二叉树层序遍历 及相关题目

1,力扣102

给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:[[3],[9,20],[15,7]]

示例 2:

输入:root = [1]
输出:[[1]]

示例 3:

输入:root = []
输出:[]

提示:

  • 树中节点数目在范围 [0, 2000] 内
  • -1000 <= Node.val <= 1000
/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<List<Integer>> levelOrder(TreeNode root) {List<List<Integer>> res = new ArrayList<List<Integer>>();//二维数组存数据Queue<TreeNode>que = new LinkedList<TreeNode>();//借助队列if(root==null) return res;que.offer(root);while(!que.isEmpty()){//遍历每一层int len = que.size();//用于记录每一层节点的个数List<Integer>list = new ArrayList<>();while(len>0){//对每一层数据进行处理TreeNode t = que.poll();list.add(t.val);//收集一层数据if(t.left!=null) que.offer(t.left);if(t.right!=null) que.offer(t.right);len--;}res.add(list);//收集一整层数据}return res;}
}

2,力扣107 二叉树遍历II

给你二叉树的根节点 root ,返回其节点值 自底向上的层序遍历 。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:[[15,7],[9,20],[3]]

示例 2:

输入:root = [1]
输出:[[1]]

示例 3:

输入:root = []
输出:[]

提示:

  • 树中节点数目在范围 [0, 2000] 内
  • -1000 <= Node.val <= 1000
/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<List<Integer>> levelOrderBottom(TreeNode root) {List<List<Integer>> res = new ArrayList<List<Integer>>();Queue<TreeNode> que= new LinkedList<>();if(root==null) return res;que.offer(root);while(!que.isEmpty()){int len = que.size();List<Integer>list = new ArrayList<>();while(len > 0){TreeNode t = que.poll();list.add(t.val);if(t.left!=null) que.offer(t.left);if(t.right!=null) que.offer(t.right);len--;}res.add(list);}Collections.reverse(res);//将res逆置一下即可return res;}
}

3, 力扣199

二叉树的右视图

给定一个二叉树的 根节点 root,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。

示例 1:

输入: [1,2,3,null,5,null,4]
输出: [1,3,4]

示例 2:

输入: [1,null,3]
输出: [1,3]

示例 3:

输入: []
输出: []

提示:

  • 二叉树的节点个数的范围是 [0,100]
  • -100 <= Node.val <= 100 
/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<Integer> rightSideView(TreeNode root) {List<Integer> res = new ArrayList<>();Queue<TreeNode>que = new LinkedList<TreeNode>();//借助队列if(root==null) return res;que.offer(root);while(!que.isEmpty()){//遍历每一层int len = que.size();//用于记录每一层节点的个数while(len>0){//对每一层数据进行处理TreeNode t = que.poll();if(len==1){res.add(t.val);//只收集每一层的最后一个节点的值}if(t.left!=null) que.offer(t.left);if(t.right!=null) que.offer(t.right);len--;}}return res;}
}

 4,力扣637 二叉树层的平均值

给定一个非空二叉树的根节点 root , 以数组的形式返回每一层节点的平均值。与实际答案相差 10-5 以内的答案可以被接受。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:[3.00000,14.50000,11.00000]
解释:第 0 层的平均值为 3,第 1 层的平均值为 14.5,第 2 层的平均值为 11 。
因此返回 [3, 14.5, 11] 。

示例 2:

输入:root = [3,9,20,15,7]
输出:[3.00000,14.50000,11.00000]

提示:

  • 树中节点数量在 [1, 104] 范围内
  • -231 <= Node.val <= 231 - 1
/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<Double> averageOfLevels(TreeNode root) {List<Double> res = new ArrayList<>();Queue<TreeNode>que = new LinkedList<TreeNode>();//借助队列if(root==null) return res;que.offer(root);while(!que.isEmpty()){//遍历每一层int len = que.size();//用于记录每一层节点的个数int size = len;//记录len,一会算平均值做分母,double sum = 0;while(len>0){//对每一层数据进行处理TreeNode t = que.poll();sum+=t.val;if(t.left!=null) que.offer(t.left);if(t.right!=null) que.offer(t.right);len--;}double ave = sum/size;res.add(ave);}return res;}
}

5, 力扣429   N叉树的层序遍历

 

给定一个 N 叉树,返回其节点值的层序遍历。(即从左到右,逐层遍历)。

树的序列化输入是用层序遍历,每组子节点都由 null 值分隔(参见示例)。

示例 1:

输入:root = [1,null,3,2,4,null,5,6]
输出:[[1],[3,2,4],[5,6]]

