路径规划——曲线拟合详解(一):多项式轨迹与QP优化(minimum-snap算法核心部分)

前言

历经一个多星期时间,我们在路径规划——搜索算法部分讲解了7种常见的路径搜索算法,每一种算法的链接放在下面了,有需要的朋友点击跳转即可:

路径规划——搜索算法详解(一):Dijkstra算法详解与代码_dijkstrac代码实现-CSDN博客

路径规划——搜索算法详解(二):Floyd算法详解与MATLAB代码-CSDN博客

路径规划——搜索算法详解(三):RRT算法详解与MATLAB代码-CSDN博客

路径规划——搜索算法详解(四):A*算法详解与C++代码-CSDN博客

路径规划——搜索算法详解(五):Dynamic A Star(D*)算法详解与Matlab代码-CSDN博客

路径规划——搜索算法详解(六):LPA*算法详解与Matlab代码-CSDN博客

路径规划——搜索算法详解(七):D*lite算法详解与Matlab代码-CSDN博客

以上所有算法的仿真都在笔者github上了:GitHub - Adamaser/Path-Planning

路径规划问题可以粗糙地划分为两个步骤:路径搜索与轨迹优化, 路径搜索生成可行的折线路径,但是不符合无人机、无人车的动力学,不能够直接输出给无人机、无人车直接执行。所以此时就需要进行轨迹优化,结合机器人的运动学模型,采用合适的曲线进行轨迹优化,生成光滑可行且符合机器人运动学的路径,由于笔者是做无人机方向的,所以在曲线拟合这一章中将以生成符合无人机运动学的轨迹为例讲解轨迹优化的知识。

曲线拟合部分将介绍两种无人机中常用的曲线,即多项式拟合与B样条拟合,由于其极具工程意义,所以曲线篇将会提供C++代码并且在ROS环境下进行仿真,大家可以看作是minimum-snap算法的复现,希望对大家有所帮助!

一、多项式轨迹介绍:

1.无人机的微分平坦特性

无人机12个状态量,分别为x、y、z三个维度上的位置、速度、角度、角速度,其符号表示如下:

微分平坦特性指的是可以通过对输入的高阶导数进行显示表示,以简化轨迹设计与跟踪控制的表达,可以通过选择合理的控制量对系统的控制空间进行有效降维。

简言说之,就是原有的状态空间有12个量,他们并不是相互之间互不关联的,我们从里面得到几个状态量,通过这些状态量及其高阶导数可以直接求出其他状态量,经过证明,无人机具有微分平坦特性,其状态量可以简化为以下四个量表示:

具体的证明过程大家直接搜索就可以看到很多帖子,这里就不多介绍了,所以我们可以直接通过控制x、y、z、yaw角就可以控制无人机的姿态。

2.多项式轨迹表示与约束构建:

多项式轨迹是一种常见的曲线,根据多项式的最高次数可以分为一次、二次、...、N次多项式,我们需要怎么选择次数呢,我们以五次多项式为例:

如上所示,五次多项式一共拥有p0-p5六个求解的自由度,我们可以添加6个约束条件以求得p0-p5,如下所示,我们可以先通过路径搜索算法得到如下的折线(黑色)轨迹:

我们对每段轨迹进行多项式的拟合,然后连接每一段轨迹的头与尾就可以得到一条连续的多项式轨迹,对于每一条折线轨迹,假设曲线表示为x(t),可以根据需要对起点位置x(0)、终点位置x(T)、起点速度x‘(0)、终点速度x’(T)、起点加速度x‘’(0)、终点加速度x‘’(T)进行约束:

假设此时的约束条件如下:

我们将起点t=0、终点t=T带入以下多项式中:

此外x(t)求导一次后再将起点t=0、终点t=T带入可以得到该时刻的速度、再次求导带入可以得到起点t=0、终点t=T处的加速度,此时我们将其写成矩阵形式可以得到以下的矩阵方程:

求解后我们便可得到满足上述约束条件所对应的p0-p5,此时便可以准确地表达出t=0到t=T时刻的多项式曲线,该曲线满足起点与终点的位置、速度、加速度条件。

以上求解x维度上的多项式曲线,同理我们可以求出y、z维度上的曲线,它们轨迹在各个坐标轴上是独立的,因此我们可以对其分别进行轨迹拟合。也就是说我们可以分别对它们在x , y , z进行路径生成,然后直接将三个轴合成就可以得到一个完整的空间轨迹。

