【TI毫米波雷达】IWR6843AOP的官方文件资源名称BUG,选择xwr68xx还是xwr64xx,及需要注意的问题

【TI毫米波雷达】IWR6843AOP的官方文件资源名称BUG,选择xwr68xx还是xwr64xx,及需要注意的问题

文章目录

  • demo工程out_of_box文件
  • 调试bin文件名称
  • 需要注意的问题
  • 附录:结构框架
    • 雷达基本原理叙述
    • 雷达天线排列位置
    • 芯片框架
    • Demo工程功能
    • CCS工程导入
    • 工程叙述
      • Software Tasks
      • Data Path
      • Output information sent to host
        • List of detected objects
        • Range profile
        • Azimuth static heatmap
        • Azimuth/Elevation static heatmap
        • Range/Doppler heatmap
        • Stats information
        • Side information of detected objects
        • Temperature Stats
        • Range Bias and Rx Channel Gain/Phase Measurement and Compensation
        • Streaming data over LVDS
        • Implementation Notes
        • How to bypass CLI
        • Hardware Resource Allocation

demo工程out_of_box文件

在SDK文件包下的demo部分

C:\ti\mmwave_sdk_03_06_00_00-LTS\packages\ti\demo

有如下几组文件
在这里插入图片描述
文件包中包含了各个芯片的demo工程所需的源代码文件
而如果要导入工程 则需要在工业雷达包的以下路径找到:

C:\ti\mmwave_industrial_toolbox_4_12_0\labs\Out_Of_Box_Demo\src

在这里插入图片描述
其中包含了各个芯片的工程属性文件 用于生成CCS工程
其中 6443(64xx)在UniFlash中是不存在的
在这里插入图片描述
但其在数据手册中与6843共用(IWR6443只在芯片手册中提到过 貌似没有相关市场 可能是已经下架了)
在这里插入图片描述
打开xwr6843AOP的out_of_box_6843_aop.projectspec文件
其最下方的工程所需文件路径如下:

在这里插入图片描述

        <!-- Project files --><file path="${COM_TI_MMWAVE_SDK_INSTALL_DIR}/packages/ti/datapath/dpc/objectdetection/objdethwa/src/objectdetection.c" openOnCreation="false" excludeFromBuild="false" action="copy"/><file path="${COM_TI_MMWAVE_SDK_INSTALL_DIR}/packages/ti/demo/xwr64xx/mmw/data_path.c" openOnCreation="false" excludeFromBuild="false" action="copy"/><file path="${COM_TI_MMWAVE_SDK_INSTALL_DIR}/packages/ti/demo/xwr64xx/mmw/main.c" openOnCreation="false" excludeFromBuild="false" action="copy"/><file path="${COM_TI_MMWAVE_SDK_INSTALL_DIR}/packages/ti/demo/xwr64xx/mmw/mmw_cli.c" openOnCreation="false" excludeFromBuild="false" action="copy"/><file path="${COM_TI_MMWAVE_SDK_INSTALL_DIR}/packages/ti/demo/xwr64xx/mmw/mmw_lvds_stream.c" openOnCreation="false" excludeFromBuild="false" action="copy"/><file path="${COM_TI_MMWAVE_SDK_INSTALL_DIR}/packages/ti/demo/xwr64xx/mmw/mmw.cfg" openOnCreation="false" excludeFromBuild="false" action="copy"/><file path="${COM_TI_MMWAVE_SDK_INSTALL_DIR}/packages/ti/demo/xwr64xx/mmw/mss_mmw_linker.cmd" openOnCreation="false" excludeFromBuild="false" action="copy"/><file path="${COM_TI_MMWAVE_SDK_INSTALL_DIR}/packages/ti/demo/utils/mmwdemo_rfparser.c" openOnCreation="false" excludeFromBuild="false" action="copy"/><file path="${COM_TI_MMWAVE_SDK_INSTALL_DIR}/packages/ti/demo/utils/mmwdemo_adcconfig.c" openOnCreation="false" excludeFromBuild="false" action="copy"/><file path="${COM_TI_MMWAVE_SDK_INSTALL_DIR}/packages/ti/demo/utils/mmwdemo_monitor.c" openOnCreation="false" excludeFromBuild="false" action="copy"/><file path="${COM_TI_MMWAVE_SDK_INSTALL_DIR}/packages/ti/board/antenna_geometry.c" openOnCreation="false" excludeFromBuild="false" action="copy"/><file path="${COM_TI_MMWAVE_SDK_INSTALL_DIR}/packages/ti/demo/utils/mmwdemo_flash.c" openOnCreation="false" excludeFromBuild="false" action="copy"/><file path="${COM_TI_MMWAVE_SDK_INSTALL_DIR}/packages/ti/platform/xwr68xx/r4f_linker.cmd" openOnCreation="false" excludeFromBuild="false" action="copy"/>

