Python机器学习实验 Python 数据分析

1.实验目的

掌握常见数据预处理方法,熟练运用数据分析方法,并掌握 Python 中的 Numpy、 Pandas 模块提供的数据分析方法。

2.实验内容

1. Pandas 基本数据处理

使用 Pandas 模块,完成以下操作。

(1)创建一个由 0 到 50 之间的整数组成的 10 行 5 列的 dataframe。如下:

(2)汇总每一列的最小值。

(3)按行方向汇总每行数据的总和。

(4)按列方向汇总每列数据的总和。

代码:

#创建一个由 0 到 50 之间的整数组成的 10 行 5 列的 dataframe
import pandas as pd
import numpy as np
df = pd.DataFrame(np.arange(0, 50).reshape(10, 5))
# 输出 dataframe
print('dataframe:',df)
# 汇总每一列的最小值
min_values = np.min(df, axis=0)
print("每列的最小值:", min_values)
# 按行方向汇总每行数据的总和
row_sums = np.sum(df, axis=1)
print("每行的总和:", row_sums)
# 按列方向汇总每列数据的总和
col_sums = np.sum(df, axis=0)
print("每列的总和:", col_sums)

2.  城市夏季气温分析 在“tpData.csv”文件中存储的是韩国某城市夏季的最高、最低气温数据,时间是

从 2013 年到 2018 年间,日期是从每年的 6 月 30 日到 8 月 30 日。其中 Present_Tmax

字段代表下午 2 点测量的最高温度。Present_Tmin 代表凌晨 4 点测量的最低温度。完 成以下操作。

(1)使用 Pandas 的 read_csv()函数读取“tpData.csv”,并显示数据。 import pandas as pd

df = pd.read_csv('tpData.csv')

#header:Year Month Day Present_Tmax Present_Tmin df

图 4-1   韩国某城市夏季温度数据

(2)按年度分组,查看每年各有多少条数据。 操作提示:

使用 groupby 函数,按 Year 字段分组。

#分组统计

df.groupby('Year').size() #查看组大小结果

(3)按年份统计每年的最高温度的平均值。 操作提示:

使用 groupby 函数,按 Year 字段分组,统计 Present_Tmax 字段的平均值。

df.groupby('Year')['Present_Tmax'].mean()

(4)按月份统计 6、7、8 每个月的最高温度的平均值。

df.groupby('Month')['Present_Tmax'].mean()

(5)按月份统计 6、7、8 每个月的最低温度的平均值。

df.groupby('Month')['Present_Tmin'].mean()

代码:

#使用 Pandas 的 read_csv()函数读取“tpData.csv”,并显示数据
import pandas as pd
df = pd.read_csv(r'D:\tpData.csv')
print(df)
#按年度分组,查看每年各有多少条数据。 操作提
print(df.groupby('Year').size())
#按年份统计每年的最高温度的平均值。 操作提示
print(df.groupby('Year')['Present_Tmax'].mean())
#按月份统计 6、7、8 每个月的最高温度的平均值。
print(df.groupby('Month')['Present_Tmax'].mean())
#按月份统计 6、7、8 每个月的最低温度的平均值。
print(df.groupby('Month')['Present_Tmin'].mean()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/791053.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ai音乐大师演示(支持H5、小程序)独立部署源码

Ai音乐大师演示(支持H5、小程序)独立部署源码

政安晨:【Keras机器学习实践要点】(十五)—— KerasTuner 简述

目录 导言 调整模型结构 定义搜索空间 开始搜索 查询结果 重新训练模型 调整模型训练 调整数据预处理 重新训练模型 指定调整目标 以内置指标为目标 以自定义指标为目标 调整端到端工作流程 将 Keras 代码分开 政安晨的个人主页:政安晨 欢迎 &#x1…

React 入门

一、官网地址 英文官网: https://reactjs.org/中文官网: https://react.docschina.org/ 二、React 特点 声明式编码组件化编码React Native 编写原生应用高效(优秀的 Diffing 算法)高效的原因:1.使用虚拟DOM,不总是直接操作页面…

vultr ubuntu 服务器远程桌面安装及连接

一. 概述 vultr 上开启一个linux服务器,都是以终端形式给出的,默认不带 ui 桌面的,那其实对于想使用服务器上浏览器时的情形不是很好。那有没有方法在远程服务器安装桌面,然后原程使用呢?至少ubuntu的服务器是有的&am…

搜索--找出克隆二叉树中的相同节点

题目描述 给你两棵二叉树,原始树 original 和克隆树 cloned,以及一个位于原始树 original 中的目标节点 target。 其中,克隆树 cloned 是原始树 original 的一个 副本 。 请找出在树 cloned 中,与 target 相同 的节点&#xff…

Successive Convex Approximation算法的学习笔记

文章目录 一、代码debug二、原理 本文主要参考了CSDN上的 另一篇文章,但规范了公式的推导过程和修缮了部分代码 一、代码debug 首先,我们将所有的代码放到MATLAB中,很快在命令行中出现了错误信息 很显然有问题,但是我不知道发生…

redis 性能管理

一、查看 redis 内存使用 info memory 1, 进入 redis 查看 2, redis 外查看 二 内存碎片率 1,used_memory_rss 表示该进程所占物理内存的大小,即为操作系统分配给 Redis 实例的内存大小。 2,used_memory Redis …

