软件杯 深度学习中文汉字识别

文章目录

  • 0 前言
  • 1 数据集合
  • 2 网络构建
  • 3 模型训练
  • 4 模型性能评估
  • 5 文字预测
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习中文汉字识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 数据集合

学长手有3755个汉字(一级字库)的印刷体图像数据集,我们可以利用它们进行接下来的3755个汉字的识别系统的搭建。

用深度学习做文字识别,用的网络当然是CNN,那具体使用哪个经典网络?VGG?RESNET?还是其他?我想了下,越深的网络训练得到的模型应该会更好,但是想到训练的难度以及以后线上部署时预测的速度,我觉得首先建立一个比较浅的网络(基于LeNet的改进)做基本的文字识别,然后再根据项目需求,再尝试其他的网络结构。这次任务所使用的深度学习框架是强大的Tensorflow。

2 网络构建

第一步当然是搭建网络和计算图

其实文字识别就是一个多分类任务,比如这个3755文字识别就是3755个类别的分类任务。我们定义的网络非常简单,基本就是LeNet的改进版,值得注意的是我们加入了batch
normalization。另外我们的损失函数选择sparse_softmax_cross_entropy_with_logits,优化器选择了Adam,学习率设为0.1

#network: conv2d->max_pool2d->conv2d->max_pool2d->conv2d->max_pool2d->conv2d->conv2d->max_pool2d->fully_connected->fully_connecteddef build_graph(top_k):keep_prob = tf.placeholder(dtype=tf.float32, shape=[], name='keep_prob')images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1], name='image_batch')labels = tf.placeholder(dtype=tf.int64, shape=[None], name='label_batch')is_training = tf.placeholder(dtype=tf.bool, shape=[], name='train_flag')with tf.device('/gpu:5'):#给slim.conv2d和slim.fully_connected准备了默认参数:batch_normwith slim.arg_scope([slim.conv2d, slim.fully_connected],normalizer_fn=slim.batch_norm,normalizer_params={'is_training': is_training}):conv3_1 = slim.conv2d(images, 64, [3, 3], 1, padding='SAME', scope='conv3_1')max_pool_1 = slim.max_pool2d(conv3_1, [2, 2], [2, 2], padding='SAME', scope='pool1')conv3_2 = slim.conv2d(max_pool_1, 128, [3, 3], padding='SAME', scope='conv3_2')max_pool_2 = slim.max_pool2d(conv3_2, [2, 2], [2, 2], padding='SAME', scope='pool2')conv3_3 = slim.conv2d(max_pool_2, 256, [3, 3], padding='SAME', scope='conv3_3')max_pool_3 = slim.max_pool2d(conv3_3, [2, 2], [2, 2], padding='SAME', scope='pool3')conv3_4 = slim.conv2d(max_pool_3, 512, [3, 3], padding='SAME', scope='conv3_4')conv3_5 = slim.conv2d(conv3_4, 512, [3, 3], padding='SAME', scope='conv3_5')max_pool_4 = slim.max_pool2d(conv3_5, [2, 2], [2, 2], padding='SAME', scope='pool4')flatten = slim.flatten(max_pool_4)fc1 = slim.fully_connected(slim.dropout(flatten, keep_prob), 1024,activation_fn=tf.nn.relu, scope='fc1')logits = slim.fully_connected(slim.dropout(fc1, keep_prob), FLAGS.charset_size, activation_fn=None,scope='fc2')# 因为我们没有做热编码,所以使用sparse_softmax_cross_entropy_with_logitsloss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels))accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits, 1), labels), tf.float32))update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)if update_ops:updates = tf.group(*update_ops)loss = control_flow_ops.with_dependencies([updates], loss)global_step = tf.get_variable("step", [], initializer=tf.constant_initializer(0.0), trainable=False)optimizer = tf.train.AdamOptimizer(learning_rate=0.1)train_op = slim.learning.create_train_op(loss, optimizer, global_step=global_step)probabilities = tf.nn.softmax(logits)# 绘制loss accuracy曲线tf.summary.scalar('loss', loss)tf.summary.scalar('accuracy', accuracy)merged_summary_op = tf.summary.merge_all()# 返回top k 个预测结果及其概率;返回top K accuracypredicted_val_top_k, predicted_index_top_k = tf.nn.top_k(probabilities, k=top_k)accuracy_in_top_k = tf.reduce_mean(tf.cast(tf.nn.in_top_k(probabilities, labels, top_k), tf.float32))return {'images': images,'labels': labels,'keep_prob': keep_prob,'top_k': top_k,'global_step': global_step,'train_op': train_op,'loss': loss,'is_training': is_training,'accuracy': accuracy,'accuracy_top_k': accuracy_in_top_k,'merged_summary_op': merged_summary_op,'predicted_distribution': probabilities,'predicted_index_top_k': predicted_index_top_k,'predicted_val_top_k': predicted_val_top_k}