部分文件采用的是SDK中/demo/xwr64xx目录下的文件
其与6443的工程属性文件一样
并且xwr6843ODS也是采用的

在SDK的64xx目录下
能找到64xxAOP的名称文件
反观68xx目录下却没有AOP相关字眼
在这里插入图片描述

在这方面
只有xwr6843ISK采用的是/demo/xwr68xx目录下的文件(DSS MSS都是)

所以 当在做开发时 IWR6843AOP烧录和建立工程应采用/demo/xwr64xx目录下的文件

但也不一定全是(继续下文)

调试bin文件名称

同样 调试的bin文件也有两种
在这里插入图片描述
目录:

C:\ti\mmwave_sdk_03_06_00_00-LTS\packages\ti\utils\ccsdebug

经过测试 这两个bin文件对IWR6843AOP芯片都可以进行XDS110的调试(只测试了MSS工程 比如out_of_box工程)
其芯片通过XDS110的14引脚PIN与芯片连接

但是在进行采用ICBOOST上的板载XDS110进行调试时却发现:
如果烧录的是xwr64xx_ccsdebug.bin则无法连接到DSS部分 无法对DSS进行调试 反之可行

xwr68xx_ccsdebug.bin文件大小也比xwr64xx_ccsdebug.bin大 所以推测可能是DSS调试需要的功能更齐全 所以更大

需要注意的问题

在导入相关工程、进行官方文件烧录时 选用的应该是/demo/xwr64xx目录下的文件
但在进行调试时 若涉及到ICBOOST板载XDS110调试 则应烧录xwr68xx_ccsdebug.bin
采用XDS110的14引脚PIN直接连接IWR6843AOP时 烧录哪个bin文件都不影响调试
所以推荐还是在调试时选用xwr68xx_ccsdebug.bin文件

附录:结构框架

雷达基本原理叙述

雷达工作原理是上电-发送chirps-帧结束-处理-上电循环
一个Frame,首先是信号发送,比如96个chirp就顺次发出去,然后接收回来,混频滤波,ADC采样,这些都是射频模块的东西。射频完成之后,FFT,CFAR,DOA这些就是信号处理的东西。然后输出给那个结构体,就是当前帧获得的点云了。
在这里插入图片描述
在射频发送阶段 一个frame发送若干个chirp 也就是上图左上角
第一个绿色点为frame start 第二个绿色点为frame end
其中发送若干chirps(小三角形)
chirps的个数称为numLoops(代码中 rlFrameCfg_t结构体)
在mmwave studio上位机中 则称为 no of chirp loops

frame end 到 周期结束的时间为计算时间 称为inter frame period
在这里插入图片描述
frame start到循环结束的时间称为framePeriodicity(代码中 rlFrameCfg_t结构体)
在mmwave studio上位机中 则称为 Periodicity

如下图frame配置部分
在这里插入图片描述
在inter frame Periodicity时间内(比如这里整个周期是55ms)
就是用于计算和处理的时间 一定比55ms要小
如果chirps很多的话 那么计算时间就会减小

如果是处理点云数据 则只需要每一帧计算一次点云即可
计算出当前帧的xyz坐标和速度 以及保存时间戳

雷达天线排列位置

在工业雷达包:

C:\ti\mmwave_industrial_toolbox_4_12_0\antennas\ant_rad_patterns

路径下 有各个EVM开发板的天线排列说明
同样的 EVM手册中也有
如IWR6843AOPEVM:
在这里插入图片描述
在这里插入图片描述
其天线的间距等等位于数据手册:
在这里插入图片描述

芯片框架

IWR6843AOP可以分成三个主要部分及多个外设
BSS:雷达前端部分
MSS:cortex-rf4内核 主要用于控制
DSS: DSP C674内核 主要用于信号处理
外设:UART GPIO DPM HWA等