【智能算法】猎豹优化器(CO)原理及实现

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献 1.背景 2022年,MA Akbari等人受到自然界中猎豹捕猎行为启发,提出了猎豹优化器(The Cheetah Optimizer,CO)。 2.算法原理 2.1算法思想 CO法对猎…

机器学习的模型校准

背景知识 之前一直没了解过模型校准是什么东西,最近上班业务需要看了一下: 模型校准是指对分类模型进行修正以提高其概率预测的准确性。在分类模型中,预测结果通常以类别标签形式呈现(例如,0或1)&#xf…

【THM】Nmap Advanced Port Scans(高级端口扫描)-初级渗透测试

介绍 本房间是Nmap系列的第三个房间(网络安全简介模块的一部分)。在前两个房间中,我们了解了实时主机发现和基本端口扫描。 Nmap实时主机发现Nmap基本端口扫描Nmap高级端口扫描Nmap后端口扫描在Nmap基本端口扫描中,我们介绍了TCP标志并回顾了TCP 3 路握手。要启动连接,TC…

AcWing刷题-约数个数

约数的个数 代码 # 计数 def f(x)->int:cnt 0i 1while i * i < x:if x % i 0:cnt 1if i * i < x:cnt 1i 1return cntn int(input()) a list(map(int,input().split())) for i in a:print(f(i))

蓝桥杯练习——拼出一个未来

选中 index.html 右键启动 Web Server 服务&#xff08;Open with Live Server&#xff09;&#xff0c;让项目运行起来。接着&#xff0c;打开环境右侧的【Web 服务】&#xff0c;就可以在浏览器中看到如下效果&#xff1a; 目标 完善 js/index.js 的 TODO 部分&#xff0c;实…

【leetcode】 c++ 数字全排列, test ok

1. 问题 2. 思路 3. 代码实现 #if 0 class Solution { private:vector<int> path; // 满足条件的一个结果 vector<vector<int>> res; // 结果集 void backtracking(vector<int> nums, vector<bool> used){// 若path的个数和nums个数相等&…

算法整理:排序

快速排序 首先不妨以第一个数为基准数&#xff0c;在一轮遍历后&#xff0c;使基准数左边的数都小于基准数&#xff0c;基准数右边的数都大于基准数。 当然也可以取中间的数为基准数。 void quick_sort(vector<int>&nums,int l,int r){if(l>r)return;int idxl;//…

硬件工程师职责与核心技能有哪些?

作为一个优秀的硬件工程师&#xff0c;必须要具备优秀的职业技能。那么&#xff0c;有些刚入行的工程师及在校的学生经常会问到&#xff1a;硬件工程师需要哪些核心技能&#xff1f;要回答这个问题&#xff0c;首先要明白硬件工程师的职责&#xff0c;然后才能知道核心技能要求…

神经网络学习笔记10——RNN、ELMo、Transformer、GPT、BERT

系列文章目录 参考博客1 参考博客2 文章目录 系列文章目录前言一、RNN1、简介2、模型结构3、RNN公式分析4、RNN的优缺点及优化1&#xff09;LSTM是RNN的优化结构2&#xff09;GRU是LSTM的简化结构 二、ELMo1、简介2、模型结构1&#xff09;输入2&#xff09;左右双向上下文信…

Gemini即将收费,GPT无需注册?GPT3.5白嫖和升级教程

&#x1f310;Gemini 即将开始收费 开发者“白嫖”的好日子到头了 - Gemini将开始收费&#xff0c;影响使用Google AI for Developers提供的Gemini API的用户。 - Gemini API将引入按量付费定价&#xff0c;需要注意新的服务条款。 - 用户需在5月2日之前停止使用Gemini API和Go…

使用Java拓展本地开源大模型的网络搜索问答能力

背景 开源大模型通常不具备最新语料的问答能力。因此需要外部插件的拓展&#xff0c;目前主流的langChain框架已经集成了网络搜索的能力。但是作为一个倔强的Java程序员&#xff0c;还是想要用Java去实现。 注册SerpAPI Serpapi 提供了多种搜索引擎的搜索API接口。 访问 Ser…

数据结构(二)----线性表(顺序表,链表)

目录 1.线性表的概念 2.线性表的基本操作 3.存储线性表的方式 &#xff08;1&#xff09;顺序表 •顺序表的概念 •顺序表的实现 静态分配&#xff1a; 动态分配&#xff1a; 顺序表的插入&#xff1a; 顺序表的删除&#xff1a; 顺序表的按位查找&#xff1a; 顺序…

自我认识的方法模型图

在漫长的人生旅途中&#xff0c;我们都在不断地探索、追寻&#xff0c;努力寻找那个最真实、最完整的自我。因为只有真正了解自己&#xff0c;才能战胜内心的种种困惑与恐惧&#xff0c;进而战胜外在的一切挑战与困难。自我认识&#xff0c;是每个人成长的必经之路&#xff0c;…