AI论文速读 |【综述】 时序分析基础模型:教程与综述

论文标题:Foundation Models for Time Series Analysis: A Tutorial and Survey

作者: Yuxuan Liang(梁宇轩), Haomin Wen(温浩珉), Yuqi Nie(PatchTST一作), Yushan Jiang, Ming Jin(金明), Dongjin Song, Shirui Pan(潘世瑞), Qingsong Wen(文青松)

机构:香港科技大学(广州),北京交通大学,普林斯顿大学,康涅狄格大学,莫纳什大学,格里菲斯大学,松鼠AI

论文链接:https://arxiv.org/abs/2403.14735

Cool Paper:https://papers.cool/arxiv/2403.14735

TL;DR:本文全面介绍了基础模型在时间序列分析中的应用,重点关注模型架构、预训练技术、适应方法和数据模态,以增进理解和推动该领域的发展。

关键词:时间序列分析, 基础模型, LLM

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅QRCode

摘要

时间序列分析是数据挖掘社区中的焦点,是提取对无数实际应用程序至关重要的有价值见解的基石。 基础模型 (FM) 的最新进展从根本上重塑了时间序列分析的模型设计范式,在实践中推动了各种下游任务。 这些创新方法通常利用预先训练或微调的 FM 来利用专为时间序列分析定制的通用知识。 在本综述中,目标是提供用于时间序列分析的 FM 的全面且最新的概述。 虽然之前的综述主要关注 FM 在时间序列分析中的应用或流程方面,但它们往往缺乏对阐明 FM 为何以及如何有益于时间序列分析的基本机制的深入理解。 为了解决这一差距,本综述采用了以模型为中心的分类,描述了时间序列 FM 的各种关键要素,包括模型架构、预训练技术、适应方法和数据模式。 总体而言,这项综述旨在巩固与时间序列分析相关的 FM 的最新进展,强调其理论基础、最近的发展进展以及未来研究探索的途径。

(非)Transformer的TSFM路线图

Q: 这篇论文试图解决什么问题?

A: 这篇论文《Foundation Models for Time Series Analysis: A Tutorial and Survey》旨在提供一个全面且最新的关于时间序列分析中基础模型(Foundation Models, FMs)的概述。论文试图解决的问题是,尽管时间序列分析在数据挖掘社区中占有核心地位,并且在许多实际应用中至关重要,但是现有的文献对于时间序列分析中基础模型的系统性分析却相对缺乏。特别是,以往的研究要么集中在应用层面,要么集中在流程方面,但往往缺乏对基础模型如何以及为何能够提升时间序列分析的深入理解。

为了解决这一问题,论文采取了以下措施:

  1. 模型中心分类:通过模型中心的分类方法,明确了时间序列基础模型(Time Series Foundation Models, TSFMs)的各个关键要素,包括模型架构、预训练技术、适应方法和数据模态。
  2. 最新进展的整合:综合了最新的关于时间序列分析中基础模型的进展,强调了它们理论基础、最近的发展动态,以及未来研究的探索方向。
  3. 未来研究方向的探讨:讨论并强调了使用基础模型增强时间序列分析的未来研究机会,鼓励研究人员深入探索这一领域。

总的来说,这篇论文试图通过提供一个方法论中心的分类框架,来弥补现有文献中对于时间序列分析中基础模型作用机制理解的空白,并推动该领域的研究和应用发展。

Q: 有哪些相关研究?

不同综述对比

提到的4篇综述:

  1. Jin M, Wen Q, Liang Y, et al. Large models for time series and spatio-temporal data: A survey and outlook[J]. arXiv preprint arXiv:2310.10196, 2023.
  2. Jiang Y, Pan Z, Zhang X, et al. Empowering Time Series Analysis with Large Language Models: A Survey[J]. arXiv preprint arXiv:2402.03182, 2024.
  3. Zhang X, Chowdhury R R, Gupta R K, et al. Large Language Models for Time Series: A Survey[J]. arXiv preprint arXiv:2402.01801, 2024.
  4. Miller J A, Aldosari M, Saeed F, et al. A survey of deep learning and foundation models for time series forecasting[J]. arXiv preprint arXiv:2401.13912, 2024.