在这里插入图片描述
其中 大部分外设可以被MSS或DSS调用
另外 雷达前端BSS部分在SDK里由MMWave API调用

代码框架上 可以分成两个代码 MSS和DSS 两个代码同时运行 通过某些外设进行同步 协同运作

但也可以只跑一个内核 在仅MSS模式下 依旧可以调用某些用于信号处理的外设 demo代码就是如此

如下图为demo代码流程
在这里插入图片描述

Demo工程功能

IWR6843AOP的开箱工程是根据IWR6843AOPEVM开发板来的
该工程可以将IWR6843AOP的两个串口利用起来 实现的功能主要是两个方面:
通过115200波特率的串口配置参数 建立握手协议
通过115200*8的串口输出雷达数据
此工程需要匹配TI官方的上位机:mmWave_Demo_Visualizer_3.6.0来使用
该上位机可以在连接串口后自动化操作 并且对雷达数据可视化
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
关于雷达参数配置 则在SDK的mmw\profiles目录下
言简意赅 可以直接更改该目录下的文件参数来达到配置雷达参数的目的
在这里插入图片描述

但这种方法不利于直接更改 每次用上位机运行后的参数是固定的(上位机运行需要SDK环境) 所以也可以在代码中写死 本文探讨的就是这个方向

CCS工程导入

首先 在工业雷达包目录下找到该工程设置

C:\ti\mmwave_industrial_toolbox_4_12_0\labs\Out_Of_Box_Demo\src\xwr6843AOP

使用CCS的import project功能导入工程后 即可完成环境搭建
在这里插入图片描述
这里用到的SDK最新版为3.6版本

工程叙述

以下来自官方文档 可以直接跳过

Software Tasks

The demo consists of the following (SYSBIOS) tasks:

MmwDemo_initTask. This task is created/launched by main and is a one-time active task whose main functionality is to initialize drivers (<driver>_init), MMWave module (MMWave_init), DPM module (DPM_init), open UART and data path related drivers (EDMA, HWA), and create/launch the following tasks (the CLI_task is launched indirectly by calling CLI_open).
CLI_task. This command line interface task provides a simplified 'shell' interface which allows the configuration of the BSS via the mmWave interface (MMWave_config). It parses input CLI configuration commands like chirp profile and GUI configuration. When sensor start CLI command is parsed, all actions related to starting sensor and starting the processing the data path are taken. When sensor stop CLI command is parsed, all actions related to stopping the sensor and stopping the processing of the data path are taken
MmwDemo_mmWaveCtrlTask. This task is used to provide an execution context for the mmWave control, it calls in an endless loop the MMWave_execute API.
MmwDemo_DPC_ObjectDetection_dpmTask. This task is used to provide an execution context for DPM (Data Path Manager) execution, it calls in an endless loop the DPM_execute API. In this context, all of the registered object detection DPC (Data Path Chain) APIs like configuration, control and execute will take place. In this task. When the DPC's execute API produces the detected objects and other results, they are transmitted out of the UART port for display using the visualizer.

Data Path

在这里插入图片描述
Top Level Data Path Processing Chain
在这里插入图片描述
Top Level Data Path Timing

The data path processing consists of taking ADC samples as input and producing detected objects (point-cloud and other information) to be shipped out of UART port to the PC. The algorithm processing is realized using the DPM registered Object Detection DPC. The details of the processing in DPC can be seen from the following doxygen documentation:
ti/datapath/dpc/objectdetection/objdethwa/docs/doxygen/html/index.html

Output information sent to host

Output packets with the detection information are sent out every frame through the UART. Each packet consists of the header MmwDemo_output_message_header_t and the number of TLV items containing various data information with types enumerated in MmwDemo_output_message_type_e. The numerical values of the types can be found in mmw_output.h. Each TLV item consists of type, length (MmwDemo_output_message_tl_t) and payload information. The structure of the output packet is illustrated in the following figure. Since the length of the packet depends on the number of detected objects it can vary from frame to frame. The end of the packet is padded so that the total packet length is always multiple of 32 Bytes.

在这里插入图片描述
Output packet structure sent to UART
The following subsections describe the structure of each TLV.

List of detected objects
Type: (MMWDEMO_OUTPUT_MSG_DETECTED_POINTS)Length: (Number of detected objects) x (size of DPIF_PointCloudCartesian_t)Value: Array of detected objects. The information of each detected object is as per the structure DPIF_PointCloudCartesian_t. When the number of detected objects is zero, this TLV item is not sent. The maximum number of objects that can be detected in a sub-frame/frame is DPC_OBJDET_MAX_NUM_OBJECTS.The orientation of x,y and z axes relative to the sensor is as per the following figure. (Note: The antenna arrangement in the figure is shown for standard EVM (see gAntDef_default) as an example but the figure is applicable for any antenna arrangement.)

