: 1806.2285
Epoch 121/500
34/34 [==============================] - 0s 2ms/step - loss: 1992.6122 - mae: 1992.6122 - val_loss: 1795.7297 - val_mae: 1795.7297
Epoch 122/500
34/34 [==============================] - 0s 2ms/step - loss: 1989.4568 - mae: 1989.4568 - val_loss: 1792.3977 - val_mae: 1792.3977
Epoch 123/500
34/34 [==============================] - 0s 2ms/step - loss: 1985.5287 - mae: 1985.5287 - val_loss: 1816.6318 - val_mae: 1816.6318
Epoch 124/500
34/34 [==============================] - 0s 2ms/step - loss: 2005.8525 - mae: 2005.8525 - val_loss: 1812.2037 - val_mae: 1812.2037
Epoch 125/500
34/34 [==============================] - 0s 2ms/step - loss: 1994.0787 - mae: 1994.0787 - val_loss: 1797.1824 - val_mae: 1797.1824
Epoch 126/500
34/34 [==============================] - 0s 2ms/step - loss: 1988.7498 - mae: 1988.7498 - val_loss: 1801.5994 - val_mae: 1801.5994
Epoch 127/500
34/34 [==============================] - 0s 2ms/step - loss: 1994.9095 - mae: 1994.9095 - val_loss: 1811.8732 - val_mae: 1811.8732
Epoch 128/500
34/34 [==============================] - 0s 2ms/step - loss: 1990.6432 - mae: 1990.6432 - val_loss: 1790.9241 - val_mae: 1790.9241
Epoch 129/500
34/34 [==============================] - 0s 2ms/step - loss: 1993.8073 - mae: 1993.8073 - val_loss: 1809.0693 - val_mae: 1809.0693
Epoch 130/500
34/34 [==============================] - 0s 2ms/step - loss: 1988.2024 - mae: 1988.2024 - val_loss: 1799.9777 - val_mae: 1799.9777
Epoch 131/500
34/34 [==============================] - 0s 2ms/step - loss: 1984.6715 - mae: 1984.6715 - val_loss: 1802.8118 - val_mae: 1802.8118
Epoch 132/500
34/34 [==============================] - 0s 2ms/step - loss: 1988.0992 - mae: 1988.0992 - val_loss: 1791.8558 - val_mae: 1791.8558
Epoch 133/500
34/34 [==============================] - 0s 2ms/step - loss: 1989.9736 - mae: 1989.9736 - val_loss: 1785.9014 - val_mae: 1785.9014
Epoch 134/500
34/34 [==============================] - 0s 2ms/step - loss: 1996.2953 - mae: 1996.2953 - val_loss: 1781.5219 - val_mae: 1781.5219
Epoch 135/500
34/34 [==============================] - 0s 2ms/step - loss: 1988.9187 - mae: 1988.9187 - val_loss: 1791.9681 - val_mae: 1791.9681
Epoch 136/500
34/34 [==============================] - 0s 2ms/step - loss: 1980.8845 - mae: 1980.8845 - val_loss: 1792.9158 - val_mae: 1792.9158
Epoch 137/500
34/34 [==============================] - 0s 2ms/step - loss: 1995.1309 - mae: 1995.1309 - val_loss: 1797.9642 - val_mae: 1797.9642
Epoch 138/500
34/34 [==============================] - 0s 2ms/step - loss: 1984.1794 - mae: 1984.1794 - val_loss: 1794.5872 - val_mae: 1794.5872
Epoch 139/500
34/34 [==============================] - 0s 2ms/step - loss: 1982.2208 - mae: 1982.2208 - val_loss: 1793.4797 - val_mae: 1793.4797
Epoch 140/500
34/34 [==============================] - 0s 1ms/step - loss: 1985.4689 - mae: 1985.4689 - val_loss: 1792.9102 - val_mae: 1792.9102
Epoch 141/500
34/34 [==============================] - 0s 2ms/step - loss: 1985.4965 - mae: 1985.4965 - val_loss: 1793.7250 - val_mae: 1793.7250
Epoch 142/500
34/34 [==============================] - 0s 2ms/step - loss: 1995.5189 - mae: 1995.5189 - val_loss: 1792.1943 - val_mae: 1792.1943
Epoch 143/500
34/34 [==============================] - 0s 2ms/step - loss: 1984.2916 - mae: 1984.2916 - val_loss: 1789.3123 - val_mae: 1789.3123
Epoch 144/500
34/34 [==============================] - 0s 2ms/step - loss: 1975.0759 - mae: 1975.0759 - val_loss: 1792.1858 - val_mae: 1792.1858
Epoch 145/500
34/34 [==============================] - 0s 2ms/step - loss: 1978.6841 - mae: 1978.6841 - val_loss: 1789.2256 - val_mae: 1789.2256
Epoch 146/500
34/34 [==============================] - 0s 1ms/step - loss: 1977.5038 - mae: 1977.5038 - val_loss: 1780.8389 - val_mae: 1780.8389
Epoch 147/500
34/34 [==============================] - 0s 2ms/step - loss: 1987.2664 - mae: 1987.2664 - val_loss: 1792.8644 - val_mae: 1792.8644
Epoch 148/500
34/34 [==============================] - 0s 2ms/step - loss: 1976.7812 - mae: 1976.7812 - val_loss: 1796.4983 - val_mae: 1796.4983
Epoch 149/500
34/34 [==============================] - 0s 2ms/step - loss: 1974.8413 - mae: 1974.8413 - val_loss: 1787.6670 - val_mae: 1787.6670
Epoch 150/500
34/34 [==============================] - 0s 2ms/step - loss: 1978.4220 - mae: 1978.4220 - val_loss: 1795.4137 - val_mae: 1795.4137
Epoch 151/500
34/34 [==============================] - 0s 2ms/step - loss: 1979.4327 - mae: 1979.4327 - val_loss: 1790.2787 - val_mae: 1790.2787
Epoch 152/500
34/34 [==============================] - 0s 1ms/step - loss: 1977.7789 - mae: 1977.7789 - val_loss: 1774.2340 - val_mae: 1774.2340
Epoch 153/500
34/34 [==============================] - 0s 2ms/step - loss: 1982.2012 - mae: 1982.2012 - val_loss: 1784.3153 - val_mae: 1784.3153
Epoch 154/500
34/34 [==============================] - 0s 2ms/step - loss: 1977.4806 - mae: 1977.4806 - val_loss: 1782.5403 - val_mae: 1782.5403
Epoch 155/500
34/34 [==============================] - 0s 2ms/step - loss: 1980.9225 - mae: 1980.9225 - val_loss: 1791.9736 - val_mae: 1791.9736
Epoch 156/500
34/34 [==============================] - 0s 2ms/step - loss: 1981.3085 - mae: 1981.3085 - val_loss: 1788.5519 - val_mae: 1788.5519
Epoch 157/500
34/34 [==============================] - 0s 2ms/step - loss: 1981.2551 - mae: 1981.2551 - val_loss: 1768.8878 - val_mae: 1768.8878
Epoch 158/500
34/34 [==============================] - 0s 2ms/step - loss: 1973.1549 - mae: 1973.1549 - val_loss: 1798.0594 - val_mae: 1798.0594
Epoch 159/500
34/34 [==============================] - 0s 2ms/step - loss: 1980.2050 - mae: 1980.2050 - val_loss: 1775.0919 - val_mae: 1775.0919
Epoch 160/500
34/34 [==============================] - 0s 2ms/step - loss: 1971.4470 - mae: 1971.4470 - val_loss: 1781.8694 - val_mae: 1781.8694
Epoch 161/500
34/34 [==============================] - 0s 2ms/step - loss: 1975.1182 - mae: 1975.1182 - val_loss: 1775.5975 - val_mae: 1775.5975
Epoch 162/500
34/34 [==============================] - 0s 2ms/step - loss: 1969.4803 - mae: 1969.4803 - val_loss: 1781.3888 - val_mae: 1781.3888
Epoch 163/500
34/34 [==============================] - 0s 2ms/step - loss: 1967.1493 - mae: 1967.1493 - val_loss: 1781.9633 - val_mae: 1781.9633
Epoch 164/500
34/34 [==============================] - 0s 2ms/step - loss: 1974.8502 - mae: 1974.8502 - val_loss: 1780.3650 - val_mae: 1780.3650
Epoch 165/500
34/34 [==============================] - 0s 2ms/step - loss: 1972.5902 - mae: 1972.5902 - val_loss: 1771.8502 - val_mae: 1771.8502
Epoch 166/500
34/34 [==============================] - 0s 2ms/step - loss: 1971.9954 - mae: 1971.9954 - val_loss: 1781.4761 - val_mae: 1781.4761
Epoch 167/500
34/34 [==============================] - 0s 2ms/step - loss: 1970.0887 - mae: 1970.0887 - val_loss: 1783.3815 - val_mae: 1783.3815
Epoch 168/500
34/34 [==============================] - 0s 2ms/step - loss: 1967.5521 - mae: 1967.5521 - val_loss: 1778.5927 - val_mae: 1778.5927
Epoch 169/500
34/34 [==============================] - 0s 2ms/step - loss: 1967.0444 - mae: 1967.0444 - val_loss: 1771.4957 - val_mae: 1771.4957
Epoch 170/500
34/34 [==============================] - 0s 2ms/step - loss: 1966.5867 - mae: 1966.5867 - val_loss: 1785.8175 - val_mae: 1785.8175
Epoch 171/500
34/34 [==============================] - 0s 1ms/step - loss: 1967.7477 - mae: 1967.7477 - val_loss: 1776.2269 - val_mae: 1776.2269
Epoch 172/500
34/34 [==============================] - 0s 2ms/step - loss: 1980.0281 - mae: 1980.0281 - val_loss: 1779.9388 - val_mae: 1779.9388
Epoch 173/500
34/34 [==============================] - 0s 2ms/step - loss: 1981.8927 - mae: 1981.8927 - val_loss: 1771.5815 - val_mae: 1771.5815
Epoch 174/500
34/34 [==============================] - 0s 2ms/step - loss: 1966.4998 - mae: 1966.4998 - val_loss: 1782.0991 - val_mae: 1782.0991