A: 这篇论文中提到了多项与时间序列分析中基础模型(TSFMs)相关的研究,这些研究涵盖了不同的数据模态、模型架构、预训练技术和应用领域。以下是一些具体的相关研究:

  1. 标准时间序列(Standard Time Series):
    • Time-LLM [48]: 利用预训练的大型语言模型(LLM)进行时间序列预测。
    • TempCast [101]: 通过提示工程(prompt engineering)和大型语言模型进行时间序列预测。
    • PatchTST [67]: 使用生成模型进行时间序列分析。
    • TimeGPT-1 [35]: 一个基于生成模型的时间序列预测方法。
  2. 空间时间序列(Spatial Time Series):
    • ST-LLM [57]: 结合空间-时间信息和部分冻结的大型语言模型进行交通预测。
    • FourCastNet [69]: 用于全球天气预报的数据驱动模型。
    • ClimaX [66]: 用于气候和天气相关任务的通用气候基础模型。
  3. 其他类型的时间序列(Others):
    • AuxMobLCast [102]: 利用预训练的大型语言模型进行人类移动性预测。
    • GTM [55]: 用于轨迹数据的通用轨迹建模方法。
  4. 非Transformer基础模型:
    • TSMixer [31]: 轻量级的基于多层感知器(MLP)的时间序列预测模型。
    • TimesNet [98]: 用于一般时间序列分析的基于卷积神经网络(CNN)的模型。
  5. 基于扩散模型(Diffusion-based):
    • TimeGrad [76]: 用于多变量概率时间序列预测的自回归去噪扩散模型。
    • DiffSTG [93]: 结合去噪扩散模型进行概率空间-时间图预测。

这些研究代表了时间序列分析中基础模型的最新进展,并且论文还讨论了这些模型在金融、医疗保健、交通、气候和其他领域的应用。此外,论文还提出了一个全面的分类法,将TSFMs分为不同的类别,包括基于Transformer的模型、非基于Transformer的模型(如MLP、RNN、CNN)和基于扩散的模型,以及它们在不同数据模态下的应用。

不同时间序列(标准,时空,轨迹,事件等)

Q: 论文如何解决这个问题?

TSFM分类方法

A: 为了解决现有文献中对时间序列分析中基础模型(TSFMs)缺乏系统性分析的问题,论文采取了以下方法:

  1. 模型中心分类(Model-Centric Classification):
    • 提出了一个新的分类框架,专注于从方法论角度对TSFMs进行分类,包括模型架构、预训练技术、适应方法和数据模态。
    • 通过这种分类,论文详细审视了构成时间序列基础模型的关键元素,从而深入理解这些模型在时间序列分析中的工作机制。
  2. 全面的最新进展概述(Comprehensive and Up-to-Date Overview):
    • 论文提供了一个全面的最新进展概述,包括标准时间序列、空间时间序列和其他类型(如轨迹和事件)。
    • 总结了当前TSFMs的发展路线图,以促进该领域的进一步创新和理解。
  3. 未来研究方向的探讨(Discussion of Future Research Directions):
    • 论文讨论了使用基础模型增强时间序列分析的未来研究机会,鼓励研究人员探索新的方法和技术。
    • 指出了未来可能的研究方向,如结合多模态数据、探索更高效的架构、开发更有效的预训练和适应技术,以及保护隐私等。
  4. 理论基础与实际应用的结合(Integration of Theoretical Foundations and Practical Applications):
    • 论文不仅关注理论分析,还强调了TSFMs在实际应用中的潜力,如金融、医疗、交通等领域。
    • 通过案例研究和应用实例,展示了TSFMs如何在不同领域中发挥作用。

通过上述方法,论文旨在为时间序列分析中的基础模型提供一个深入的理解和全面的视角,同时为未来的研究和应用奠定基础。

不同TSFM架构(Transformer,diffusion,非Transformer()MLP,CNN,RNN等)

Q: 论文做了哪些实验?