在这里插入图片描述
Coordinate Geometry
The whole detected objects TLV structure is illustrated in figure below.
在这里插入图片描述
Detected objects TLV

Range profile
Type: (MMWDEMO_OUTPUT_MSG_RANGE_PROFILE)Length: (Range FFT size) x (size of uint16_t)Value: Array of profile points at 0th Doppler (stationary objects). The points represent the sum of log2 magnitudes of received antennas expressed in Q9 format.Noise floor profile
Type: (MMWDEMO_OUTPUT_MSG_NOISE_PROFILE)Length: (Range FFT size) x (size of uint16_t)Value: This is the same format as range profile but the profile is at the maximum Doppler bin (maximum speed objects). In general for stationary scene, there would be no objects or clutter at maximum speed so the range profile at such speed represents the receiver noise floor.
Azimuth static heatmap
Type: (MMWDEMO_OUTPUT_MSG_AZIMUT_STATIC_HEAT_MAP)Length: (Range FFT size) x (Number of "azimuth" virtual antennas) (size of cmplx16ImRe_t_)Value: Array DPU_AoAProcHWA_HW_Resources::azimuthStaticHeatMap. The antenna data are complex symbols, with imaginary first and real second in the following order:
Imag(ant 0, range 0), Real(ant 0, range 0),...,Imag(ant N-1, range 0),Real(ant N-1, range 0)...Imag(ant 0, range R-1), Real(ant 0, range R-1),...,Imag(ant N-1, range R-1),Real(ant N-1, range R-1)

Note that the number of virtual antennas is equal to the number of “azimuth” virtual antennas. The antenna symbols are arranged in the order as they occur at the input to azimuth FFT. Based on this data the static azimuth heat map could be constructed by the GUI running on the host.

Azimuth/Elevation static heatmap
Type: (MMWDEMO_OUTPUT_MSG_AZIMUT_ELEVATION_STATIC_HEAT_MAP)Length: (Range FFT size) x (Number of all virtual antennas) (size of cmplx16ImRe_t_)Value: Array DPU_AoAProcHWA_HW_Resources::azimuthStaticHeatMap. The antenna data are complex symbols, with imaginary first and real second in the following order:
 Imag(ant 0, range 0), Real(ant 0, range 0),...,Imag(ant N-1, range 0),Real(ant N-1, range 0)...Imag(ant 0, range R-1), Real(ant 0, range R-1),...,Imag(ant N-1, range R-1),Real(ant N-1, range R-1)

Note that the number of virtual antennas is equal to the total number of active virtual antennas. The antenna symbols are arranged in the order as they occur in the radar cube matrix. This TLV is sent by AOP version of MMW demo, that uses AOA2D DPU. Based on this data the static azimuth or elevation heat map could be constructed by the GUI running on the host.

Range/Doppler heatmap
Type: (MMWDEMO_OUTPUT_MSG_RANGE_DOPPLER_HEAT_MAP)Length: (Range FFT size) x (Doppler FFT size) (size of uint16_t)Value: Detection matrix DPIF_DetMatrix::data. The order is :
 X(range bin 0, Doppler bin 0),...,X(range bin 0, Doppler bin D-1),...X(range bin R-1, Doppler bin 0),...,X(range bin R-1, Doppler bin D-1)
Stats information
Type: (MMWDEMO_OUTPUT_MSG_STATS )Length: (size of MmwDemo_output_message_stats_t)Value: Timing information as per MmwDemo_output_message_stats_t. See timing diagram below related to the stats.