Epoch 175/500
34/34 [==============================] - 0s 2ms/step - loss: 1976.7661 - mae: 1976.7661 - val_loss: 1774.7715 - val_mae: 1774.7715
Epoch 176/500
34/34 [==============================] - 0s 2ms/step - loss: 1966.4243 - mae: 1966.4243 - val_loss: 1775.2882 - val_mae: 1775.2882
Epoch 177/500
34/34 [==============================] - 0s 2ms/step - loss: 1967.7278 - mae: 1967.7278 - val_loss: 1774.0293 - val_mae: 1774.0293
Epoch 178/500
34/34 [==============================] - 0s 2ms/step - loss: 1966.8129 - mae: 1966.8129 - val_loss: 1774.3683 - val_mae: 1774.3683
Epoch 179/500
34/34 [==============================] - 0s 2ms/step - loss: 1971.2717 - mae: 1971.2717 - val_loss: 1774.1532 - val_mae: 1774.1532
Epoch 180/500
34/34 [==============================] - 0s 2ms/step - loss: 1965.6360 - mae: 1965.6360 - val_loss: 1766.4706 - val_mae: 1766.4706
Epoch 181/500
34/34 [==============================] - 0s 2ms/step - loss: 1967.4757 - mae: 1967.4757 - val_loss: 1775.8031 - val_mae: 1775.8031
Epoch 182/500
34/34 [==============================] - 0s 2ms/step - loss: 1960.8469 - mae: 1960.8469 - val_loss: 1777.3994 - val_mae: 1777.3994
Epoch 183/500
34/34 [==============================] - 0s 2ms/step - loss: 1961.0070 - mae: 1961.0070 - val_loss: 1769.4930 - val_mae: 1769.4930
Epoch 184/500
34/34 [==============================] - 0s 2ms/step - loss: 1975.5460 - mae: 1975.5460 - val_loss: 1786.1698 - val_mae: 1786.1698
Epoch 185/500
34/34 [==============================] - 0s 2ms/step - loss: 1966.0946 - mae: 1966.0946 - val_loss: 1761.1935 - val_mae: 1761.1935
Epoch 186/500
34/34 [==============================] - 0s 2ms/step - loss: 1960.2603 - mae: 1960.2603 - val_loss: 1769.9578 - val_mae: 1769.9578
Epoch 187/500
34/34 [==============================] - 0s 2ms/step - loss: 1973.1697 - mae: 1973.1697 - val_loss: 1757.0441 - val_mae: 1757.0441
Epoch 188/500
34/34 [==============================] - 0s 2ms/step - loss: 1968.5486 - mae: 1968.5486 - val_loss: 1766.9186 - val_mae: 1766.9186
Epoch 189/500
34/34 [==============================] - 0s 2ms/step - loss: 1967.8101 - mae: 1967.8101 - val_loss: 1770.9064 - val_mae: 1770.9064
Epoch 190/500
34/34 [==============================] - 0s 2ms/step - loss: 1976.6902 - mae: 1976.6902 - val_loss: 1776.0175 - val_mae: 1776.0175
Epoch 191/500
34/34 [==============================] - 0s 2ms/step - loss: 1969.4918 - mae: 1969.4918 - val_loss: 1777.5186 - val_mae: 1777.5186
Epoch 192/500
34/34 [==============================] - 0s 2ms/step - loss: 1960.8390 - mae: 1960.8390 - val_loss: 1762.5614 - val_mae: 1762.5614
Epoch 193/500
34/34 [==============================] - 0s 2ms/step - loss: 1976.4841 - mae: 1976.4841 - val_loss: 1773.4581 - val_mae: 1773.4581
Epoch 194/500
34/34 [==============================] - 0s 2ms/step - loss: 1968.7488 - mae: 1968.7488 - val_loss: 1769.2513 - val_mae: 1769.2513
Epoch 195/500
34/34 [==============================] - 0s 2ms/step - loss: 1960.0731 - mae: 1960.0731 - val_loss: 1769.3701 - val_mae: 1769.3701
Epoch 196/500
34/34 [==============================] - 0s 2ms/step - loss: 1968.5825 - mae: 1968.5825 - val_loss: 1762.6217 - val_mae: 1762.6217
Epoch 197/500
34/34 [==============================] - 0s 2ms/step - loss: 1965.5475 - mae: 1965.5475 - val_loss: 1772.2786 - val_mae: 1772.2786
Epoch 198/500
34/34 [==============================] - 0s 2ms/step - loss: 1963.0095 - mae: 1963.0095 - val_loss: 1767.6793 - val_mae: 1767.6793
Epoch 199/500
34/34 [==============================] - 0s 2ms/step - loss: 1977.9890 - mae: 1977.9890 - val_loss: 1781.3022 - val_mae: 1781.3022
Epoch 200/500
34/34 [==============================] - 0s 2ms/step - loss: 1965.5640 - mae: 1965.5640 - val_loss: 1762.8400 - val_mae: 1762.8400
Epoch 201/500
34/34 [==============================] - 0s 2ms/step - loss: 1964.1094 - mae: 1964.1094 - val_loss: 1774.6151 - val_mae: 1774.6151
Epoch 202/500
34/34 [==============================] - 0s 2ms/step - loss: 1956.6323 - mae: 1956.6323 - val_loss: 1765.7267 - val_mae: 1765.7267
Epoch 203/500
34/34 [==============================] - 0s 2ms/step - loss: 1964.8213 - mae: 1964.8213 - val_loss: 1771.9376 - val_mae: 1771.9376
Epoch 204/500
34/34 [==============================] - 0s 2ms/step - loss: 1959.8395 - mae: 1959.8395 - val_loss: 1787.2118 - val_mae: 1787.2118
Epoch 205/500
34/34 [==============================] - 0s 2ms/step - loss: 1966.8627 - mae: 1966.8627 - val_loss: 1759.7816 - val_mae: 1759.7816
Epoch 206/500
34/34 [==============================] - 0s 2ms/step - loss: 1960.0481 - mae: 1960.0481 - val_loss: 1759.5378 - val_mae: 1759.5378
Epoch 207/500
34/34 [==============================] - 0s 2ms/step - loss: 1972.4121 - mae: 1972.4121 - val_loss: 1775.3069 - val_mae: 1775.3069
Epoch 208/500
34/34 [==============================] - 0s 2ms/step - loss: 1969.1094 - mae: 1969.1094 - val_loss: 1771.8595 - val_mae: 1771.8595
Epoch 209/500
34/34 [==============================] - 0s 2ms/step - loss: 1965.4229 - mae: 1965.4229 - val_loss: 1774.4146 - val_mae: 1774.4146
Epoch 210/500
34/34 [==============================] - 0s 2ms/step - loss: 1961.6182 - mae: 1961.6182 - val_loss: 1758.3811 - val_mae: 1758.3811
Epoch 211/500
34/34 [==============================] - 0s 2ms/step - loss: 1961.2460 - mae: 1961.2460 - val_loss: 1765.3663 - val_mae: 1765.3663
Epoch 212/500
34/34 [==============================] - 0s 2ms/step - loss: 1959.8534 - mae: 1959.8534 - val_loss: 1769.8109 - val_mae: 1769.8109
Epoch 213/500
34/34 [==============================] - 0s 2ms/step - loss: 1965.4561 - mae: 1965.4561 - val_loss: 1755.5190 - val_mae: 1755.5190
Epoch 214/500
34/34 [==============================] - 0s 2ms/step - loss: 1956.2323 - mae: 1956.2323 - val_loss: 1758.1731 - val_mae: 1758.1731
Epoch 215/500
34/34 [==============================] - 0s 2ms/step - loss: 1957.1764 - mae: 1957.1764 - val_loss: 1760.1693 - val_mae: 1760.1693
Epoch 216/500
34/34 [==============================] - 0s 2ms/step - loss: 1966.5322 - mae: 1966.5322 - val_loss: 1748.7299 - val_mae: 1748.7299
Epoch 217/500
34/34 [==============================] - 0s 2ms/step - loss: 1961.7247 - mae: 1961.7247 - val_loss: 1761.4476 - val_mae: 1761.4476
Epoch 218/500
34/34 [==============================] - 0s 1ms/step - loss: 1964.3876 - mae: 1964.3876 - val_loss: 1776.0294 - val_mae: 1776.0294
Epoch 219/500
34/34 [==============================] - 0s 2ms/step - loss: 1966.7490 - mae: 1966.7490 - val_loss: 1761.2290 - val_mae: 1761.2290
Epoch 220/500
34/34 [==============================] - 0s 2ms/step - loss: 1963.3037 - mae: 1963.3037 - val_loss: 1764.5389 - val_mae: 1764.5389
Epoch 221/500
34/34 [==============================] - 0s 2ms/step - loss: 1956.0612 - mae: 1956.0612 - val_loss: 1765.7604 - val_mae: 1765.7604
Epoch 222/500
34/34 [==============================] - 0s 2ms/step - loss: 1959.6335 - mae: 1959.6335 - val_loss: 1765.8113 - val_mae: 1765.8113
Epoch 223/500
34/34 [==============================] - 0s 2ms/step - loss: 1964.8103 - mae: 1964.8103 - val_loss: 1758.9226 - val_mae: 1758.9226
Epoch 224/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.9744 - mae: 1953.9744 - val_loss: 1761.1431 - val_mae: 1761.1431
Epoch 225/500
34/34 [==============================] - 0s 2ms/step - loss: 1956.5897 - mae: 1956.5897 - val_loss: 1770.0221 - val_mae: 1770.0221
Epoch 226/500
34/34 [==============================] - 0s 2ms/step - loss: 1959.6388 - mae: 1959.6388 - val_loss: 1771.6255 - val_mae: 1771.6255
Epoch 227/500
34/34 [==============================] - 0s 2ms/step - loss: 1957.5343 - mae: 1957.5343 - val_loss: 1759.5389 - val_mae: 1759.5389
Epoch 228/500
34/34 [==============================] - 0s 2ms/step - loss: 1955.2158 - mae: 1955.2158 - val_loss: 1760.0000 - val_mae: 1760.0000