不同TSFM技术(直接用,基于微调,基于提示,token化)

A: 这篇论文是一个关于时间序列分析中基础模型(Foundation Models, FMs)的教程和综述,而不是一个实验性研究。因此,它没有进行实验或者提供实验结果。相反,论文的主要贡献在于:

  1. 文献回顾:对现有的时间序列分析中基础模型的研究进行了全面的回顾,总结了这些模型在不同领域的应用和效果。
  2. 分类框架:提出了一个新的模型中心分类框架,用于对时间序列基础模型进行分类和分析。
  3. 理论分析:深入探讨了时间序列基础模型的理论基础,包括模型架构、预训练技术、适应方法和数据模态等方面。
  4. 未来方向:讨论了时间序列分析中基础模型的未来研究方向和潜在的研究机会。

综述论文通常不会包含实验部分,而是依赖于对现有研究的分析和综合,以提供该领域的全面视角和最新进展。在这种情况下,论文的价值在于为研究人员和实践者提供一个关于时间序列分析中基础模型的系统性理解的资源。

Q: 有什么可以进一步探索的点?

A: 论文提出了未来研究方向,可以进一步探索的点包括:

  1. 多模态数据的结合
    • 探索如何将时间序列数据与其他模态数据(如文本、图像、音频等)结合起来,以学习更全面和泛化的知识,从而提高不同下游任务的性能。
  2. 更高效的架构探索
    • 研究除了Transformer之外的更高效的基础模型架构,例如状态空间模型(如Mamba),以处理长序列数据时减少计算成本和内存消耗。
  3. 更有效的预训练和适应技术
    • 开发新的预训练策略来更好地处理时间序列数据的独特属性,如时间分布偏移和因果关系。
    • 探索适应技术,以便模型能够更好地泛化到新的时间序列任务和数据集。
  4. 隐私保护
    • 在训练基础模型时考虑到隐私保护,发展新的隐私保护技术,如联邦学习,以在不泄露敏感信息的情况下利用多源数据。
  5. 解释性和透明度
    • 提高模型的解释性和透明度,使研究人员和用户能够理解模型的决策过程,特别是在敏感应用(如医疗和金融)中。
  6. 跨领域和跨任务的泛化能力
    • 研究如何提升模型在不同领域和任务之间的泛化能力,例如通过元学习和迁移学习技术。
  7. 模型稳健性和健壮性
    • 研究如何提高模型在面对噪声数据、异常值和攻击时的稳健性和健壮性。
  8. 实时和在线学习
    • 探索如何使基础模型适应实时和在线学习场景,以便能够处理连续到来的数据流。

这些方向不仅为学术研究提供了新的机遇,也为实际应用中的挑战提供了可能的解决方案。未来的研究可以围绕这些点展开,以推动时间序列分析领域的发展。

Q: 总结一下论文的主要内容

A: 这篇论文《Foundation Models for Time Series Analysis: A Tutorial and Survey》主要内容可以总结如下:

  1. 背景与动机
    • 时间序列分析对于数据挖掘社区至关重要,能够为多种实际应用提供宝贵洞察。
    • 基础模型(FMs)在时间序列分析中的应用已经显著提升了多个下游任务的性能。
  2. 研究缺口
    • 尽管FMs在时间序列分析中取得了进展,但现有文献缺乏对这些模型背后机制的深入理解。
  3. 主要贡献
    • 提出了一个新的模型中心分类法,对时间序列基础模型(TSFMs)的关键元素进行了全面分析。
    • 整合了最新的TSFMs进展,强调了它们在时间序列分析中的理论基础和实际应用。
    • 探讨了未来研究方向,鼓励更深入地探索基础模型在时间序列分析中的潜力。
  4. 分类框架
    • 根据数据类别(标准时间序列、空间时间序列和其他类型),模型架构(基于Transformer、非基于Transformer和基于扩散的模型),预训练技术和应用领域对TSFMs进行了分类。
  5. 未来研究方向
    • 推荐了多个未来研究的潜在方向,包括结合多模态数据、探索更高效的架构、开发更有效的预训练和适应技术,以及保护隐私等。
  6. 结论
    • 论文提供了一个全面的方法论视角,以理解和应用基础模型于时间序列分析,同时指出了该领域的最新进展和未来可能的创新工作。