在这里插入图片描述
Processing timing

Note:The MmwDemo_output_message_stats_t::interChirpProcessingMargin is not computed (it is always set to 0). This is because there is no CPU involvement in the 1D processing (only HWA and EDMA are involved), and it is not possible to know how much margin is there in chirp processing without CPU being notified at every chirp when processing begins (chirp event) and when the HWA-EDMA computation ends. The CPU is intentionally kept free during 1D processing because a real application may use this time for doing some post-processing algorithm execution.
While the MmwDemo_output_message_stats_t::interFrameProcessingTime reported will be of the current sub-frame/frame, the MmwDemo_output_message_stats_t::interFrameProcessingMargin and MmwDemo_output_message_stats_t::transmitOutputTime will be of the previous sub-frame (of the same MmwDemo_output_message_header_t::subFrameNumber as that of the current sub-frame) or of the previous frame.
The MmwDemo_output_message_stats_t::interFrameProcessingMargin excludes the UART transmission time (available as MmwDemo_output_message_stats_t::transmitOutputTime). This is done intentionally to inform the user of a genuine inter-frame processing margin without being influenced by a slow transport like UART, this transport time can be significantly longer for example when streaming out debug information like heat maps. Also, in a real product deployment, higher speed interfaces (e.g LVDS) are likely to be used instead of UART. User can calculate the margin that includes transport overhead (say to determine the max frame rate that a particular demo configuration will allow) using the stats because they also contain the UART transmission time.

The CLI command “guMonitor” specifies which TLV element will be sent out within the output packet. The arguments of the CLI command are stored in the structure MmwDemo_GuiMonSel_t.

Side information of detected objects
Type: (MMWDEMO_OUTPUT_MSG_DETECTED_POINTS_SIDE_INFO)Length: (Number of detected objects) x (size of DPIF_PointCloudSideInfo_t)Value: Array of detected objects side information. The side information of each detected object is as per the structure DPIF_PointCloudSideInfo_t). When the number of detected objects is zero, this TLV item is not sent.
Temperature Stats
Type: (MMWDEMO_OUTPUT_MSG_TEMPERATURE_STATS)Length: (size of MmwDemo_temperatureStats_t)Value: Structure of detailed temperature report as obtained from Radar front end. MmwDemo_temperatureStats_t::tempReportValid is set to return value of rlRfGetTemperatureReport. If MmwDemo_temperatureStats_t::tempReportValid is 0, values in MmwDemo_temperatureStats_t::temperatureReport are valid else they should be ignored. This TLV is sent along with Stats TLV described in Stats information
Range Bias and Rx Channel Gain/Phase Measurement and Compensation

Because of imperfections in antenna layouts on the board, RF delays in SOC, etc, there is need to calibrate the sensor to compensate for bias in the range estimation and receive channel gain and phase imperfections. The following figure illustrates the calibration procedure.

在这里插入图片描述
Calibration procedure ladder diagram

The calibration procedure includes the following steps:Set a strong target like corner reflector at the distance of X meter (X less than 50 cm is not recommended) at boresight.
Set the following command in the configuration profile in .../profiles/profile_calibration.cfg, to reflect the position X as follows: where D (in meters) is the distance of window around X where the peak will be searched. The purpose of the search window is to allow the test environment from not being overly constrained say because it may not be possible to clear it of all reflectors that may be stronger than the one used for calibration. The window size is recommended to be at least the distance equivalent of a few range bins. One range bin for the calibration profile (profile_calibration.cfg) is about 5 cm. The first argument "1" is to enable the measurement. The stated configuration profile (.cfg) must be used otherwise the calibration may not work as expected (this profile ensures all transmit and receive antennas are engaged among other things needed for calibration).measureRangeBiasAndRxChanPhase 1 X D
Start the sensor with the configuration file.
In the configuration file, the measurement is enabled because of which the DPC will be configured to perform the measurement and generate the measurement result (DPU_AoAProc_compRxChannelBiasCfg_t) in its result structure (DPC_ObjectDetection_ExecuteResult_t::compRxChanBiasMeasurement), the measurement results are written out on the CLI port (MmwDemo_measurementResultOutput) in the format below: For details of how DPC performs the measurement, see the DPC documentation.compRangeBiasAndRxChanPhase <rangeBias> <Re(0,0)> <Im(0,0)> <Re(0,1)> <Im(0,1)> ... <Re(0,R-1)> <Im(0,R-1)> <Re(1,0)> <Im(1,0)> ... <Re(T-1,R-1)> <Im(T-1,R-1)>
The command printed out on the CLI now can be copied and pasted in any configuration file for correction purposes. This configuration will be passed to the DPC for the purpose of applying compensation during angle computation, the details of this can be seen in the DPC documentation. If compensation is not desired, the following command should be given (depending on the EVM and antenna arrangement) Above sets the range bias to 0 and the phase coefficients to unity so that there is no correction. Note the two commands must always be given in any configuration file, typically the measure commmand will be disabled when the correction command is the desired one.For ISK EVM:compRangeBiasAndRxChanPhase 0.0   1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 For AOP EVMcompRangeBiasAndRxChanPhase 0.0   1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 
Streaming data over LVDS
The LVDS streaming feature enables the streaming of HW data (a combination of ADC/CP/CQ data) and/or user specific SW data through LVDS interface. The streaming is done mostly by the CBUFF and EDMA peripherals with minimal CPU intervention. The streaming is configured through the MmwDemo_LvdsStreamCfg_t CLI command which allows control of HSI header, enable/disable of HW and SW data and data format choice for the HW data. The choices for data formats for HW data are:MMW_DEMO_LVDS_STREAM_CFG_DATAFMT_DISABLED
MMW_DEMO_LVDS_STREAM_CFG_DATAFMT_ADC
MMW_DEMO_LVDS_STREAM_CFG_DATAFMT_CP_ADC_CQ
In order to see the high-level data format details corresponding to the above data format configurations, refer to the corresponding slides in ti\drivers\cbuff\docs\CBUFF_Transfers.pptxWhen HW data LVDS streaming is enabled, the ADC/CP/CQ data is streamed per chirp on every chirp event. When SW data streaming is enabled, it is streamed during inter-frame period after the list of detected objects for that frame is computed. The SW data streamed every frame/sub-frame is composed of the following in time:HSI header (HSIHeader_t): refer to HSI module for details.
User data header: MmwDemo_LVDSUserDataHeader
User data payloads:
Point-cloud information as a list : DPIF_PointCloudCartesian_t x number of detected objects
Point-cloud side information as a list : DPIF_PointCloudSideInfo_t x number of detected objects