Epoch 229/500
34/34 [==============================] - 0s 2ms/step - loss: 1950.5652 - mae: 1950.5652 - val_loss: 1769.1490 - val_mae: 1769.1490
Epoch 230/500
34/34 [==============================] - 0s 2ms/step - loss: 1972.5710 - mae: 1972.5710 - val_loss: 1782.5632 - val_mae: 1782.5632
Epoch 231/500
34/34 [==============================] - 0s 2ms/step - loss: 1969.8538 - mae: 1969.8538 - val_loss: 1766.4808 - val_mae: 1766.4808
Epoch 232/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.6958 - mae: 1958.6958 - val_loss: 1768.9506 - val_mae: 1768.9506
Epoch 233/500
34/34 [==============================] - 0s 2ms/step - loss: 1969.3577 - mae: 1969.3577 - val_loss: 1774.3427 - val_mae: 1774.3427
Epoch 234/500
34/34 [==============================] - 0s 2ms/step - loss: 1969.5005 - mae: 1969.5005 - val_loss: 1765.2805 - val_mae: 1765.2805
Epoch 235/500
34/34 [==============================] - 0s 2ms/step - loss: 1959.5685 - mae: 1959.5685 - val_loss: 1757.3914 - val_mae: 1757.3914
Epoch 236/500
34/34 [==============================] - 0s 2ms/step - loss: 1955.8185 - mae: 1955.8185 - val_loss: 1767.4189 - val_mae: 1767.4189
Epoch 237/500
34/34 [==============================] - 0s 2ms/step - loss: 1961.3993 - mae: 1961.3993 - val_loss: 1762.3055 - val_mae: 1762.3055
Epoch 238/500
34/34 [==============================] - 0s 2ms/step - loss: 1957.5317 - mae: 1957.5317 - val_loss: 1760.3268 - val_mae: 1760.3268
Epoch 239/500
34/34 [==============================] - 0s 1ms/step - loss: 1957.4944 - mae: 1957.4944 - val_loss: 1763.0468 - val_mae: 1763.0468
Epoch 240/500
34/34 [==============================] - 0s 2ms/step - loss: 1977.7267 - mae: 1977.7267 - val_loss: 1763.8022 - val_mae: 1763.8022
Epoch 241/500
34/34 [==============================] - 0s 2ms/step - loss: 1980.8425 - mae: 1980.8425 - val_loss: 1765.0255 - val_mae: 1765.0255
Epoch 242/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.3900 - mae: 1958.3900 - val_loss: 1755.1130 - val_mae: 1755.1130
Epoch 243/500
34/34 [==============================] - 0s 2ms/step - loss: 1961.3809 - mae: 1961.3809 - val_loss: 1763.5626 - val_mae: 1763.5626
Epoch 244/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.8789 - mae: 1958.8789 - val_loss: 1752.8175 - val_mae: 1752.8175
Epoch 245/500
34/34 [==============================] - 0s 2ms/step - loss: 1963.3140 - mae: 1963.3140 - val_loss: 1769.4661 - val_mae: 1769.4661
Epoch 246/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.8228 - mae: 1958.8228 - val_loss: 1757.4446 - val_mae: 1757.4446
Epoch 247/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.3497 - mae: 1958.3497 - val_loss: 1769.2129 - val_mae: 1769.2129
Epoch 248/500
34/34 [==============================] - 0s 2ms/step - loss: 1956.8246 - mae: 1956.8246 - val_loss: 1754.8088 - val_mae: 1754.8088
Epoch 249/500
34/34 [==============================] - 0s 2ms/step - loss: 1962.1644 - mae: 1962.1644 - val_loss: 1757.5533 - val_mae: 1757.5533
Epoch 250/500
34/34 [==============================] - 0s 2ms/step - loss: 1957.9523 - mae: 1957.9523 - val_loss: 1770.5831 - val_mae: 1770.5831
Epoch 251/500
34/34 [==============================] - 0s 2ms/step - loss: 1962.0795 - mae: 1962.0795 - val_loss: 1750.0560 - val_mae: 1750.0560
Epoch 252/500
34/34 [==============================] - 0s 2ms/step - loss: 1968.0094 - mae: 1968.0094 - val_loss: 1773.1727 - val_mae: 1773.1727
Epoch 253/500
34/34 [==============================] - 0s 2ms/step - loss: 1963.5264 - mae: 1963.5264 - val_loss: 1772.5731 - val_mae: 1772.5731
Epoch 254/500
34/34 [==============================] - 0s 2ms/step - loss: 1959.1318 - mae: 1959.1318 - val_loss: 1770.7881 - val_mae: 1770.7881
Epoch 255/500
34/34 [==============================] - 0s 2ms/step - loss: 1959.7399 - mae: 1959.7399 - val_loss: 1771.9459 - val_mae: 1771.9459
Epoch 256/500
34/34 [==============================] - 0s 2ms/step - loss: 1969.7211 - mae: 1969.7211 - val_loss: 1770.5940 - val_mae: 1770.5940
Epoch 257/500
34/34 [==============================] - 0s 2ms/step - loss: 1951.1825 - mae: 1951.1825 - val_loss: 1764.4368 - val_mae: 1764.4368
Epoch 258/500
34/34 [==============================] - 0s 2ms/step - loss: 1960.7878 - mae: 1960.7878 - val_loss: 1754.7833 - val_mae: 1754.7833
Epoch 259/500
34/34 [==============================] - 0s 2ms/step - loss: 1966.8428 - mae: 1966.8428 - val_loss: 1758.1840 - val_mae: 1758.1840
Epoch 260/500
34/34 [==============================] - 0s 2ms/step - loss: 1965.6685 - mae: 1965.6685 - val_loss: 1769.8696 - val_mae: 1769.8696
Epoch 261/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.3458 - mae: 1958.3458 - val_loss: 1769.6771 - val_mae: 1769.6771
Epoch 262/500
34/34 [==============================] - 0s 2ms/step - loss: 1957.6326 - mae: 1957.6326 - val_loss: 1764.7932 - val_mae: 1764.7932
Epoch 263/500
34/34 [==============================] - 0s 2ms/step - loss: 1959.2800 - mae: 1959.2800 - val_loss: 1783.8472 - val_mae: 1783.8472
Epoch 264/500
34/34 [==============================] - 0s 2ms/step - loss: 1962.0381 - mae: 1962.0381 - val_loss: 1773.7986 - val_mae: 1773.7986
Epoch 265/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.3545 - mae: 1958.3545 - val_loss: 1766.7994 - val_mae: 1766.7994
Epoch 266/500
34/34 [==============================] - 0s 2ms/step - loss: 1961.2140 - mae: 1961.2140 - val_loss: 1771.8352 - val_mae: 1771.8352
Epoch 267/500
34/34 [==============================] - 0s 2ms/step - loss: 1969.5743 - mae: 1969.5743 - val_loss: 1766.3003 - val_mae: 1766.3003
Epoch 268/500
34/34 [==============================] - 0s 2ms/step - loss: 1955.3326 - mae: 1955.3326 - val_loss: 1757.1107 - val_mae: 1757.1107
Epoch 269/500
34/34 [==============================] - 0s 2ms/step - loss: 1955.2692 - mae: 1955.2692 - val_loss: 1765.9857 - val_mae: 1765.9857
Epoch 270/500
34/34 [==============================] - 0s 2ms/step - loss: 1959.2644 - mae: 1959.2644 - val_loss: 1759.9711 - val_mae: 1759.9711
Epoch 271/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.1543 - mae: 1953.1543 - val_loss: 1766.8632 - val_mae: 1766.8632
Epoch 272/500
34/34 [==============================] - 0s 2ms/step - loss: 1968.7771 - mae: 1968.7771 - val_loss: 1764.6088 - val_mae: 1764.6088
Epoch 273/500
34/34 [==============================] - 0s 2ms/step - loss: 1968.1626 - mae: 1968.1626 - val_loss: 1754.2203 - val_mae: 1754.2203
Epoch 274/500
34/34 [==============================] - 0s 2ms/step - loss: 1957.8226 - mae: 1957.8226 - val_loss: 1763.2904 - val_mae: 1763.2904
Epoch 275/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.6366 - mae: 1953.6366 - val_loss: 1751.8658 - val_mae: 1751.8658
Epoch 276/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.2917 - mae: 1958.2917 - val_loss: 1769.1542 - val_mae: 1769.1542
Epoch 277/500
34/34 [==============================] - 0s 2ms/step - loss: 1973.9141 - mae: 1973.9141 - val_loss: 1774.1117 - val_mae: 1774.1117
Epoch 278/500
34/34 [==============================] - 0s 2ms/step - loss: 1957.1049 - mae: 1957.1049 - val_loss: 1765.9230 - val_mae: 1765.9230
Epoch 279/500
34/34 [==============================] - 0s 2ms/step - loss: 1967.5278 - mae: 1967.5278 - val_loss: 1770.7007 - val_mae: 1770.7007
Epoch 280/500
34/34 [==============================] - 0s 2ms/step - loss: 1950.8138 - mae: 1950.8138 - val_loss: 1765.4844 - val_mae: 1765.4844
Epoch 281/500
34/34 [==============================] - 0s 2ms/step - loss: 1955.8281 - mae: 1955.8281 - val_loss: 1766.1042 - val_mae: 1766.1042
Epoch 282/500
34/34 [==============================] - 0s 2ms/step - loss: 1961.5582 - mae: 1961.5582 - val_loss: 1762.7716 - val_mae: 1762.7716
Epoch 283/500
34/34 [==============================] - 0s 2ms/step - loss: 1954.2568 - mae: 1954.2568 - val_loss: 1763.8444 - val_mae: 1763.8444