示例 2:

输入:root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
输出:[[1],[2,3,4,5],[6,7,8,9,10],[11,12,13],[14]]

提示:

  • 树的高度不会超过 1000
  • 树的节点总数在 [0, 10^4] 之间

 

/*
// Definition for a Node.
class Node {public int val;public List<Node> children;public Node() {}public Node(int _val) {val = _val;}public Node(int _val, List<Node> _children) {val = _val;children = _children;}
};
*/class Solution {public List<List<Integer>> levelOrder(Node root) {List<List<Integer>> res = new ArrayList<List<Integer>>();//二维数组存数据Queue<Node>que = new LinkedList<Node>();//借助队列if(root==null) return res;que.offer(root);while(!que.isEmpty()){//遍历每一层int len = que.size();//用于记录每一层节点的个数List<Integer>list = new ArrayList<>();while(len>0){//对每一层数据进行处理Node t = que.poll();list.add(t.val);//收集一层数据for(Node child : t.children){//把每个节点的孩子都送进队列que.offer(child);}len--;}res.add(list);//收集一整层数据}return res;}
}

5, 力扣515 找每个树行的最大值

 

给定一棵二叉树的根节点 root ,请找出该二叉树中每一层的最大值。

示例1:

输入: root = [1,3,2,5,3,null,9]
输出: [1,3,9]

示例2:

输入: root = [1,2,3]
输出: [1,3]

提示:

  • 二叉树的节点个数的范围是 [0,104]
  • -231 <= Node.val <= 231 - 1
/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<Integer> largestValues(TreeNode root) {List<Integer> res = new ArrayList<>();Queue<TreeNode>que = new LinkedList<TreeNode>();//借助队列if(root==null) return res;que.offer(root);while(!que.isEmpty()){//遍历每一层int len = que.size();//用于记录每一层节点的个数  int max = Integer.MIN_VALUE; //使用这种初始化方式的场景通常出现在需要通过比较来找到一个数列中的最大值时        while(len>0){//对每一层数据进行处理TreeNode t = que.poll();if(t.val > max){max = t.val;}if(t.left!=null) que.offer(t.left);if(t.right!=null) que.offer(t.right);len--;}res.add(max);//收集一整层数据}return res;}
}

6,填充每个节点的下一个右侧节点指针

116.填充每个节点的下一个右侧节点指针

力扣题目链接(opens new window)

给定一个完美二叉树,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:

struct Node {int val;Node *left;Node *right;Node *next;
}

1
2
3
4
5
6

填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。

初始状态下,所有 next 指针都被设置为 NULL。

116.填充每个节点的下一个右侧节点指针

/*
// Definition for a Node.
class Node {public int val;public Node left;public Node right;public Node next;public Node() {}public Node(int _val) {val = _val;}public Node(int _val, Node _left, Node _right, Node _next) {val = _val;left = _left;right = _right;next = _next;}
};
*/class Solution {public Node connect(Node root) {Queue<Node>que = new LinkedList<Node>();//借助队列if(root==null) return root;que.offer(root);while(!que.isEmpty()){//遍历每一层int len = que.size();//用于记录每一层节点的个数while(len>0){//对每一层数据进行处理Node t = que.poll();Node tnext = que.peek();//记录t的下一个节点if(len==1){//每一层的最后一个节点,之后没有节点t.next = null;}else{//后面有节点,则指向后节点t.next = tnext;}if(t.left!=null) que.offer(t.left);if(t.right!=null) que.offer(t.right);len--;}}return root;}
}

7,104.二叉树的最大深度

104.二叉树的最大深度

力扣题目链接(opens new window)

给定一个二叉树,找出其最大深度。

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

说明: 叶子节点是指没有子节点的节点。

示例:

给定二叉树 [3,9,20,null,null,15,7],

104. 二叉树的最大深度

返回它的最大深度 3 。

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
//法一
class Solution {public int maxDepth(TreeNode root) {if(root==null) return 0;Queue<TreeNode>que = new LinkedList<TreeNode>();//借助队列que.offer(root);int depth=0;//记录深度,初始化为0while(!que.isEmpty()){//遍历每一层int len = que.size();//用于记录每一层节点的个数List<Integer>list = new ArrayList<>();while(len>0){//对每一层数据进行处理TreeNode t = que.poll();list.add(t.val);//收集一层数据if(t.left!=null) que.offer(t.left);if(t.right!=null) que.offer(t.right);len--;}depth++;//一次遍历完,深度加1}return depth;}
}
/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
//法二递归
class Solution {public int maxDepth(TreeNode root) {if(root == null) return 0;return 1+Math.max(maxDepth(root.left),maxDepth(root.right));}
}