The format of the SW data streamed is shown in the following figure:
在这里插入图片描述
LVDS SW Data format

Note:Only single-chirp formats are allowed, multi-chirp is not supported.
When number of objects detected in frame/sub-frame is 0, there is no transmission beyond the user data header.
For HW data, the inter-chirp duration should be sufficient to stream out the desired amount of data. For example, if the HW data-format is ADC and HSI header is enabled, then the total amount of data generated per chirp is:
(numAdcSamples * numRxChannels * 4 (size of complex sample) + 52 [sizeof(HSIDataCardHeader_t) + sizeof(HSISDKHeader_t)] ) rounded up to multiples of 256 [=sizeof(HSIHeader_t)] bytes.
The chirp time Tc in us = idle time + ramp end time in the profile configuration. For n-lane LVDS with each lane at a maximum of B Mbps,
maximum number of bytes that can be send per chirp = Tc * n * B / 8 which should be greater than the total amount of data generated per chirp i.e
Tc * n * B / 8 >= round-up(numAdcSamples * numRxChannels * 4 + 52, 256).
E.g if n = 2, B = 600 Mbps, idle time = 7 us, ramp end time = 44 us, numAdcSamples = 512, numRxChannels = 4, then 7650 >= 8448 is violated so this configuration will not work. If the idle-time is doubled in the above example, then we have 8700 > 8448, so this configuration will work.
For SW data, the number of bytes to transmit each sub-frame/frame is:
52 [sizeof(HSIDataCardHeader_t) + sizeof(HSISDKHeader_t)] + sizeof(MmwDemo_LVDSUserDataHeader_t) [=8] +
number of detected objects (Nd) * { sizeof(DPIF_PointCloudCartesian_t) [=16] + sizeof(DPIF_PointCloudSideInfo_t) [=4] } rounded up to multiples of 256 [=sizeof(HSIHeader_t)] bytes.
or X = round-up(60 + Nd * 20, 256). So the time to transmit this data will be
X * 8 / (n*B) us. The maximum number of objects (Ndmax) that can be detected is defined in the DPC (DPC_OBJDET_MAX_NUM_OBJECTS). So if Ndmax = 500, then time to transmit SW data is 68 us. Because we parallelize this transmission with the much slower UART transmission, and because UART transmission is also sending at least the same amount of information as the LVDS, the LVDS transmission time will not add any burdens on the processing budget beyond the overhead of reconfiguring and activating the CBUFF session (this overhead is likely bigger than the time to transmit).
The total amount of data to be transmitted in a HW or SW packet must be greater than the minimum required by CBUFF, which is 64 bytes or 32 CBUFF Units (this is the definition CBUFF_MIN_TRANSFER_SIZE_CBUFF_UNITS in the CBUFF driver implementation). If this threshold condition is violated, the CBUFF driver will return an error during configuration and the demo will generate a fatal exception as a result. When HSI header is enabled, the total transfer size is ensured to be at least 256 bytes, which satisfies the minimum. If HSI header is disabled, for the HW session, this means that numAdcSamples * numRxChannels * 4 >= 64. Although mmwavelink allows minimum number of ADC samples to be 2, the demo is supported for numAdcSamples >= 64. So HSI header is not required to be enabled for HW only case. But if SW session is enabled, without the HSI header, the bytes in each packet will be 8 + Nd * 20. So for frames/sub-frames where Nd < 3, the demo will generate exception. Therefore HSI header must be enabled if SW is enabled, this is checked in the CLI command validation.
Implementation Notes
The LVDS implementation is mostly present in mmw_lvds_stream.h and mmw_lvds_stream.c with calls in mss_main.c. Additionally HSI clock initialization is done at first time sensor start using MmwDemo_mssSetHsiClk.