3 模型训练

训练之前我们应设计好数据怎么样才能高效地喂给网络训练。

首先,我们先创建数据流图,这个数据流图由一些流水线的阶段组成,阶段间用队列连接在一起。第一阶段将生成文件名,我们读取这些文件名并且把他们排到文件名队列中。第二阶段从文件中读取数据(使用Reader),产生样本,而且把样本放在一个样本队列中。根据你的设置,实际上也可以拷贝第二阶段的样本,使得他们相互独立,这样就可以从多个文件中并行读取。在第二阶段的最后是一个排队操作,就是入队到队列中去,在下一阶段出队。因为我们是要开始运行这些入队操作的线程,所以我们的训练循环会使得样本队列中的样本不断地出队。

在这里插入图片描述
入队操作都在主线程中进行,Session中可以多个线程一起运行。 在数据输入的应用场景中,入队操作是从硬盘中读取输入,放到内存当中,速度较慢。
使用QueueRunner可以创建一系列新的线程进行入队操作,让主线程继续使用数据。如果在训练神经网络的场景中,就是训练网络和读取数据是异步的,主线程在训练网络,另一个线程在将数据从硬盘读入内存。

# batch的生成
def input_pipeline(self, batch_size, num_epochs=None, aug=False):# numpy array 转 tensorimages_tensor = tf.convert_to_tensor(self.image_names, dtype=tf.string)labels_tensor = tf.convert_to_tensor(self.labels, dtype=tf.int64)# 将image_list ,label_list做一个slice处理input_queue = tf.train.slice_input_producer([images_tensor, labels_tensor], num_epochs=num_epochs)labels = input_queue[1]images_content = tf.read_file(input_queue[0])images = tf.image.convert_image_dtype(tf.image.decode_png(images_content, channels=1), tf.float32)if aug:images = self.data_augmentation(images)new_size = tf.constant([FLAGS.image_size, FLAGS.image_size], dtype=tf.int32)images = tf.image.resize_images(images, new_size)image_batch, label_batch = tf.train.shuffle_batch([images, labels], batch_size=batch_size, capacity=50000,min_after_dequeue=10000)# print 'image_batch', image_batch.get_shape()return image_batch, label_batch

训练时数据读取的模式如上面所述,那训练代码则根据该架构设计如下:

def train():print('Begin training')# 填好数据读取的路径train_feeder = DataIterator(data_dir='./dataset/train/')test_feeder = DataIterator(data_dir='./dataset/test/')model_name = 'chinese-rec-model'with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)) as sess:# batch data 获取train_images, train_labels = train_feeder.input_pipeline(batch_size=FLAGS.batch_size, aug=True)test_images, test_labels = test_feeder.input_pipeline(batch_size=FLAGS.batch_size)graph = build_graph(top_k=1)  # 训练时top k = 1saver = tf.train.Saver()sess.run(tf.global_variables_initializer())# 设置多线程协调器coord = tf.train.Coordinator()threads = tf.train.start_queue_runners(sess=sess, coord=coord)train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/val')start_step = 0# 可以从某个step下的模型继续训练if FLAGS.restore:ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)if ckpt:saver.restore(sess, ckpt)print("restore from the checkpoint {0}".format(ckpt))start_step += int(ckpt.split('-')[-1])logger.info(':::Training Start:::')try:i = 0while not coord.should_stop():i += 1start_time = time.time()train_images_batch, train_labels_batch = sess.run([train_images, train_labels])feed_dict = {graph['images']: train_images_batch,graph['labels']: train_labels_batch,graph['keep_prob']: 0.8,graph['is_training']: True}_, loss_val, train_summary, step = sess.run([graph['train_op'], graph['loss'], graph['merged_summary_op'], graph['global_step']],feed_dict=feed_dict)train_writer.add_summary(train_summary, step)end_time = time.time()logger.info("the step {0} takes {1} loss {2}".format(step, end_time - start_time, loss_val))if step > FLAGS.max_steps:breakif step % FLAGS.eval_steps == 1:test_images_batch, test_labels_batch = sess.run([test_images, test_labels])feed_dict = {graph['images']: test_images_batch,graph['labels']: test_labels_batch,graph['keep_prob']: 1.0,graph['is_training']: False}accuracy_test, test_summary = sess.run([graph['accuracy'], graph['merged_summary_op']],feed_dict=feed_dict)if step > 300:test_writer.add_summary(test_summary, step)logger.info('===============Eval a batch=======================')logger.info('the step {0} test accuracy: {1}'.format(step, accuracy_test))logger.info('===============Eval a batch=======================')if step % FLAGS.save_steps == 1:logger.info('Save the ckpt of {0}'.format(step))saver.save(sess, os.path.join(FLAGS.checkpoint_dir, model_name),global_step=graph['global_step'])except tf.errors.OutOfRangeError:logger.info('==================Train Finished================')saver.save(sess, os.path.join(FLAGS.checkpoint_dir, model_name), global_step=graph['global_step'])finally:# 达到最大训练迭代数的时候清理关闭线程coord.request_stop()coord.join(threads)