3.minimum-snap算法(PPT来自深蓝学院课程笔记):

基于此思想,我们分段表示每一段折线轨迹:

 采用分段的方式表示其轨迹:

f(t)为位置、f'(t)为速度、f''(t)加速度、f'''(t)为加加速度jerk、f''''(t)为加加加速度snap,jerk可以影响无人机在该维度上的角速度,而jerk可以影响该维度上的角加速度,如下图所示:

以minimum-snap为例,由于我们要对其求4次导数,需要保证jerk是连续的(所以我们要对轨每一段轨迹的起点与终点的位置、速度、加速度、加加速度jerk进行约束,后面会说约束要怎么加),对于每一段轨迹累加其snap的最小值:

如上所示,累加每段轨迹的snap可以化为一个二次优化问题QP,通过求解该优化问题得到每一段轨迹的系数矩阵P,但是在求解之间我们需要将每一段轨迹的起点与终点的位置、速度、加速度约束加入到该优化问题中,可以通过以下方式构建约束:

通过上述方式,我们将起点与终点的导数约束统一为AP=D这一约束条件,所以我们需要求解的优化问题如下所示:

通过调用OOQP、Mosek等QP问题求解器即可得到每一段轨迹的多项式系数,即得到了该维度上的光滑曲线。

具体的大家参考该论文:

Mellinger D, Kumar V. Minimum snap trajectory generation and control for quadrotors[C]//Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011: 2520-2525.

二、多项式轨迹仿真:

demo大家可以参考下笔者的Github吧(笔者版本为ubuntu18.04),手搓的,代码注释很详细,包括QP矩阵构建与求解都有:

Path-Planning/Astar_/src at main · Adamaser/Path-Planning (github.com)

将src放到工作空间中,直接catkin build编译,编译后运行:

roslaunch grid_path_searcher my_demo.launch 

就可以直接看到效果(绿色折线为A*搜索结果)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/791262.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

由平行公设的不同而来三种几何学浅谈

由平行公设的不同而来三种几何学浅谈 欧几里德的《几何原本》 欧几里德的《几何原本》一开始就给出了23个定义,5个公设,5个公理。 23个定义(部分): 点是没有部分的东西。 线是没有宽度的长度。 线的端点是点。 直线是各点都在同一方向上…

GraalVM运行模式和企业级应用

文章目录 GraalVM运行模式JIT模式AOT模式 GraalVM的问题和解决方案GraalVM企业级应用传统架构的问题Serverless架构函数计算Serverless应用场景Serverless应用 GraalVM内存参数 GraalVM运行模式 JIT模式 JIT( Just-In-Time )模式 ,即时编译模…

Ruby 之交租阶段信息生成

题目 我看了一下,这个题目应该不是什么机密,所以先放上来了。大概意思是根据合同信息生成交租阶段信息。 解答 要求是要使用 Ruby 生成交租阶段信息,由于时间比较仓促,变量名那些就用得随意了些。要点主要有下面这些&#xff1a…

【介绍什么是DDOS】

🌈个人主页:程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…

Qt 的发展历史、现状与启示

Qt 最早在1991年由挪威的两位程序员 Eirik Chambe-Eng 和 Haavard Nord 开发,他们在1994年创立 Trolltech 公司(奇趣科技)正式经营软件业务。Qt 的第一个公众预览版于1995年面世,之后在2008年被诺基亚收购;2011年到201…

Go——函数

一. 函数定义 1.1 特点 无需声明原型支持不定变参支持多返回值支持命名返回参数支持匿名函数和闭包函数也是一种类型,一种函数可以赋值给变量不支持嵌套,一个包不能有两个名字一样的函数不支持重载不支持默认参数 1.2 函数声明 函数声明包含一个函数名&…

备战蓝桥杯---DP刷题2

1.树形DP: 即问那几个点在树的直径上,类似ROAD那题,我们先求一下每一个子树根的子树的最大值与次大值用d1,d2表示,直径就是d1d2的最大值,那么我们如何判断是否在最大路径上,其实就是看一下从某一点出发的所…

还得是抖音,字节推出竖屏视频理解数据集,入选CVPR2024

ChatGPT狂飙160天,世界已经不是之前的样子。 新建了免费的人工智能中文站https://ai.weoknow.com 新建了收费的人工智能中文站https://ai.hzytsoft.cn/ 更多资源欢迎关注 短视频在当下社交媒体逐渐成为主导的视频格式。传统视频处理技术和研究一般都专注于横屏视频…