未来研究方向

  • 推荐了多个未来研究的潜在方向,包括结合多模态数据、探索更高效的架构、开发更有效的预训练和适应技术,以及保护隐私等。
  1. 结论
    • 论文提供了一个全面的方法论视角,以理解和应用基础模型于时间序列分析,同时指出了该领域的最新进展和未来可能的创新工作。

整体而言,这篇论文是对时间序列分析中基础模型的全面回顾和前瞻,旨在为研究人员提供一个清晰的理论框架和实践指南。
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅QRCode

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/792615.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

windows安装Openssl

openssl官网:[ Downloads ] - /source/index.html Windows 安装方法 OpenSSL 官网没有提供 Windows 版本的安装包,可以选择其他开源平台提供的工具 Win32/Win64 OpenSSL Installer for Windows - Shining Light Productions 等待下载完成 捐不起 配置环境变量 ope…

LC 111.二叉树的最小深度

111. 二叉树的最小深度 给定一个二叉树,找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明: 叶子节点是指没有子节点的节点。 示例 1: 输入: root [3,9,20,null,null,15,7] 输出:…

苍穹外卖07(缓存菜品,SpringCache,缓存套餐,添加购物车菜品和套餐多下单,查看购物车,清除购物车,删除购物车中一个商品)

目录 一、缓存菜品 1 问题说明 2 实现思路 3 代码开发:修改DishServiceImpl 4 功能测试 二、SpringCache 1. 介绍 2. 使用语法 1 起步依赖 2 使用要求 3 常用注解 4 SpEL表达式(了解备用) 5 步骤小结 3.入门案例 1 准备环境 2 使用入门 1 引导类上加…

面试算法-140-接雨水

题目 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。 示例 1: 输入:height [0,1,0,2,1,0,1,3,2,1,2,1] 输出:6 解释:上面是由数组 [0,1,0,2,1,0,1,3,2…

LLM:检索增强生成(RAG)

1 Embedding技术 简单地说,嵌入(Embedding)思想可以视为一种尝试通过用向量来表示所有东西的“本质”的方法,其特性是“相近的事物”由相近的数表示。 1.1 文本向量(Text Embedding) 在GPT中,文本嵌入(Text Embedding)是通过将输入文本中的每…

vsphere高可用实验

实验要求: 部署高可用集群,在2个EXSI主机上,将该虚拟机断电。这台虚拟机会在另一台主机上自动起来 实验环境要求: 2台EXSI,一台ISCSI,一台vcenter,在一台EXSI上安装一台虚拟机,要求…

【chrome扩展】简 Tab (SimpTab)‘每日一句名言’样式

背景:最初参考“每日诗词”发现总是那几句,可以更换API接口完成“每日一句名言” 声明:本人不会ajax及ccs样式,非专业人士,借助CHATGPT代码生成完成。请友善交流。 每一句名言API: "https://api.xygeng.cn/open…

jdk api之WriteAbortedException基础、应用、实战

博主18年的互联网软件开发经验,从一名程序员小白逐步成为了一名架构师,我想通过平台将经验分享给大家,因此博主每天会在各个大牛网站点赞量超高的博客等寻找该技术栈的资料结合自己的经验,晚上进行用心精简、整理、总结、定稿&…

WPF中通过自定义Panel实现控件拖动

背景 看到趋时软件的公众号文章(WPF自定义Panel:让拖拽变得更简单),发现可以不通过Drag的方法来实现ListBox控件的拖动,而是通过对控件的坐标相加减去实现控件的位移等判断,因此根据文章里面的代码,边理解边…