8,力扣111, 给定一个二叉树,找出其最小深度

给定一个二叉树,找出其最小深度。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

说明:叶子节点是指没有子节点的节点。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:2

示例 2:

输入:root = [2,null,3,null,4,null,5,null,6]
输出:5

提示:

  • 树中节点数的范围在 [0, 105] 内
  • -1000 <= Node.val <= 1000
/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public int minDepth(TreeNode root) {Queue<TreeNode>que = new LinkedList<TreeNode>();//借助队列if(root==null) return 0;que.offer(root);int depth = 0;while(!que.isEmpty()){//遍历每一层int len = que.size();//用于记录每一层节点的个数depth++;//注意这里先深度加一,不能在第二个循环之后++,因为万一就一个节点,就会在下面depth返回出来为0,是错的while(len>0){//对每一层数据进行处理TreeNode t = que.poll();if(t.left!=null) que.offer(t.left);if(t.right!=null) que.offer(t.right);if(t.left==null&&t.right==null){return depth;}len--;}}return depth;}
}

 

 

 

 

 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/792049.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Canvas背景绘制-24

本节会详细介绍下&#xff0c;如何绘制面板的背景。 概述 常用的技术称为图块复制(blitting)&#xff0c;即从离屏缓冲区中将内容发生变化的那部分背景图像复制到屏幕上&#xff0c;还有其它两种方法是将所有内容擦除并重新绘制&仅重绘内容发生变化的那部分区域。一般是用…

网络:HTTP协议

目录 序列化与反序列化 守护进程 网络计算器的实现 HTTP协议 http的代码演示 HTTPS 初步理解三次握手&#xff0c;四次挥手 ①tcp是面向连接的通信协议&#xff0c;在通信之前&#xff0c;需要进行3次握手&#xff0c;来进行连接的建立(谁connect谁握手) ②当tcp在断开…

稀碎从零算法笔记Day35-LeetCode:字典序的第K小数字

要考虑完结《稀碎从零》系列了哈哈哈 这道题和【LC.42 接雨水】&#xff0c;我愿称之为【笔试界的颜良&文丑】 题型&#xff1a;字典树、前缀获取、数组、树的先序遍历 链接&#xff1a;440. 字典序的第K小数字 - 力扣&#xff08;LeetCode&#xff09; 来源&#xff1…

Linux是怎么发送一个网络包的?

目录 摘要 1 从 send 开始 2 传输层 3 网络层 4 网络接口层 4.1 邻居子系统 4.2 网络设备子系统 4.3 软中断发送剩余的 skb 4.4 硬中断又触发软中断 总结 摘要 一个网络包的发送&#xff0c;始于应用层&#xff0c;经层层协议栈的封装&#xff0c;终于网卡。今天来循…

ubuntu18.04图形界面卡死,鼠标键盘失灵, 通过MAC共享网络给Ubuntu解决!

ubuntu18.04图形界面卡死&#xff0c;鼠标键盘失灵&#xff0c; 通过MAC共享网络给Ubuntu解决&#xff01; 1. 尝试从卡死的图形界面切换到命令行界面2. 进入bios和grub页面3. 更改Grub中的设置&#xff0c;以进入命令行4. 在命令行页面解决图形界面卡死的问题5. Mac共享WI-FI网…

【MySQL】数据库的基本操作

目录 一、数据库的库操作 二、数据库的表操作 一、数据库的库操作 数据库的创建 create database (if not exists) 库名 这里的if not exists 是一个判断用的&#xff0c;如果数据库存在&#xff0c;就不执行语句&#xff0c;如果数据库不存在&#xff0c;则执行该语句。 创建…

vulhub中Apache Solr Velocity 注入远程命令执行漏洞复现 (CVE-2019-17558)

Apache Solr 是一个开源的搜索服务器。 在其 5.0.0 到 8.3.1版本中&#xff0c;用户可以注入自定义模板&#xff0c;通过Velocity模板语言执行任意命令。 访问http://your-ip:8983即可查看到一个无需权限的Apache Solr服务。 1.默认情况下params.resource.loader.enabled配置…

C++实现vector

目录 前言 1.成员变量 2.成员函数 2.1构造函数 2.2析构函数 2.3begin,end 2.4获取size和capacity 2.5函数重载【】 2.6扩容reserve 2.7resize 2.8insert 2.9删除 2.10尾插、尾删 3.0拷贝构造函数 3.1赋值运算符重载 前言 自主实现C中vector大部分的功能可以使我们更好的理解并使…