58商铺全新UI试客试用平台网站php源码

探索未来商铺新纪元,58商铺全新UI试客试用平台网站PHP源码完整版震撼来袭! 在这个数字化飞速发展的时代,58商铺一直致力于为商家和消费者打造更加便捷、高效的交易平台。今天,我们荣幸地推出全新UI试客试用平台网站PHP源码完整版…

C/C++ 项目:分别用精密星历和广播星历计算卫星坐标

文章目录 Part.I IntroductionChap.I rinex.hChap.II gmain_body.h Part.II 使用方法扩展阅读 Part.I Introduction 本文将介绍一个小项目的使用方法,此项目可用精密星历和广播星历计算卫星位置,并将两者结果做差,输出至文件。 其实 『分别…

SWM341系列应用(上位机应用)

SWM341系列之上位机应用 1、分级图像和PNG、JPG的应用 现象:客户使用SWM34SVET6HMI_0.4.1版本上位机进行UI界面布局,反馈在模拟运行时(PC端)流畅,在Demo平台(设备端)运行卡顿。 分析及解决&…

【fastadmin】脚本模式下,日志钩子函数执行出现死循环,导致内存溢出奔溃

问题出现原因是想对项目中error级别的日志,接入钉钉告警,方便查看 于是使用钩子方法,日志写入完成后,自动调用自定义的告警方法中 1、在application/tags.php 中添加log_write_done > [app\\common\\behavior\\Common, ],2、在…

【THM】Nmap Post Port Scans(后端口扫描)-初级渗透测试

介绍 本房间是 Nmap 系列的最后一个(网络安全简介模块的一部分)。在这个房间中,我们重点关注端口扫描之后的步骤:特别是服务检测、操作系统检测、Nmap脚本引擎和保存扫描结果。 Nmap实时主机发现Nmap基本端口扫描Nmap高级端口扫描Nmap后端口扫描在本系列的第一个房间中,我…

代码随想录第29天|491.递增子序列 46.全排列 47.全排列 II

目录: 491.递增子序列 46.全排列 47.全排列 II 491.递增子序列 491. 非递减子序列 - 力扣(LeetCode) 代码随想录 (programmercarl.com) 回溯算法精讲,树层去重与树枝去重 | LeetCode:491.递增子序列_哔哩哔哩_bili…

DTFT及其反变换的直观理解

对于离散时间傅里叶变换(DTFT)及其反变换的讲解,教材里通常会先给出DTFT正变换的公式,再举个DTFT的简单变换例子,推导一下DTFT的性质,然后给出DTFT反变换的公式,再证明一下正变换和反变化的对应关系。总的来说就是&…

Spring-IoC 基于xml管理

现大多使用注解方式,xml方式并不简洁,本文仅记录xml用作基础学习。 0、前提 首先在父项目的pom.xml中配置好依赖们。然后子模块也可以使用这些依赖。 在resource目录下创建Spring的xml文件,名称无要求,本文使用bean.xml。文件最…

黄锈水过滤器 卫生热水工业循环水色度水处理器厂家工作原理动画

​ 1:黄锈水处理器介绍 黄锈水处理器是一种专门用于处理“黄锈水”的设备,它采用机电一体化设计,安装方便,操作简单,且运行费用极低。这种处理器主要由数码射频发生器、射频换能器、活性过滤体三部分组成,…

uniapp uni.scss中使用@mixin混入,在文件引入@include 样式不生效 Error: Undefined mixin.(踩坑记录一)

问题: 在uni.scss文件定义mixin 2. 在vue文件引入: 3. 出现报错信息: 4. 问题思考: 是不是需要引入uni.scss ? 答案不需要 uni.scss是一个特殊文件,在代码中无需 import 这个文件即可在scss代码中使用这里的样式变量。uni-app的…

原创【matcap材质在ue4中的实现办法】

matcap材质在ue4中的实现办法 2023-08-29 15:34 https://www.bilibili.com/video/BV1GR4y1b76n/?spm_id_from333.337.search-card.all.click&vd_sourced76b773892c830a157c0ccc97ba78411 评论(0)

《C Prime Plus》02

1. UNIX 系统 C语言因UNIX系统而生,也因此而流行,所以我们从UNIX系统开始(注意:我们提到的UNIX还包含其他系统,如FreeBSD,它是UNIX的一个分支,但是由于法律原因不使用该名称)。 UN…