Day80:服务攻防-中间件安全HW2023-WPS分析WeblogicJettyJenkinsCVE

目录 中间件-Jetty-CVE&信息泄漏 CVE-2021-34429(信息泄露) CVE-2021-28169(信息泄露) 中间件-Jenkins-CVE&RCE执行 cve_2017_1000353 CVE-2018-1000861 cve_2019_1003000 中间件-Weblogic-CVE&反序列化&RCE 应用金山WPS-HW2023-RCE&复现&上线…

代码随想录第30天|51. N皇后

51. N皇后 51. N 皇后 - 力扣(LeetCode) 代码随想录 (programmercarl.com) 这就是传说中的N皇后? 回溯算法安排!| LeetCode:51.N皇后_哔哩哔哩_bilibili 按照国际象棋的规则,皇后可以攻击与之处在同一行…

element-ui empty 组件源码分享

今日简单分享 empty 组件的源码实现,主要从以下三个方面: 1、empty 组件页面结构 2、empty 组件属性 3、empty 组件 slot 一、empty 组件页面结构 二、empty 组件属性 2.1 image 属性,图片地址,类型 string,无默认…

代码随想录阅读笔记-二叉树【二叉搜索树中的搜索】

题目 给定二叉搜索树(BST)的根节点和一个值。 你需要在BST中找到节点值等于给定值的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 NULL。 例如, 在上述示例中,如果要找的值是 5,但因为没有节点…

【放假第1天】采购季倒计时 2G 50/年,4G 618/3年 云服务器选购攻略 阿里云 腾讯云 京东云对比 搭建网站、数据分析

更新日期:4月4日(阿里云价格回调,京东云采购季持续进行) 本文纯原创,侵权必究 【云服务器推荐】价格对比!阿里云 京东云 腾讯云 选购指南视频截图 《最新对比表》已更新在文章头部—腾讯云文档&#xff…

Matlab学习书籍分享

一、什么是Matlab​​? Matlab是一种用于数值计算、科学计算、工程设计和数据分析的高级编程语言。它提供了丰富的数学函数库,支持矩阵运算、信号处理、图像处理、机器学习等多种应用领域。Matlab还具有强大的图形界面,可以方便地进行数据可…

uni-app 实现仿微信界面【我的+首页聊天列表+长按菜单功能+添加菜单功能】+ 附源码

目录 【微信首页聊天列表】界面 【我的】界面 源代码: 文后附完整代码,支持一键导入 HBuilderX 示例体验 【微信首页聊天列表】界面 仿造【微信首页聊天列表 长按菜单功能 右上角添加按钮弹窗功能】,使用 uni-app 开发, 一…

深入浅出 -- 系统架构之微服务架构选型参考图

技术选型架构图 是一个用于展示项目中所采用的各种技术和组件之间关系的图表。 它通常包括以下几个部分: 1. 项目名称和描述:简要介绍项目的背景和目标。 2. 技术栈:列出项目中使用的主要技术和工具,如编程语言、框架、数据库…

JVM专题——类文件加载

本文部分内容节选自Java Guide和《深入理解Java虚拟机》, Java Guide地址: https://javaguide.cn/java/jvm/class-loading-process.html 🚀 基础(上) → 🚀 基础(中) → 🚀基础(下&a…

(免费分享)基于springboot,vue房屋租赁管理系统

功能说明: * 普通用户角色: 1. 寻找房源功能--提供了两种寻找房源的功能,一种是普通用户在平台上搜索、筛选主动寻找房源的功能,另一种是用户填写征集房源的条件,系统会持续将最新符合条件的房源推送给用户。 2. …

Vuex的模块化管理

1:定义一个单独的模块。由于mutation的第二个参数只能提交一个对象,所以这里的ThisLog是个json串。 2:在Vuex中的index.js中引入该模块 3:在别的组件中通过...mapState调用模块保存的State的值。 4:用...mapMutations修…