执行以下指令进行模型训练。因为我使用的是TITAN
X,所以感觉训练时间不长,大概1个小时可以训练完毕。训练过程的loss和accuracy变换曲线如下图所示

然后执行指令,设置最大迭代步数为16002,每100步进行一次验证,每500步存储一次模型。

python Chinese_OCR.py --mode=train --max_steps=16002 --eval_steps=100 --save_steps=500

在这里插入图片描述

4 模型性能评估

我们的需要对模模型进行评估,我们需要计算模型的top 1 和top 5的准确率。

执行指令

python Chinese_OCR.py --mode=validation

在这里插入图片描述

def validation():print('Begin validation')test_feeder = DataIterator(data_dir='./dataset/test/')final_predict_val = []final_predict_index = []groundtruth = []with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,allow_soft_placement=True)) as sess:test_images, test_labels = test_feeder.input_pipeline(batch_size=FLAGS.batch_size, num_epochs=1)graph = build_graph(top_k=5)saver = tf.train.Saver()sess.run(tf.global_variables_initializer())sess.run(tf.local_variables_initializer())  # initialize test_feeder's inside statecoord = tf.train.Coordinator()threads = tf.train.start_queue_runners(sess=sess, coord=coord)ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)if ckpt:saver.restore(sess, ckpt)print("restore from the checkpoint {0}".format(ckpt))logger.info(':::Start validation:::')try:i = 0acc_top_1, acc_top_k = 0.0, 0.0while not coord.should_stop():i += 1start_time = time.time()test_images_batch, test_labels_batch = sess.run([test_images, test_labels])feed_dict = {graph['images']: test_images_batch,graph['labels']: test_labels_batch,graph['keep_prob']: 1.0,graph['is_training']: False}batch_labels, probs, indices, acc_1, acc_k = sess.run([graph['labels'],graph['predicted_val_top_k'],graph['predicted_index_top_k'],graph['accuracy'],graph['accuracy_top_k']], feed_dict=feed_dict)final_predict_val += probs.tolist()final_predict_index += indices.tolist()groundtruth += batch_labels.tolist()acc_top_1 += acc_1acc_top_k += acc_kend_time = time.time()logger.info("the batch {0} takes {1} seconds, accuracy = {2}(top_1) {3}(top_k)".format(i, end_time - start_time, acc_1, acc_k))except tf.errors.OutOfRangeError:logger.info('==================Validation Finished================')acc_top_1 = acc_top_1 * FLAGS.batch_size / test_feeder.sizeacc_top_k = acc_top_k * FLAGS.batch_size / test_feeder.sizelogger.info('top 1 accuracy {0} top k accuracy {1}'.format(acc_top_1, acc_top_k))finally:coord.request_stop()coord.join(threads)return {'prob': final_predict_val, 'indices': final_predict_index, 'groundtruth': groundtruth}

5 文字预测

刚刚做的那一步只是使用了我们生成的数据集作为测试集来检验模型性能,这种检验是不大准确的,因为我们日常需要识别的文字样本不会像是自己合成的文字那样的稳定和规则。那我们尝试使用该模型对一些实际场景的文字进行识别,真正考察模型的泛化能力。