Epoch 284/500
34/34 [==============================] - 0s 2ms/step - loss: 1957.2937 - mae: 1957.2937 - val_loss: 1756.2458 - val_mae: 1756.2458
Epoch 285/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.0532 - mae: 1958.0532 - val_loss: 1766.0789 - val_mae: 1766.0789
Epoch 286/500
34/34 [==============================] - 0s 2ms/step - loss: 1949.5929 - mae: 1949.5929 - val_loss: 1761.2052 - val_mae: 1761.2052
Epoch 287/500
34/34 [==============================] - 0s 2ms/step - loss: 1957.3927 - mae: 1957.3927 - val_loss: 1760.6901 - val_mae: 1760.6901
Epoch 288/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.8138 - mae: 1953.8138 - val_loss: 1764.0536 - val_mae: 1764.0536
Epoch 289/500
34/34 [==============================] - 0s 2ms/step - loss: 1954.3557 - mae: 1954.3557 - val_loss: 1760.0659 - val_mae: 1760.0659
Epoch 290/500
34/34 [==============================] - 0s 2ms/step - loss: 1951.7838 - mae: 1951.7838 - val_loss: 1767.5074 - val_mae: 1767.5074
Epoch 291/500
34/34 [==============================] - 0s 2ms/step - loss: 1957.6080 - mae: 1957.6080 - val_loss: 1758.7362 - val_mae: 1758.7362
Epoch 292/500
34/34 [==============================] - 0s 1ms/step - loss: 1956.8254 - mae: 1956.8254 - val_loss: 1761.5820 - val_mae: 1761.5820
Epoch 293/500
34/34 [==============================] - 0s 2ms/step - loss: 1954.8625 - mae: 1954.8625 - val_loss: 1769.0343 - val_mae: 1769.0343
Epoch 294/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.7103 - mae: 1958.7103 - val_loss: 1767.7207 - val_mae: 1767.7207
Epoch 295/500
34/34 [==============================] - 0s 2ms/step - loss: 1962.3280 - mae: 1962.3280 - val_loss: 1765.2023 - val_mae: 1765.2023
Epoch 296/500
34/34 [==============================] - 0s 2ms/step - loss: 1963.1007 - mae: 1963.1007 - val_loss: 1763.6494 - val_mae: 1763.6494
Epoch 297/500
34/34 [==============================] - 0s 2ms/step - loss: 1959.1455 - mae: 1959.1455 - val_loss: 1754.1744 - val_mae: 1754.1744
Epoch 298/500
34/34 [==============================] - 0s 2ms/step - loss: 1952.9417 - mae: 1952.9417 - val_loss: 1759.1855 - val_mae: 1759.1855
Epoch 299/500
34/34 [==============================] - 0s 2ms/step - loss: 1964.5503 - mae: 1964.5503 - val_loss: 1771.1095 - val_mae: 1771.1095
Epoch 300/500
34/34 [==============================] - 0s 2ms/step - loss: 1965.7643 - mae: 1965.7643 - val_loss: 1768.7195 - val_mae: 1768.7195
Epoch 301/500
34/34 [==============================] - 0s 2ms/step - loss: 1956.4481 - mae: 1956.4481 - val_loss: 1758.2565 - val_mae: 1758.2565
Epoch 302/500
34/34 [==============================] - 0s 2ms/step - loss: 1950.8484 - mae: 1950.8484 - val_loss: 1754.2070 - val_mae: 1754.2070
Epoch 303/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.8726 - mae: 1953.8726 - val_loss: 1764.6080 - val_mae: 1764.6080
Epoch 304/500
34/34 [==============================] - 0s 2ms/step - loss: 1963.4065 - mae: 1963.4065 - val_loss: 1761.6327 - val_mae: 1761.6327
Epoch 305/500
34/34 [==============================] - 0s 2ms/step - loss: 1959.3087 - mae: 1959.3087 - val_loss: 1753.7297 - val_mae: 1753.7297
Epoch 306/500
34/34 [==============================] - 0s 2ms/step - loss: 1954.4009 - mae: 1954.4009 - val_loss: 1755.5059 - val_mae: 1755.5059
Epoch 307/500
34/34 [==============================] - 0s 2ms/step - loss: 1956.5096 - mae: 1956.5096 - val_loss: 1754.2982 - val_mae: 1754.2982
Epoch 308/500
34/34 [==============================] - 0s 2ms/step - loss: 1949.6779 - mae: 1949.6779 - val_loss: 1771.6564 - val_mae: 1771.6564
Epoch 309/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.1182 - mae: 1958.1182 - val_loss: 1754.2281 - val_mae: 1754.2281
Epoch 310/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.8036 - mae: 1953.8036 - val_loss: 1761.2064 - val_mae: 1761.2064
Epoch 311/500
34/34 [==============================] - 0s 2ms/step - loss: 1950.8374 - mae: 1950.8374 - val_loss: 1766.2916 - val_mae: 1766.2916
Epoch 312/500
34/34 [==============================] - 0s 2ms/step - loss: 1951.4978 - mae: 1951.4978 - val_loss: 1751.0413 - val_mae: 1751.0413
Epoch 313/500
34/34 [==============================] - 0s 2ms/step - loss: 1951.3518 - mae: 1951.3518 - val_loss: 1755.6367 - val_mae: 1755.6367
Epoch 314/500
34/34 [==============================] - 0s 2ms/step - loss: 1949.1110 - mae: 1949.1110 - val_loss: 1751.0707 - val_mae: 1751.0707
Epoch 315/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.4119 - mae: 1953.4119 - val_loss: 1758.8411 - val_mae: 1758.8411
Epoch 316/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.6378 - mae: 1953.6378 - val_loss: 1752.4923 - val_mae: 1752.4923
Epoch 317/500
34/34 [==============================] - 0s 2ms/step - loss: 1962.7073 - mae: 1962.7073 - val_loss: 1758.3711 - val_mae: 1758.3711
Epoch 318/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.1427 - mae: 1958.1427 - val_loss: 1754.0049 - val_mae: 1754.0049
Epoch 319/500
34/34 [==============================] - 0s 2ms/step - loss: 1959.0283 - mae: 1959.0283 - val_loss: 1763.0295 - val_mae: 1763.0295
Epoch 320/500
34/34 [==============================] - 0s 2ms/step - loss: 1962.1799 - mae: 1962.1799 - val_loss: 1757.9574 - val_mae: 1757.9574
Epoch 321/500
34/34 [==============================] - 0s 2ms/step - loss: 1967.6014 - mae: 1967.6014 - val_loss: 1754.3242 - val_mae: 1754.3242
Epoch 322/500
34/34 [==============================] - 0s 2ms/step - loss: 1954.2101 - mae: 1954.2101 - val_loss: 1755.9860 - val_mae: 1755.9860
Epoch 323/500
34/34 [==============================] - 0s 2ms/step - loss: 1957.6353 - mae: 1957.6353 - val_loss: 1748.1429 - val_mae: 1748.1429
Epoch 324/500
34/34 [==============================] - 0s 2ms/step - loss: 1965.8748 - mae: 1965.8748 - val_loss: 1750.5398 - val_mae: 1750.5398
Epoch 325/500
34/34 [==============================] - 0s 2ms/step - loss: 1949.0470 - mae: 1949.0470 - val_loss: 1764.1530 - val_mae: 1764.1530
Epoch 326/500
34/34 [==============================] - 0s 2ms/step - loss: 1952.1329 - mae: 1952.1329 - val_loss: 1762.7769 - val_mae: 1762.7769
Epoch 327/500
34/34 [==============================] - 0s 2ms/step - loss: 1951.0535 - mae: 1951.0535 - val_loss: 1769.8868 - val_mae: 1769.8868
Epoch 328/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.4520 - mae: 1958.4520 - val_loss: 1764.0299 - val_mae: 1764.0299
Epoch 329/500
34/34 [==============================] - 0s 2ms/step - loss: 1961.4423 - mae: 1961.4423 - val_loss: 1763.5717 - val_mae: 1763.5715
Epoch 330/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.9846 - mae: 1953.9846 - val_loss: 1768.4126 - val_mae: 1768.4126
Epoch 331/500
34/34 [==============================] - 0s 2ms/step - loss: 1951.3615 - mae: 1951.3615 - val_loss: 1757.0254 - val_mae: 1757.0254
Epoch 332/500
34/34 [==============================] - 0s 2ms/step - loss: 1954.7188 - mae: 1954.7188 - val_loss: 1762.9642 - val_mae: 1762.9642
Epoch 333/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.1290 - mae: 1953.1290 - val_loss: 1762.4924 - val_mae: 1762.4924
Epoch 334/500
34/34 [==============================] - 0s 2ms/step - loss: 1951.4161 - mae: 1951.4161 - val_loss: 1757.6155 - val_mae: 1757.6155
Epoch 335/500
34/34 [==============================] - 0s 1ms/step - loss: 1952.3960 - mae: 1952.3960 - val_loss: 1764.6984 - val_mae: 1764.6984
Epoch 336/500
34/34 [==============================] - 0s 2ms/step - loss: 1950.7646 - mae: 1950.7646 - val_loss: 1772.4570 - val_mae: 1772.4570
Epoch 337/500
34/34 [==============================] - 0s 2ms/step - loss: 1955.0762 - mae: 1955.0762 - val_loss: 1770.7056 - val_mae: 1770.7056
Epoch 338/500
34/34 [==============================] - 0s 2ms/step - loss: 1959.9214 - mae: 1959.9214 - val_loss: 1766.1273 - val_mae: 1766.1272
