路径规划——曲线拟合详解(一):多项式轨迹与QP优化(minimum-snap算法核心部分)

前言

历经一个多星期时间,我们在路径规划——搜索算法部分讲解了7种常见的路径搜索算法,每一种算法的链接放在下面了,有需要的朋友点击跳转即可:

路径规划——搜索算法详解(一):Dijkstra算法详解与代码_dijkstrac代码实现-CSDN博客

路径规划——搜索算法详解(二):Floyd算法详解与MATLAB代码-CSDN博客

路径规划——搜索算法详解(三):RRT算法详解与MATLAB代码-CSDN博客

路径规划——搜索算法详解(四):A*算法详解与C++代码-CSDN博客

路径规划——搜索算法详解(五):Dynamic A Star(D*)算法详解与Matlab代码-CSDN博客

路径规划——搜索算法详解(六):LPA*算法详解与Matlab代码-CSDN博客

路径规划——搜索算法详解(七):D*lite算法详解与Matlab代码-CSDN博客

以上所有算法的仿真都在笔者github上了:GitHub - Adamaser/Path-Planning

路径规划问题可以粗糙地划分为两个步骤:路径搜索与轨迹优化, 路径搜索生成可行的折线路径,但是不符合无人机、无人车的动力学,不能够直接输出给无人机、无人车直接执行。所以此时就需要进行轨迹优化,结合机器人的运动学模型,采用合适的曲线进行轨迹优化,生成光滑可行且符合机器人运动学的路径,由于笔者是做无人机方向的,所以在曲线拟合这一章中将以生成符合无人机运动学的轨迹为例讲解轨迹优化的知识。

曲线拟合部分将介绍两种无人机中常用的曲线,即多项式拟合与B样条拟合,由于其极具工程意义,所以曲线篇将会提供C++代码并且在ROS环境下进行仿真,大家可以看作是minimum-snap算法的复现,希望对大家有所帮助!

一、多项式轨迹介绍:

1.无人机的微分平坦特性

无人机12个状态量,分别为x、y、z三个维度上的位置、速度、角度、角速度,其符号表示如下:

微分平坦特性指的是可以通过对输入的高阶导数进行显示表示,以简化轨迹设计与跟踪控制的表达,可以通过选择合理的控制量对系统的控制空间进行有效降维。

简言说之,就是原有的状态空间有12个量,他们并不是相互之间互不关联的,我们从里面得到几个状态量,通过这些状态量及其高阶导数可以直接求出其他状态量,经过证明,无人机具有微分平坦特性,其状态量可以简化为以下四个量表示:

具体的证明过程大家直接搜索就可以看到很多帖子,这里就不多介绍了,所以我们可以直接通过控制x、y、z、yaw角就可以控制无人机的姿态。

2.多项式轨迹表示与约束构建:

多项式轨迹是一种常见的曲线,根据多项式的最高次数可以分为一次、二次、...、N次多项式,我们需要怎么选择次数呢,我们以五次多项式为例:

如上所示,五次多项式一共拥有p0-p5六个求解的自由度,我们可以添加6个约束条件以求得p0-p5,如下所示,我们可以先通过路径搜索算法得到如下的折线(黑色)轨迹:

我们对每段轨迹进行多项式的拟合,然后连接每一段轨迹的头与尾就可以得到一条连续的多项式轨迹,对于每一条折线轨迹,假设曲线表示为x(t),可以根据需要对起点位置x(0)、终点位置x(T)、起点速度x‘(0)、终点速度x’(T)、起点加速度x‘’(0)、终点加速度x‘’(T)进行约束:

假设此时的约束条件如下:

我们将起点t=0、终点t=T带入以下多项式中:

此外x(t)求导一次后再将起点t=0、终点t=T带入可以得到该时刻的速度、再次求导带入可以得到起点t=0、终点t=T处的加速度,此时我们将其写成矩阵形式可以得到以下的矩阵方程:

求解后我们便可得到满足上述约束条件所对应的p0-p5,此时便可以准确地表达出t=0到t=T时刻的多项式曲线,该曲线满足起点与终点的位置、速度、加速度条件。

以上求解x维度上的多项式曲线,同理我们可以求出y、z维度上的曲线,它们轨迹在各个坐标轴上是独立的,因此我们可以对其分别进行轨迹拟合。也就是说我们可以分别对它们在x , y , z进行路径生成,然后直接将三个轴合成就可以得到一个完整的空间轨迹。