红黑树介绍与模拟实现(insert+颜色调整精美图示超详解哦)

红黑树 引言红黑树的介绍实现结点类insert搜索插入位置插入调整当parent为gparent的左子结点当parent为gparent的右子结点 参考源码测试红黑树是否合格总结 引言 在上一篇文章中我们认识了高度平衡的平衡二叉树AVL树&#xff1a;戳我看AVL树详解哦 &#xff08;关于旋转调整的…

Java 7、Java 8常用新特性

目录 Java 8 常用新特性1、Lambda 表达式2、方法引用2.1 静态方法引用2.2 特定对象的实例方法引用2.3 特定类型的任意对象的实例方法引用2.4 构造器引用 3、接口中的默认方法4、函数式接口4.1 自定义函数式接口4.2 内置函数式接口 5、Date/Time API6、Optional 容器类型7、Stre…

(四) 序列化器类使用整理

从一、序列化器类中&#xff0c;或 视图集源码 中&#xff0c; 可以得知&#xff1a; 序列化器类可以接收一个instance &#xff0c;和一个data serializer_obj XxxxSerializer(instance,datarequest.data) &#xff08;更新时&#xff0c;instance相当于原…

云原生技术精选:探索腾讯云容器与函数计算的最佳实践

文章目录 写在前面《2023腾讯云容器和函数计算技术实践精选集》深度解读案例集特色&#xff1a;腾讯云的创新实践与技术突破精选案例分析——Stable Diffusion云原生部署的最佳实践精选集实用建议分享总结 写在前面 在数字化转型的浪潮下&#xff0c;云计算技术已成为企业运营…

Kafka入门到实战-第五弹

Kafka入门到实战 Kafka常见操作官网地址Kafka概述Kafka的基础操作更新计划 Kafka常见操作 官网地址 声明: 由于操作系统, 版本更新等原因, 文章所列内容不一定100%复现, 还要以官方信息为准 https://kafka.apache.org/Kafka概述 Apache Kafka 是一个开源的分布式事件流平台&…

基于springboot+vue实现的酒店客房管理系统

作者主页&#xff1a;Java码库 主营内容&#xff1a;SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app等设计与开发。 收藏点赞不迷路 关注作者有好处 文末获取源码 技术选型 【后端】&#xff1a;Java 【框架】&#xff1a;spring…

昇腾训练执行与推理部署系列 入门: 1.开启异腾AI之旅

一、1认识CANN 1、昇腾AI基础软硬件平台介绍2、CANN逻辑架构介绍 1、昇腾AI基础软硬件平台介绍 2、CANN逻辑架构介绍

普联一面4.2面试记录

普联一面4.2面试记录 文章目录 普联一面4.2面试记录1.jdk和jre的区别2.java的容器有哪些3.list set map的区别4.get和post的区别5.哪个更安全6.java哪些集合类是线程安全的7.创建线程有哪几种方式8.线程的状态有哪几种9.线程的run和start的区别10.什么是java序列化11.redis的优…

商品购买过程中,库存的抵扣过程是怎样的?如何防止超卖?

在商品购买的过程中&#xff0c;库存的抵扣过程&#xff0c;一般操作如下&#xff1a; 1、select根据商品id查询商品的库存。 2、根据下单的数量&#xff0c;计算库存是否足够&#xff0c;如果存库不足则抛出库存不足的异常&#xff0c;如果库存足够&#xff0c;则减去扣除的…

mysql+keepalive+lvs搭建的数据库集群实验

前提条件&#xff1a;准备5台计算机&#xff0c;且网络互通 1、客户端 yum groups -y install mariadb-client ip 192.168.0.5 2、lvs1 yum-y install ipvsadm keepalived ip 192.168.0.1 keepalivedvip 192.168.0.215 /etc/hosts 解析192.168.0.1 主机名 3、lvs2 yum-y i…

前视声呐目标识别定位(五)-代码解析之修改声呐参数

前视声呐目标识别定位&#xff08;一&#xff09;-基础知识 前视声呐目标识别定位&#xff08;二&#xff09;-目标识别定位模块 前视声呐目标识别定位&#xff08;三&#xff09;-部署至机器人 前视声呐目标识别定位&#xff08;四&#xff09;-代码解析之启动识别模块 …

DHT11温湿度传感器使用视频教程分享

下载地址&#xff1a; 温湿度计(STCDHT11): https://url83.ctfile.com/d/45573183-60623983-9b7f6c?p7526 (访问密码: 7526)