Epoch 339/500
34/34 [==============================] - 0s 2ms/step - loss: 1955.8682 - mae: 1955.8682 - val_loss: 1746.8082 - val_mae: 1746.8082
Epoch 340/500
34/34 [==============================] - 0s 2ms/step - loss: 1948.0269 - mae: 1948.0269 - val_loss: 1759.6322 - val_mae: 1759.6322
Epoch 341/500
34/34 [==============================] - 0s 2ms/step - loss: 1949.8123 - mae: 1949.8123 - val_loss: 1751.2783 - val_mae: 1751.2783
Epoch 342/500
34/34 [==============================] - 0s 2ms/step - loss: 1952.0177 - mae: 1952.0177 - val_loss: 1751.9829 - val_mae: 1751.9829
Epoch 343/500
34/34 [==============================] - 0s 2ms/step - loss: 1955.0615 - mae: 1955.0615 - val_loss: 1761.2970 - val_mae: 1761.2970
Epoch 344/500
34/34 [==============================] - 0s 1ms/step - loss: 1953.7709 - mae: 1953.7709 - val_loss: 1776.7866 - val_mae: 1776.7866
Epoch 345/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.2633 - mae: 1958.2633 - val_loss: 1757.1514 - val_mae: 1757.1514
Epoch 346/500
34/34 [==============================] - 0s 2ms/step - loss: 1954.7467 - mae: 1954.7467 - val_loss: 1754.1384 - val_mae: 1754.1384
Epoch 347/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.5950 - mae: 1953.5950 - val_loss: 1769.6234 - val_mae: 1769.6234
Epoch 348/500
34/34 [==============================] - 0s 2ms/step - loss: 1962.7493 - mae: 1962.7493 - val_loss: 1763.6633 - val_mae: 1763.6633
Epoch 349/500
34/34 [==============================] - 0s 2ms/step - loss: 1948.9203 - mae: 1948.9203 - val_loss: 1761.1244 - val_mae: 1761.1244
Epoch 350/500
34/34 [==============================] - 0s 2ms/step - loss: 1972.8507 - mae: 1972.8507 - val_loss: 1777.9928 - val_mae: 1777.9928
Epoch 351/500
34/34 [==============================] - 0s 2ms/step - loss: 1961.0935 - mae: 1961.0935 - val_loss: 1753.1858 - val_mae: 1753.1858
Epoch 352/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.9105 - mae: 1958.9105 - val_loss: 1763.2803 - val_mae: 1763.2803
Epoch 353/500
34/34 [==============================] - 0s 2ms/step - loss: 1946.5043 - mae: 1946.5043 - val_loss: 1754.3450 - val_mae: 1754.3450
Epoch 354/500
34/34 [==============================] - 0s 2ms/step - loss: 1949.7681 - mae: 1949.7681 - val_loss: 1745.9467 - val_mae: 1745.9467
Epoch 355/500
34/34 [==============================] - 0s 2ms/step - loss: 1946.6383 - mae: 1946.6383 - val_loss: 1757.6488 - val_mae: 1757.6488
Epoch 356/500
34/34 [==============================] - 0s 2ms/step - loss: 1950.1432 - mae: 1950.1432 - val_loss: 1752.2520 - val_mae: 1752.2520
Epoch 357/500
34/34 [==============================] - 0s 2ms/step - loss: 1949.4932 - mae: 1949.4932 - val_loss: 1758.4166 - val_mae: 1758.4166
Epoch 358/500
34/34 [==============================] - 0s 2ms/step - loss: 1951.7157 - mae: 1951.7157 - val_loss: 1784.3848 - val_mae: 1784.3848
Epoch 359/500
34/34 [==============================] - 0s 2ms/step - loss: 1949.7473 - mae: 1949.7473 - val_loss: 1761.4342 - val_mae: 1761.4342
Epoch 360/500
34/34 [==============================] - 0s 2ms/step - loss: 1956.2291 - mae: 1956.2291 - val_loss: 1747.1814 - val_mae: 1747.1814
Epoch 361/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.1675 - mae: 1953.1675 - val_loss: 1754.5613 - val_mae: 1754.5613
Epoch 362/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.4589 - mae: 1953.4589 - val_loss: 1761.6952 - val_mae: 1761.6952
Epoch 363/500
34/34 [==============================] - 0s 2ms/step - loss: 1976.0000 - mae: 1976.0000 - val_loss: 1744.4117 - val_mae: 1744.4117
Epoch 364/500
34/34 [==============================] - 0s 2ms/step - loss: 1959.0414 - mae: 1959.0414 - val_loss: 1762.1742 - val_mae: 1762.1742
Epoch 365/500
34/34 [==============================] - 0s 2ms/step - loss: 1949.8511 - mae: 1949.8511 - val_loss: 1758.6908 - val_mae: 1758.6908
Epoch 366/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.3275 - mae: 1953.3275 - val_loss: 1758.0052 - val_mae: 1758.0052
Epoch 367/500
34/34 [==============================] - 0s 2ms/step - loss: 1950.8618 - mae: 1950.8618 - val_loss: 1744.1410 - val_mae: 1744.1410
Epoch 368/500
34/34 [==============================] - 0s 2ms/step - loss: 1972.1248 - mae: 1972.1248 - val_loss: 1772.6183 - val_mae: 1772.6183
Epoch 369/500
34/34 [==============================] - 0s 2ms/step - loss: 1956.9573 - mae: 1956.9573 - val_loss: 1759.3527 - val_mae: 1759.3527
Epoch 370/500
34/34 [==============================] - 0s 2ms/step - loss: 1955.5968 - mae: 1955.5968 - val_loss: 1765.9628 - val_mae: 1765.9628
Epoch 371/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.3209 - mae: 1958.3209 - val_loss: 1763.1091 - val_mae: 1763.1091
Epoch 372/500
34/34 [==============================] - 0s 2ms/step - loss: 1947.7278 - mae: 1947.7278 - val_loss: 1751.5487 - val_mae: 1751.5487
Epoch 373/500
34/34 [==============================] - 0s 2ms/step - loss: 1951.7825 - mae: 1951.7825 - val_loss: 1762.3896 - val_mae: 1762.3896
Epoch 374/500
34/34 [==============================] - 0s 2ms/step - loss: 1954.2893 - mae: 1954.2893 - val_loss: 1760.6979 - val_mae: 1760.6979
Epoch 375/500
34/34 [==============================] - 0s 2ms/step - loss: 1957.0992 - mae: 1957.0992 - val_loss: 1765.6522 - val_mae: 1765.6522
Epoch 376/500
34/34 [==============================] - 0s 2ms/step - loss: 1950.5472 - mae: 1950.5472 - val_loss: 1761.5393 - val_mae: 1761.5393
Epoch 377/500
34/34 [==============================] - 0s 2ms/step - loss: 1952.2313 - mae: 1952.2313 - val_loss: 1764.2993 - val_mae: 1764.2993
Epoch 378/500
34/34 [==============================] - 0s 2ms/step - loss: 1950.1935 - mae: 1950.1935 - val_loss: 1748.9039 - val_mae: 1748.9039
Epoch 379/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.7526 - mae: 1953.7526 - val_loss: 1754.3691 - val_mae: 1754.3691
Epoch 380/500
34/34 [==============================] - 0s 2ms/step - loss: 1955.4235 - mae: 1955.4235 - val_loss: 1756.1005 - val_mae: 1756.1005
Epoch 381/500
34/34 [==============================] - 0s 2ms/step - loss: 1957.8040 - mae: 1957.8040 - val_loss: 1751.6953 - val_mae: 1751.6953
Epoch 382/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.1229 - mae: 1958.1229 - val_loss: 1747.8070 - val_mae: 1747.8070
Epoch 383/500
34/34 [==============================] - 0s 2ms/step - loss: 1946.6637 - mae: 1946.6637 - val_loss: 1752.1309 - val_mae: 1752.1309
Epoch 384/500
34/34 [==============================] - 0s 2ms/step - loss: 1954.8477 - mae: 1954.8477 - val_loss: 1761.1697 - val_mae: 1761.1697
Epoch 385/500
34/34 [==============================] - 0s 2ms/step - loss: 1965.7804 - mae: 1965.7804 - val_loss: 1754.0254 - val_mae: 1754.0254
Epoch 386/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.3236 - mae: 1958.3236 - val_loss: 1764.0514 - val_mae: 1764.0514
Epoch 387/500
34/34 [==============================] - 0s 2ms/step - loss: 1956.8267 - mae: 1956.8267 - val_loss: 1758.4872 - val_mae: 1758.4872
Epoch 388/500
34/34 [==============================] - 0s 2ms/step - loss: 1956.6726 - mae: 1956.6726 - val_loss: 1756.9443 - val_mae: 1756.9443
Epoch 389/500
34/34 [==============================] - 0s 2ms/step - loss: 1957.9005 - mae: 1957.9005 - val_loss: 1737.4865 - val_mae: 1737.4865
Epoch 390/500
34/34 [==============================] - 0s 2ms/step - loss: 1949.6439 - mae: 1949.6439 - val_loss: 1739.9377 - val_mae: 1739.9377
Epoch 391/500
34/34 [==============================] - 0s 2ms/step - loss: 1951.9272 - mae: 1951.9272 - val_loss: 1756.1089 - val_mae: 1756.1089
Epoch 392/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.8655 - mae: 1953.8655 - val_loss: 1763.0947 - val_mae: 1763.0947
Epoch 393/500
34/34 [==============================] - 0s 2ms/step - loss: 1957.5458 - mae: 1957.5458 - val_loss: 1749.2146 - val_mae: 1749.2146