3.minimum-snap算法(PPT来自深蓝学院课程笔记):

基于此思想,我们分段表示每一段折线轨迹:

 采用分段的方式表示其轨迹:

f(t)为位置、f'(t)为速度、f''(t)加速度、f'''(t)为加加速度jerk、f''''(t)为加加加速度snap,jerk可以影响无人机在该维度上的角速度,而jerk可以影响该维度上的角加速度,如下图所示:

以minimum-snap为例,由于我们要对其求4次导数,需要保证jerk是连续的(所以我们要对轨每一段轨迹的起点与终点的位置、速度、加速度、加加速度jerk进行约束,后面会说约束要怎么加),对于每一段轨迹累加其snap的最小值:

如上所示,累加每段轨迹的snap可以化为一个二次优化问题QP,通过求解该优化问题得到每一段轨迹的系数矩阵P,但是在求解之间我们需要将每一段轨迹的起点与终点的位置、速度、加速度约束加入到该优化问题中,可以通过以下方式构建约束:

通过上述方式,我们将起点与终点的导数约束统一为AP=D这一约束条件,所以我们需要求解的优化问题如下所示:

通过调用OOQP、Mosek等QP问题求解器即可得到每一段轨迹的多项式系数,即得到了该维度上的光滑曲线。

具体的大家参考该论文:

Mellinger D, Kumar V. Minimum snap trajectory generation and control for quadrotors[C]//Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011: 2520-2525.

二、多项式轨迹仿真:

demo大家可以参考下笔者的Github吧(笔者版本为ubuntu18.04),手搓的,代码注释很详细,包括QP矩阵构建与求解都有:

Path-Planning/Astar_/src at main · Adamaser/Path-Planning (github.com)

将src放到工作空间中,直接catkin build编译,编译后运行:

roslaunch grid_path_searcher my_demo.launch 

就可以直接看到效果(绿色折线为A*搜索结果)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/791262.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

由平行公设的不同而来三种几何学浅谈

由平行公设的不同而来三种几何学浅谈 欧几里德的《几何原本》 欧几里德的《几何原本》一开始就给出了23个定义,5个公设,5个公理。 23个定义(部分): 点是没有部分的东西。 线是没有宽度的长度。 线的端点是点。 直线是各点都在同一方向上…

GraalVM运行模式和企业级应用

文章目录 GraalVM运行模式JIT模式AOT模式 GraalVM的问题和解决方案GraalVM企业级应用传统架构的问题Serverless架构函数计算Serverless应用场景Serverless应用 GraalVM内存参数 GraalVM运行模式 JIT模式 JIT( Just-In-Time )模式 ,即时编译模…

重置gitlab root密码

gitlab-rails console -e production user User.where(id: 1).first user User.where(name: "root").first #输入重置密码命令 user.password"admin123!" #再次确认密码 user.password_confirmation"admin123!" #输入保存命令&am…

单例(Singleton)设计模式总结

1. 设计模式概述: 设计模式是在大量的实践中总结和理论化之后优选的代码结构、编程风格、以及解决问题的思考方式。设计模式免去我们自己再思考和摸索。 就像是经典的棋谱,不同的棋局,我们用不同的棋谱。"套路"经典的设计模式一共有…

Ruby 之交租阶段信息生成

题目 我看了一下,这个题目应该不是什么机密,所以先放上来了。大概意思是根据合同信息生成交租阶段信息。 解答 要求是要使用 Ruby 生成交租阶段信息,由于时间比较仓促,变量名那些就用得随意了些。要点主要有下面这些&#xff1a…

【介绍什么是DDOS】

🌈个人主页:程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…

Qt 的发展历史、现状与启示

Qt 最早在1991年由挪威的两位程序员 Eirik Chambe-Eng 和 Haavard Nord 开发,他们在1994年创立 Trolltech 公司(奇趣科技)正式经营软件业务。Qt 的第一个公众预览版于1995年面世,之后在2008年被诺基亚收购;2011年到201…

【C++】编程规范之内存规则

在高质量编程中,内存管理是一个至关重要的方面。主要有以下原则: 内存分配后需要检查是否成功:内存分配可能会失败,特别是在内存紧张的情况下。因此,在分配内存后,应该检查分配是否成功。 int* ptr new …