首先先编写好预测的代码

def inference(name_list):print('inference')image_set=[]# 对每张图进行尺寸标准化和归一化for image in name_list:temp_image = Image.open(image).convert('L')temp_image = temp_image.resize((FLAGS.image_size, FLAGS.image_size), Image.ANTIALIAS)temp_image = np.asarray(temp_image) / 255.0temp_image = temp_image.reshape([-1, 64, 64, 1])image_set.append(temp_image)# allow_soft_placement 如果你指定的设备不存在,允许TF自动分配设备with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,allow_soft_placement=True)) as sess:logger.info('========start inference============')# images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1])# Pass a shadow label 0. This label will not affect the computation graph.graph = build_graph(top_k=3)saver = tf.train.Saver()# 自动获取最后一次保存的模型ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)if ckpt:       saver.restore(sess, ckpt)val_list=[]idx_list=[]# 预测每一张图for item in image_set:temp_image = itempredict_val, predict_index = sess.run([graph['predicted_val_top_k'], graph['predicted_index_top_k']],feed_dict={graph['images']: temp_image,graph['keep_prob']: 1.0,graph['is_training']: False})val_list.append(predict_val)idx_list.append(predict_index)#return predict_val, predict_indexreturn val_list,idx_list

这里需要说明一下,我会把我要识别的文字图像存入一个叫做tmp的文件夹内,里面的图像按照顺序依次编号,我们识别时就从该目录下读取所有图片仅内存进行逐一识别。

# 获待预测图像文件夹内的图像名字
def get_file_list(path):list_name=[]files = os.listdir(path)files.sort()for file in files:file_path = os.path.join(path, file)list_name.append(file_path)return list_name

那我们使用训练好的模型进行汉字预测,观察效果。首先我从一篇论文pdf上用截图工具截取了一段文字,然后使用文字切割算法把文字段落切割为单字,如下图,因为有少量文字切割失败,所以丢弃了一些单字。

从一篇文章中用截图工具截取文字段落。

在这里插入图片描述
切割出来的单字,黑底白字。

在这里插入图片描述

最后将所有的识别文字按顺序组合成段落,可以看出,汉字识别完全正确,说明我们的基于深度学习的OCR系统还是相当给力!

在这里插入图片描述

至此,支持3755个汉字识别的OCR系统已经搭建完毕,经过测试,效果还是很不错。这是一个没有经过太多优化的模型,在模型评估上top
1的正确率达到了99.9%,这是一个相当优秀的效果了,所以说在一些比较理想的环境下的文字识别的效果还是比较给力,但是对于复杂场景的或是一些干扰比较大的文字图像,识别起来的效果可能不会太理想,这就需要针对特定场景做进一步优化。

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/791398.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】从零认识文件操作

送给大家一句话: 要相信,所有的不美好都是为了迎接美好,所有的困难都会为努力让道。 —— 简蔓《巧克力色微凉青春》 开始理解基础 IO 吧! 1 前言2 知识回顾3 理解文件3.1 进程和文件的关系3.2 文件的系统调用openwrite文件 fd 值…

OpenHarmony实战:小型系统平台驱动移植

在这一步,我们会在源码目录//device/vendor_name/soc_name/drivers目录下创建平台驱动。 建议的目录结构: device ├── vendor_name │ ├── drivers │ │ │ ├── common │ │ │ ├── Kconfig # 厂商驱动内核菜单入口 │ …

七大开源基金会联合制定符合 CRA 法案的共同标准

欧洲议会上个月通过的《欧洲网络弹性法案》(CRA) 制定通用规范和标准 Apache 软件基金会、Blender 基金会、Eclipse 基金会、OpenSSL 软件基金会、PHP 基金会、Python 软件基金会 和 Rust 基金会 这项工作由 Eclipse 基金会牵头,旨在建立基于现有开源最佳实践的安全…

9.图像中值腐蚀膨胀滤波的实现

1 简介 在第七章介绍了基于三种卷积前的图像填充方式,并生成了3X3的图像卷积模板,第八章运用这种卷积模板进行了均值滤波的FPGA实现与MATLAB实现,验证了卷积模板生成的正确性和均值滤波算法的MATLAB算法实现。   由于均值滤波、中值滤波、腐…

leet hot 100-13 最大子数组和

53. 最大子数组和 原题链接思路代码 原题链接 leet hot 100-10 53. 最大子数组和 思路 生成一个数字来记录last 表示前面数字全部之和与0取最大值 如果大于0 就加上如果不大于0 就不管 从当前位置从新开始遍历计算 时间复杂度O(n) 空间复杂度(1) 代码 class Solution {…

JVM剖析

0.前言 Java 是当今世界使用最广泛的技术平台之一。使用 Java 或 JVM 的一些技术包括: Apache spark用于大数据处理,数据分析在JVM上运行;用于数据流的Apache NiFi在内部使用的也是 JVM;现代 Web 和移动应用程序开发中使用的React native使用 的也包含…

HTTPS RSA 握手解析(计算机网络)