Epoch 394/500
34/34 [==============================] - 0s 2ms/step - loss: 1950.1083 - mae: 1950.1083 - val_loss: 1746.1954 - val_mae: 1746.1954
Epoch 395/500
34/34 [==============================] - 0s 2ms/step - loss: 1966.8063 - mae: 1966.8063 - val_loss: 1763.3324 - val_mae: 1763.3324
Epoch 396/500
34/34 [==============================] - 0s 2ms/step - loss: 1952.4954 - mae: 1952.4954 - val_loss: 1757.8846 - val_mae: 1757.8846
Epoch 397/500
34/34 [==============================] - 0s 2ms/step - loss: 1952.4414 - mae: 1952.4414 - val_loss: 1754.0262 - val_mae: 1754.0262
Epoch 398/500
34/34 [==============================] - 0s 2ms/step - loss: 1948.2065 - mae: 1948.2065 - val_loss: 1752.7214 - val_mae: 1752.7214
Epoch 399/500
34/34 [==============================] - 0s 2ms/step - loss: 1947.9043 - mae: 1947.9043 - val_loss: 1750.4845 - val_mae: 1750.4845
Epoch 400/500
34/34 [==============================] - 0s 2ms/step - loss: 1956.3918 - mae: 1956.3918 - val_loss: 1759.9824 - val_mae: 1759.9824
Epoch 401/500
34/34 [==============================] - 0s 2ms/step - loss: 1955.9606 - mae: 1955.9606 - val_loss: 1747.9561 - val_mae: 1747.9561
Epoch 402/500
34/34 [==============================] - 0s 2ms/step - loss: 1941.3849 - mae: 1941.3849 - val_loss: 1754.4902 - val_mae: 1754.4902
Epoch 403/500
34/34 [==============================] - 0s 2ms/step - loss: 1943.3167 - mae: 1943.3167 - val_loss: 1754.0844 - val_mae: 1754.0844
Epoch 404/500
34/34 [==============================] - 0s 2ms/step - loss: 1949.5490 - mae: 1949.5490 - val_loss: 1754.5602 - val_mae: 1754.5601
Epoch 405/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.7708 - mae: 1953.7708 - val_loss: 1757.1343 - val_mae: 1757.1343
Epoch 406/500
34/34 [==============================] - 0s 2ms/step - loss: 1944.7001 - mae: 1944.7001 - val_loss: 1754.2170 - val_mae: 1754.2170
Epoch 407/500
34/34 [==============================] - 0s 2ms/step - loss: 1945.4005 - mae: 1945.4005 - val_loss: 1758.1936 - val_mae: 1758.1936
Epoch 408/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.3241 - mae: 1953.3241 - val_loss: 1759.7593 - val_mae: 1759.7593
Epoch 409/500
34/34 [==============================] - 0s 2ms/step - loss: 1944.3270 - mae: 1944.3270 - val_loss: 1756.6381 - val_mae: 1756.6381
Epoch 410/500
34/34 [==============================] - 0s 2ms/step - loss: 1957.6821 - mae: 1957.6821 - val_loss: 1749.7008 - val_mae: 1749.7008
Epoch 411/500
34/34 [==============================] - 0s 2ms/step - loss: 1955.4100 - mae: 1955.4100 - val_loss: 1748.7892 - val_mae: 1748.7892
Epoch 412/500
34/34 [==============================] - 0s 2ms/step - loss: 1952.8435 - mae: 1952.8435 - val_loss: 1758.9407 - val_mae: 1758.9407
Epoch 413/500
34/34 [==============================] - 0s 2ms/step - loss: 1954.5355 - mae: 1954.5355 - val_loss: 1755.9673 - val_mae: 1755.9673
Epoch 414/500
34/34 [==============================] - 0s 2ms/step - loss: 1959.0613 - mae: 1959.0613 - val_loss: 1758.3146 - val_mae: 1758.3146
Epoch 415/500
34/34 [==============================] - 0s 2ms/step - loss: 1955.1749 - mae: 1955.1749 - val_loss: 1741.0492 - val_mae: 1741.0492
Epoch 416/500
34/34 [==============================] - 0s 2ms/step - loss: 1954.3885 - mae: 1954.3885 - val_loss: 1754.9452 - val_mae: 1754.9452
Epoch 417/500
34/34 [==============================] - 0s 2ms/step - loss: 1954.5027 - mae: 1954.5027 - val_loss: 1756.1047 - val_mae: 1756.1047
Epoch 418/500
34/34 [==============================] - 0s 2ms/step - loss: 1951.7993 - mae: 1951.7993 - val_loss: 1751.6759 - val_mae: 1751.6759
Epoch 419/500
34/34 [==============================] - 0s 2ms/step - loss: 1956.9473 - mae: 1956.9473 - val_loss: 1756.7864 - val_mae: 1756.7864
Epoch 420/500
34/34 [==============================] - 0s 2ms/step - loss: 1948.1915 - mae: 1948.1915 - val_loss: 1763.8118 - val_mae: 1763.8118
Epoch 421/500
34/34 [==============================] - 0s 2ms/step - loss: 1950.2238 - mae: 1950.2238 - val_loss: 1746.9730 - val_mae: 1746.9730
Epoch 422/500
34/34 [==============================] - 0s 2ms/step - loss: 1947.8093 - mae: 1947.8093 - val_loss: 1752.2904 - val_mae: 1752.2904
Epoch 423/500
34/34 [==============================] - 0s 2ms/step - loss: 1944.5515 - mae: 1944.5515 - val_loss: 1771.6937 - val_mae: 1771.6937
Epoch 424/500
34/34 [==============================] - 0s 2ms/step - loss: 1950.9481 - mae: 1950.9481 - val_loss: 1754.7682 - val_mae: 1754.7682
Epoch 425/500
34/34 [==============================] - 0s 2ms/step - loss: 1951.0114 - mae: 1951.0114 - val_loss: 1750.5623 - val_mae: 1750.5623
Epoch 426/500
34/34 [==============================] - 0s 2ms/step - loss: 1947.3135 - mae: 1947.3135 - val_loss: 1748.2422 - val_mae: 1748.2422
Epoch 427/500
34/34 [==============================] - 0s 2ms/step - loss: 1962.6624 - mae: 1962.6624 - val_loss: 1743.6954 - val_mae: 1743.6954
Epoch 428/500
34/34 [==============================] - 0s 2ms/step - loss: 1950.7063 - mae: 1950.7063 - val_loss: 1759.4097 - val_mae: 1759.4097
Epoch 429/500
34/34 [==============================] - 0s 2ms/step - loss: 1955.3193 - mae: 1955.3193 - val_loss: 1745.2053 - val_mae: 1745.2053
Epoch 430/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.6218 - mae: 1953.6218 - val_loss: 1762.4940 - val_mae: 1762.4940
Epoch 431/500
34/34 [==============================] - 0s 2ms/step - loss: 1952.9666 - mae: 1952.9666 - val_loss: 1760.6790 - val_mae: 1760.6790
Epoch 432/500
34/34 [==============================] - 0s 2ms/step - loss: 1955.8594 - mae: 1955.8594 - val_loss: 1756.6204 - val_mae: 1756.6204
Epoch 433/500
34/34 [==============================] - 0s 2ms/step - loss: 1947.9142 - mae: 1947.9142 - val_loss: 1755.0618 - val_mae: 1755.0616
Epoch 434/500
34/34 [==============================] - 0s 2ms/step - loss: 1949.4448 - mae: 1949.4448 - val_loss: 1751.0273 - val_mae: 1751.0273
Epoch 435/500
34/34 [==============================] - 0s 2ms/step - loss: 1954.0499 - mae: 1954.0499 - val_loss: 1770.4410 - val_mae: 1770.4410
Epoch 436/500
34/34 [==============================] - 0s 2ms/step - loss: 1950.2693 - mae: 1950.2693 - val_loss: 1755.4609 - val_mae: 1755.4609
Epoch 437/500
34/34 [==============================] - 0s 2ms/step - loss: 1952.0602 - mae: 1952.0602 - val_loss: 1758.6973 - val_mae: 1758.6973
Epoch 438/500
34/34 [==============================] - 0s 2ms/step - loss: 1952.9181 - mae: 1952.9181 - val_loss: 1757.1066 - val_mae: 1757.1066
Epoch 439/500
34/34 [==============================] - 0s 2ms/step - loss: 1962.9031 - mae: 1962.9031 - val_loss: 1750.6654 - val_mae: 1750.6654
Epoch 440/500
34/34 [==============================] - 0s 2ms/step - loss: 1948.3645 - mae: 1948.3645 - val_loss: 1755.0796 - val_mae: 1755.0796
Epoch 441/500
34/34 [==============================] - 0s 2ms/step - loss: 1964.3591 - mae: 1964.3591 - val_loss: 1745.6477 - val_mae: 1745.6477
Epoch 442/500
34/34 [==============================] - 0s 2ms/step - loss: 1944.2411 - mae: 1944.2411 - val_loss: 1750.2649 - val_mae: 1750.2649
Epoch 443/500
34/34 [==============================] - 0s 2ms/step - loss: 1945.4633 - mae: 1945.4633 - val_loss: 1761.6448 - val_mae: 1761.6448
Epoch 444/500
34/34 [==============================] - 0s 2ms/step - loss: 1944.9739 - mae: 1944.9739 - val_loss: 1758.9583 - val_mae: 1758.9583
Epoch 445/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.4044 - mae: 1958.4044 - val_loss: 1759.6649 - val_mae: 1759.6649
Epoch 446/500
34/34 [==============================] - 0s 1ms/step - loss: 1969.0897 - mae: 1969.0897 - val_loss: 1753.5978 - val_mae: 1753.5978
Epoch 447/500
34/34 [==============================] - 0s 2ms/step - loss: 1948.5836 - mae: 1948.5836 - val_loss: 1747.1993 - val_mae: 1747.1993
Epoch 448/500