【ZZULIOJ】1030: 判断直角三角形(Java)

目录 题目描述 输入 输出 样例输入 Copy 样例输出 Copy code 题目描述 输入三个正整数,判断用这三个整数做边长是否能构成一个直角三角形。 输入 输入三个正整数。 输出 能否构成直角三角形。如能输出:yes.若不能,输出&#xff1a…

java操作mongodb详解

前言 一切操作都应该以官方文档为准,mongodb官网文档地址: https://www.mongodb.com/docs/ ,网上关于java操作mongodb的文章偏少,而且有些乱。这篇文章是在项目中使用mongodb后的一些总结,希望能帮到大家。 1.创建mon…

(译) 理解 Elixir 中的宏 Macro, 第四部分:深入化

Elixir Macros 系列文章译文 [1] (译) Understanding Elixir Macros, Part 1 Basics[2] (译) Understanding Elixir Macros, Part 2 - Macro Theory[3] (译) Understanding Elixir Macros, Part 3 - Getting into the AST[4] (译) Understanding Elixir Macros, Part 4 - Divin…

如何开启MySQL的binlog日志

1.启用远程连接: 如果你想要允许远程主机连接到MySQL服务器,需要进行以下步骤: 确保MySQL服务器的防火墙允许远程连接的流量通过。在MySQL服务器上,编辑MySQL配置文件(一般是my.cnf),找到bind-…

Go——函数

一. 函数定义 1.1 特点 无需声明原型支持不定变参支持多返回值支持命名返回参数支持匿名函数和闭包函数也是一种类型,一种函数可以赋值给变量不支持嵌套,一个包不能有两个名字一样的函数不支持重载不支持默认参数 1.2 函数声明 函数声明包含一个函数名&…

备战蓝桥杯---DP刷题2

1.树形DP: 即问那几个点在树的直径上,类似ROAD那题,我们先求一下每一个子树根的子树的最大值与次大值用d1,d2表示,直径就是d1d2的最大值,那么我们如何判断是否在最大路径上,其实就是看一下从某一点出发的所…

还得是抖音,字节推出竖屏视频理解数据集,入选CVPR2024

ChatGPT狂飙160天,世界已经不是之前的样子。 新建了免费的人工智能中文站https://ai.weoknow.com 新建了收费的人工智能中文站https://ai.hzytsoft.cn/ 更多资源欢迎关注 短视频在当下社交媒体逐渐成为主导的视频格式。传统视频处理技术和研究一般都专注于横屏视频…

58商铺全新UI试客试用平台网站php源码

探索未来商铺新纪元,58商铺全新UI试客试用平台网站PHP源码完整版震撼来袭! 在这个数字化飞速发展的时代,58商铺一直致力于为商家和消费者打造更加便捷、高效的交易平台。今天,我们荣幸地推出全新UI试客试用平台网站PHP源码完整版…

计算模型 观察分析 杂记

计算模式 计算模式通常指的:用特定计算资源完成特定计算任务所采用的计算策略。计算资源主要指运算器和存储器,当然若其他设备影响因素较大的情况下也考虑控制器,输入输出设备;计算任务多种多样,可以是简单的加减乘除&…

动态规划基础

动态规划 1、动态规划的概念 简称DP,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。常常适用于有重叠子问题和最优子结构性质的问题。 简单来说,就是给定一个问题,把它拆成一个个子问题,查到子问题可以直接解决。然后把子问题答案保存起来,以减少重复计算…

Flink SQL系列之:解析Debezium数据格式时间字段常用的函数

Flink SQL系列之:解析Debezium数据格式时间字段常用的函数 一、FROM_UNIXTIME二、DATE_FORMAT三、TO_DATE四、CAST五、TO_TIMESTAMP_LTZ六、CONVERT_TZ七、FROM_UNIXTIME八、TO_TIMESTAMP九、常见用法案例1.案例一2.案例二3.案例三4.案例四5.案例五

C/C++ 项目:分别用精密星历和广播星历计算卫星坐标

文章目录 Part.I IntroductionChap.I rinex.hChap.II gmain_body.h Part.II 使用方法扩展阅读 Part.I Introduction 本文将介绍一个小项目的使用方法,此项目可用精密星历和广播星历计算卫星位置,并将两者结果做差,输出至文件。 其实 『分别…