传统的 TLS 握手基本都是使用 RSA 算法来实现密钥交换的,在将 TLS 证书部署服务端时,证书文件其实就是服务端的公钥,会在 TLS 握手阶段传递给客户端,而服务端的私钥则一直留在服务端。 在 RSA 密钥协商算法中,客户端会…

佳能打印机E568扫描书和文件方法

官方网站; Canon : Inkjet 手册 : IJ Scan Utility : 启动IJ Scan Utility 打开打印机电源 扫描一个文件,翻页后盖好盖子。再点击扫描。 所有扫描结束之后点退出 点击保存

【无限列车1】SpringCloudAlibaba 与 SpringBoot后端架构的搭建

【无限列车1】SpringCloudAlibaba 与 SpringBoot后端架构的搭建 1、版本说明二、日志相关配置3、AOP 打印日志4、下载开源前端后台管理系统5、添加网关模块6、集成数据库和mp(1) 添加驱动和mp依赖(2) 数据库配置(3) 使用MybatisPlus 7、加密 yaml 文件中的内容(1) 依赖(2) 敏感…

02---webpack基础用法

01 entry打包的入口文件: 单入口entry是一个字符串:适用于单页面项目module.exports {entry:./src/index.js}多入口entry是一个对象module.exports {entry:{index:./src/index.js,app:./src/app.js}} 02 output打包的出口文件: 单入口配置module.ex…

基于SSM的网络视频播放器

目录 背景 技术简介 系统简介 界面预览 背景 互联网的迅猛发展彻底转变了全球各类组织的管理策略。自20世纪90年代起,中国政府和企业便开始探索利用网络系统进行信息管理。然而,早期的网络覆盖不广泛、用户接受度不高、相关法律法规不完善以及技术开…

C#实现只保存2天的日志文件

文章目录 业务需求代码运行效果 欢迎讨论! 业务需求 在生产环境中,控制台窗口不便展示出来。 为了在生产环境中,完整记录控制台应用的输出,选择将其输出到文件中。 但是,存储所有输出的话会占用很多空间,…

uniApp使用uview对vuex的二次封装实现全局变量

1、uni-app目根目录新建’/store/index.js’,并复制如下内容到其中 2、uni-app目根目录新建’/store/ u . m i x i n . j s ′ ,并复制如下内容到其中,由于 H X 某些版本的限制,我们无法帮您自动引入 " u.mixin.js&#xff0…

element-ui card 组件源码分享

今日简单分享 card 组件源码,主要从以下两个方面: 一、card 组件页面结构 二、card 组件属性 2.1 header 属性,设置 header,也可以通过 slot#header 传入 DOM,类型 string,无默认值。 组件使用部分&#…

Linux TUN设备实现Tunnel性能分析

一、TUN/TAP设备原理: Linux的TUN/TAP设备是一种可以使得应用层与TCP/IP协议栈交互的驱动模块,通常用于组建虚拟局域网中的点对点隧道(Tunnel),可以工作于2层(TAP设备)和3层(TUN设备…

Linux的软链接和硬链接

1、软链接 概念:给文件创建一个快捷方式,依赖原文件,和普通文件没有区别。 特性: 可以给存在的文件或目录创建软链接可以给不存在的文件或目录创建软链接可以跨文件系统创建软链接删除软链接不影响原文件、删除原文件会导致软链…

moment.js 产出未知格式的时间,可能的原因

moment.js 产出未知格式的时间,可能的原因 有个问题困扰我好久了,在项目中使用格式化时间的时候会产出一些千奇百怪的格式,产出的文字我都不认识。 百思不得其解,终于今天在看代码的时候发现了这个问题。 它的表现是这样的&…

算法之模拟

前言 模拟算法通俗地来解释就是 "照葫芦画瓢", 通常这类题的题目中就说明了这道题应该怎么做, 要做的就是把题目的意思转化为代码, 这类题的特点是思路比较简单, 考查的是代码能力. 1. 模拟算法流程, 最好在演草纸上过一遍流程, 凭空想象可能会忽略一些细节 2. 把流…

软件架构复用

1.软件架构复用的定义及分类 软件产品线是指一组软件密集型系统,它们共享一个公共的、可管理的特性集,满足某个特定市场或任务的具体需要,是以规定的方式用公共的核心资产集成开发出来的。即围绕核心资产库进行管理、复用、集成新的系统。核心…

比较靠谱的测试进度报告

在测试的过程中,不要等领导过问,有一份比较靠谱的测试进度报告,让关心和支持项目的干系人心里有谱,有利于管理层对项目的监控和资源的支持,有利于项目团队成员之间沟通协调,及时发现问题利于项目风险控制等…