34/34 [==============================] - 0s 2ms/step - loss: 1949.2635 - mae: 1949.2635 - val_loss: 1756.9629 - val_mae: 1756.9629
Epoch 449/500
34/34 [==============================] - 0s 2ms/step - loss: 1950.5714 - mae: 1950.5714 - val_loss: 1752.6770 - val_mae: 1752.6770
Epoch 450/500
34/34 [==============================] - 0s 2ms/step - loss: 1955.8744 - mae: 1955.8744 - val_loss: 1749.4503 - val_mae: 1749.4503
Epoch 451/500
34/34 [==============================] - 0s 2ms/step - loss: 1941.1742 - mae: 1941.1742 - val_loss: 1749.6925 - val_mae: 1749.6925
Epoch 452/500
34/34 [==============================] - 0s 2ms/step - loss: 1946.8116 - mae: 1946.8116 - val_loss: 1758.3607 - val_mae: 1758.3607
Epoch 453/500
34/34 [==============================] - 0s 2ms/step - loss: 1947.7488 - mae: 1947.7488 - val_loss: 1751.2559 - val_mae: 1751.2559
Epoch 454/500
34/34 [==============================] - 0s 2ms/step - loss: 1948.8512 - mae: 1948.8512 - val_loss: 1754.0320 - val_mae: 1754.0320
Epoch 455/500
34/34 [==============================] - 0s 2ms/step - loss: 1956.5576 - mae: 1956.5576 - val_loss: 1764.3871 - val_mae: 1764.3871
Epoch 456/500
34/34 [==============================] - 0s 2ms/step - loss: 1949.4485 - mae: 1949.4485 - val_loss: 1762.3010 - val_mae: 1762.3010
Epoch 457/500
34/34 [==============================] - 0s 2ms/step - loss: 1959.4291 - mae: 1959.4291 - val_loss: 1761.3749 - val_mae: 1761.3749
Epoch 458/500
34/34 [==============================] - 0s 2ms/step - loss: 1959.7554 - mae: 1959.7554 - val_loss: 1767.1168 - val_mae: 1767.1168
Epoch 459/500
34/34 [==============================] - 0s 2ms/step - loss: 1952.9146 - mae: 1952.9146 - val_loss: 1754.0270 - val_mae: 1754.0270
Epoch 460/500
34/34 [==============================] - 0s 2ms/step - loss: 1948.2982 - mae: 1948.2982 - val_loss: 1753.8359 - val_mae: 1753.8359
Epoch 461/500
34/34 [==============================] - 0s 2ms/step - loss: 1955.1692 - mae: 1955.1692 - val_loss: 1747.7649 - val_mae: 1747.7649
Epoch 462/500
34/34 [==============================] - 0s 2ms/step - loss: 1957.5964 - mae: 1957.5964 - val_loss: 1743.2943 - val_mae: 1743.2943
Epoch 463/500
34/34 [==============================] - 0s 2ms/step - loss: 1955.3003 - mae: 1955.3003 - val_loss: 1736.1887 - val_mae: 1736.1887
Epoch 464/500
34/34 [==============================] - 0s 2ms/step - loss: 1947.2417 - mae: 1947.2417 - val_loss: 1753.8684 - val_mae: 1753.8684
Epoch 465/500
34/34 [==============================] - 0s 2ms/step - loss: 1967.0166 - mae: 1967.0166 - val_loss: 1772.1665 - val_mae: 1772.1665
Epoch 466/500
34/34 [==============================] - 0s 2ms/step - loss: 1960.2444 - mae: 1960.2444 - val_loss: 1755.9545 - val_mae: 1755.9545
Epoch 467/500
34/34 [==============================] - 0s 2ms/step - loss: 1957.8490 - mae: 1957.8490 - val_loss: 1753.0928 - val_mae: 1753.0928
Epoch 468/500
34/34 [==============================] - 0s 2ms/step - loss: 1955.4043 - mae: 1955.4043 - val_loss: 1761.1515 - val_mae: 1761.1515
Epoch 469/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.5554 - mae: 1958.5554 - val_loss: 1755.3362 - val_mae: 1755.3362
Epoch 470/500
34/34 [==============================] - 0s 2ms/step - loss: 1954.7463 - mae: 1954.7463 - val_loss: 1760.5854 - val_mae: 1760.5854
Epoch 471/500
34/34 [==============================] - 0s 2ms/step - loss: 1963.0171 - mae: 1963.0171 - val_loss: 1750.7061 - val_mae: 1750.7061
Epoch 472/500
34/34 [==============================] - 0s 1ms/step - loss: 1958.8883 - mae: 1958.8883 - val_loss: 1761.9213 - val_mae: 1761.9213
Epoch 473/500
34/34 [==============================] - 0s 2ms/step - loss: 1950.8362 - mae: 1950.8362 - val_loss: 1756.2852 - val_mae: 1756.2852
Epoch 474/500
34/34 [==============================] - 0s 2ms/step - loss: 1948.9043 - mae: 1948.9043 - val_loss: 1747.6663 - val_mae: 1747.6663
Epoch 475/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.0776 - mae: 1953.0776 - val_loss: 1761.8174 - val_mae: 1761.8174
Epoch 476/500
34/34 [==============================] - 0s 2ms/step - loss: 1957.2098 - mae: 1957.2098 - val_loss: 1746.7466 - val_mae: 1746.7466
Epoch 477/500
34/34 [==============================] - 0s 2ms/step - loss: 1953.1517 - mae: 1953.1517 - val_loss: 1756.0098 - val_mae: 1756.0098
Epoch 478/500
34/34 [==============================] - 0s 2ms/step - loss: 1960.5311 - mae: 1960.5311 - val_loss: 1751.1040 - val_mae: 1751.1040
Epoch 479/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.0209 - mae: 1958.0209 - val_loss: 1756.1705 - val_mae: 1756.1705
Epoch 480/500
34/34 [==============================] - 0s 2ms/step - loss: 1954.3047 - mae: 1954.3047 - val_loss: 1747.0914 - val_mae: 1747.0914
Epoch 481/500
34/34 [==============================] - 0s 2ms/step - loss: 1948.5564 - mae: 1948.5564 - val_loss: 1754.9144 - val_mae: 1754.9144
Epoch 482/500
34/34 [==============================] - 0s 2ms/step - loss: 1949.6371 - mae: 1949.6371 - val_loss: 1742.7290 - val_mae: 1742.7290
Epoch 483/500
34/34 [==============================] - 0s 2ms/step - loss: 1955.9745 - mae: 1955.9745 - val_loss: 1759.7681 - val_mae: 1759.7681
Epoch 484/500
34/34 [==============================] - 0s 2ms/step - loss: 1962.0938 - mae: 1962.0938 - val_loss: 1748.1960 - val_mae: 1748.1960
Epoch 485/500
34/34 [==============================] - 0s 1ms/step - loss: 1946.9153 - mae: 1946.9153 - val_loss: 1759.8531 - val_mae: 1759.8531
Epoch 486/500
34/34 [==============================] - 0s 2ms/step - loss: 1954.7581 - mae: 1954.7581 - val_loss: 1766.8878 - val_mae: 1766.8878
Epoch 487/500
34/34 [==============================] - 0s 2ms/step - loss: 1952.4418 - mae: 1952.4418 - val_loss: 1759.1333 - val_mae: 1759.1333
Epoch 488/500
34/34 [==============================] - 0s 2ms/step - loss: 1951.7568 - mae: 1951.7568 - val_loss: 1749.5972 - val_mae: 1749.5972
Epoch 489/500
34/34 [==============================] - 0s 2ms/step - loss: 1941.7734 - mae: 1941.7734 - val_loss: 1757.6304 - val_mae: 1757.6304
Epoch 490/500
34/34 [==============================] - 0s 2ms/step - loss: 1949.5865 - mae: 1949.5865 - val_loss: 1770.8793 - val_mae: 1770.8793
Epoch 491/500
34/34 [==============================] - 0s 2ms/step - loss: 1950.8700 - mae: 1950.8700 - val_loss: 1746.2600 - val_mae: 1746.2600
Epoch 492/500
34/34 [==============================] - 0s 2ms/step - loss: 1961.3124 - mae: 1961.3124 - val_loss: 1751.8602 - val_mae: 1751.8602
Epoch 493/500
34/34 [==============================] - 0s 1ms/step - loss: 1943.8804 - mae: 1943.8804 - val_loss: 1742.9180 - val_mae: 1742.9180
Epoch 494/500
34/34 [==============================] - 0s 2ms/step - loss: 1937.7426 - mae: 1937.7426 - val_loss: 1760.8480 - val_mae: 1760.8480
Epoch 495/500
34/34 [==============================] - 0s 2ms/step - loss: 1958.6722 - mae: 1958.6722 - val_loss: 1759.0151 - val_mae: 1759.0151
Epoch 496/500
34/34 [==============================] - 0s 2ms/step - loss: 1948.9408 - mae: 1948.9408 - val_loss: 1758.3007 - val_mae: 1758.3007
Epoch 497/500
34/34 [==============================] - 0s 2ms/step - loss: 1951.5358 - mae: 1951.5358 - val_loss: 1752.7567 - val_mae: 1752.7567
Epoch 498/500
34/34 [==============================] - 0s 1ms/step - loss: 1973.8839 - mae: 1973.8839 - val_loss: 1755.8190 - val_mae: 1755.8190
Epoch 499/500
34/34 [==============================] - 0s 2ms/step - loss: 1956.9613 - mae: 1956.9613 - val_loss: 1756.0472 - val_mae: 1756.0472
Epoch 500/500
34/34 [==============================] - 0s 2ms/step - loss: 1950.9912 - mae: 1950.9912 - val_loss: 1755.3545 - val_mae: 1755.3545
<keras.src.callbacks.History at 0x1dbd2dd4c10>
model_preds = model.predict(scaled_X_test)
9/9 [==============================] - 0s 894us/step
r2_score(y_true = y_test ,y_pred = model_preds)
0.8621520814130484

神经网络模型得分为 0.86,与随机森林差不多,紧随其后的是线性回归。性能最好的是GradientBoost Model,最差的是(upport Vector Regression Model with GridSearchCV

代码与数据集下载

详情请见个人医疗开支预测项目-VenusAI (aideeplearning.cn)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/792778.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

磁环的使用方法

磁环的使用方法 磁环的工作原理共模滤波用法差模滤波用法各种材料磁环的对应频率磁环的感量计算 磁环的工作原理 共模滤波用法 差模滤波用法 各种材料磁环的对应频率 磁环的感量计算

Redis从入门到精通(四)Redis实战(二)商户查询缓存

↑↑↑请在文章头部下载测试项目原代码↑↑↑ 文章目录 前言4.2 商户查询缓存4.2.1 缓存介绍4.2.2 查询商户信息的传统做法4.2.2.1 接口文档4.2.2.2 代码实现4.2.2.3 功能测试 4.2.3 查询商户信息添加Redis缓存4.2.3.1 逻辑分析4.2.3.2 代码实现4.2.3.3 功能测试 4.2.3 数据一致…

【MATLAB源码-第177期】基于matlab的蜘蛛蜂优化算法(SWO)无人机三维路径规划,输出做短路径图和适应度曲线

操作环境&#xff1a; MATLAB 2022a 1、算法描述 蜘蛛蜂优化算法&#xff08;Spider Wasp Optimization, SWO&#xff09;是一种启发式算法&#xff0c;它受到自然界中蜘蛛和蜂这两种生物的行为模式启发而开发。这一算法主要模拟了蜘蛛捕食与蜂群社会行为之间的相互作用&…

网络以太网之(1)基础概念

网络以太网之(1)基础概念 Author: Once Day Date: 2024年4月1日 一位热衷于Linux学习和开发的菜鸟&#xff0c;试图谱写一场冒险之旅&#xff0c;也许终点只是一场白日梦… 漫漫长路&#xff0c;有人对你微笑过嘛… 全系列文档可参考专栏&#xff1a;通信网络技术_Once-Day的…

C语言-----数据在内存中的存储(1)

1.整数在内存中的存储 我们之前就了解过整数的二进制写法分别有3种&#xff0c;分别为原码&#xff0c;反码&#xff0c;补码。整型在内存中存储的是补码。 原码&#xff0c;反码&#xff0c;补码都有自己的符号位和数值位&#xff0c;符号位为1时&#xff0c;则表示负数&…

【Docker笔记05】【网络模式】

一、前言 本系列是根据 B 站 尚硅谷 Docker 视频 学习记录笔记。因为没有视频课件&#xff0c;部分内容摘自 https://www.yuque.com/tmfl/cloud/dketq0。 本系列仅为自身学习笔记记录使用&#xff0c;记录存在偏差&#xff0c;推荐阅读原视频内容或本文参考笔记。 二、简单介…

通用开发技能系列:Authentication、OAuth、JWT 认证策略

云原生学习路线导航页&#xff08;持续更新中&#xff09; 本文是 通用开发技能系列 文章&#xff0c;主要对编程通用技能 Authentication、OAuth、JWT 认证策略 进行学习 1.Basic Authentication认证 每个请求都需要将 用户名密码 进行base64编码后&#xff0c;放在请求头的A…

基于隐私保护的可追踪可撤销密文策略属性加密方案论文阅读

论文是2022年发表的A Traceable and Revocable Ciphertext-Policy Attribute-based Encryption Scheme Based on Privacy Protection 摘要 本篇论文提出了一种具有用户撤销、白盒追踪、策略策略隐藏功能的CP-ABE方案。在该方案中密文被分为两个部分&#xff1a;第一个部分是和…

基于springboot实现教师人事档案管理系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现在线商城系统演示 摘要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本ONLY在线商城系统就是在这样的大环境下诞生&#xff0c;其可以帮助管理…

第六期丨酷雷曼无人机技能培训

第6期无人机技能提升培训 盼望着盼望着&#xff0c;第六期无人机技能提升培训会终于如期和大家见面了。 2024年1月1日&#xff0c;国务院、中央军事委员会颁布《无人驾驶航空器飞行管理暂行条例》&#xff0c;对民用无人机飞行活动实施更为严格的规范约束&#xff0c;越来越多…

阿里云服务器安装Java开发环境最佳实践

服务器环境安装 环境依赖服务器配置配置SSH登录打开安全配置端口远程连接配置秘钥 Linux服务器常用指令向远程服务器传送文件systemctl 相关 安装MySql安装步骤step1 检查并清除以前的mysql相关文件step2 安装step3 MySQL参数配置step4 设置开机启动step5 初始化数据库step6配置…

ABAP开发中常用弹窗的应用详解

在ABAP程序设计中为提示和交互的需要会经常用到弹窗&#xff0c; 所谓弹窗就是弹出一个框&#xff0c;告诉用户什么事情、需要确认什么、或者让用户输入什么内容等等&#xff0c;它价值在于通过提示、提醒、警告&#xff0c;帮助用户顺利完成业务流程中的必要操作或给用户提供实…

【JS】打乱数组顺序,用作领域:随机播放音乐

思路 循环数组随机获取数组下标取值&#xff1a; 取当前随机下标数组取当前循环的下标数组 相互替换步骤3的数组 /*** 随机数组顺序* param {Array} arr 数组* returns Array*/ const shufArr arr > {for (let i arr.length - 1; i > 0; i--) {const j Math.floor(M…

中国智慧城管哪家做的好?

智慧城市管理综合执法系统建立全市统一的法律法规、裁量基准、执法事项、执法文书和基础信息库&#xff0c;实现从获取线索、立案、调查、处理到结案全过程的信息化和文书制作的智能化。全面支持移动执法办案&#xff0c;提高执法效率。 技术架构&#xff1a; 微服务javasprin…

中颖51芯片学习1. 系统时钟及IO口输出操作

中颖51芯片学习1. 系统时钟及IO口输出操作 一、芯片介绍1. 规格2. 资源3. 中断源&#xff1a;4. 方框图5. 封装&#xff08;1&#xff09;32脚LQFP封装&#xff08;2&#xff09;28脚SOP封装&#xff08;3&#xff09;20脚SOP封装 二、开发环境搭建1. 安装keil2. 安装中颖keil插…

安全测试重点思考(中)--如何防止漏洞XSS和CSRF漏洞

如何防止漏洞XSS和CSRF漏洞 XSS漏洞的预防springsecurity框架来预防xss漏洞的步骤将特殊字符进行实体转义使用类库和修改cookie属性使用安全的HTTP Only Cookie使用安全的Cookie使用CSP&#xff08;内容安全策略&#xff09;使用专门的XSS防护库输入验证和过滤 XSS的面试题你对…

4.2总结

了解了部分Api的使用并学习了接口的API API API包含了较多种类&#xff08;System,Runtime等&#xff09; System其实就是一个工具类&#xff0c;提供了一些与系统相关的方法 下面有一些常间的System方法 方法名说明public static void exit (int status)终止当前运行的ja…

深入浅出 -- 系统架构之微服务架构常见的六种设计模式

面向服务的架构&#xff08;SOA&#xff09; 面向服务的架构&#xff08;SOA&#xff09;是一种设计方法&#xff0c;也是一个组件模型&#xff0c;它将应用程序的不同功能单元&#xff08;称为服务&#xff09;通过这些服务之间定义良好的接口和契约联系起来。接口是采用中立的…

HarmonyOS应用开发ArkUI(TS)电商项目实战

项目介绍 本项目基于 HarmonyOS 的ArkUI框架TS扩展的声明式开发范式&#xff0c;关于语法和概念直接看官网官方文档地址&#xff1a;基于TS扩展的声明式开发范式&#xff0c; 工具版本&#xff1a; DevEco Studio 3.1 Canary1 SDK版本&#xff1a; 3.1.9.7&#xff08;API V…

春招3月面试题的总结--南京,山东,西安,东莞四家公司总结。

1.南京某公司 1.Java的几种基本数据类型&#xff1f;分别是多少字节&#xff1f; byte&#xff0c;8bit 1字节 char&#xff0c;16bit 2字节 short&#xff0c;16bit 2字节 int&#xff0c;32bit 4字节 float&#xff0c;32bit 4字节 long&#xff0c;64bit 8字节 doubl…