EDMA channel resources for CBUFF/LVDS are in the global resource file (mmw_res.h, see Hardware Resource Allocation) along with other EDMA resource allocation. The user data header and two user payloads are configured as three user buffers in the CBUFF driver. Hence SW allocation for EDMA provides for three sets of EDMA resources as seen in the SW part (swSessionEDMAChannelTable[.]) of MmwDemo_LVDSStream_EDMAInit. The maximum number of HW EDMA resources are needed for the data-format MMW_DEMO_LVDS_STREAM_CFG_DATAFMT_CP_ADC_CQ, which as seen in the corresponding slide in ti\drivers\cbuff\docs\CBUFF_Transfers.pptx is 12 channels (+ shadows) including the 1st special CBUFF EDMA event channel which CBUFF IP generates to the EDMA, hence the HW part (hwwSessionEDMAChannelTable[.]) of MmwDemo_LVDSStream_EDMAInit has 11 table entries.
Although the CBUFF driver is configured for two sessions (hw and sw), at any time only one can be active. So depending on the LVDS CLI configuration and whether advanced frame or not, there is logic to activate/deactivate HW and SW sessions as necessary.
The CBUFF session (HW/SW) configure-create and delete depends on whether or not re-configuration is required after the first time configuration.
For HW session, re-configuration is done during sub-frame switching to re-configure for the next sub-frame but when there is no advanced frame (number of sub-frames = 1), the HW configuration does not need to change so HW session does not need to be re-created.
For SW session, even though the user buffer start addresses and sizes of headers remains same, the number of detected objects which determines the sizes of some user buffers changes from one sub-frame/frame to another sub-frame/frame. Therefore SW session needs to be recreated every sub-frame/frame.
User may modify the application software to transmit different information than point-cloud in the SW data e.g radar cube data (output of range DPU). However the CBUFF also has a maximum link list entry size limit of 0x3FFF CBUFF units or 32766 bytes. This means it is the limit for each user buffer entry [there are maximum of 3 entries -1st used for user data header, 2nd for point-cloud and 3rd for point-cloud side information]. During session creation, if this limit is exceeded, the CBUFF will return an error (and demo will in turn generate an exception). A single physical buffer of say size 50000 bytes may be split across two user buffers by providing one user buffer with (address, size) = (start address, 25000) and 2nd user buffer with (address, size) = (start address + 25000, 25000), beyond this two (or three if user data header is also replaced) limit, the user will need to create and activate (and wait for completion) the SW session multiple times to accomplish the transmission.

The following figure shows a timing diagram for the LVDS streaming (the figure is not to scale as actual durations will vary based on configuration).
在这里插入图片描述

How to bypass CLI
Re-implement the file mmw_cli.c as follows:MmwDemo_CLIInit should just create a task with input taskPriority. Lets say the task is called "MmwDemo_sensorConfig_task".
All other functions are not needed
Implement the MmwDemo_sensorConfig_task as follows:
Fill gMmwMCB.cfg.openCfg
Fill gMmwMCB.cfg.ctrlCfg
Add profiles and chirps using MMWave_addProfile and MMWave_addChirp functions
Call MmwDemo_CfgUpdate for every offset in Offsets for storing CLI configuration (MMWDEMO_xxx_OFFSET in mmw.h)
Fill gMmwMCB.dataPathObj.objDetCommonCfg.preStartCommonCfg
Call MmwDemo_openSensor
Call MmwDemo_startSensor (One can use helper function MmwDemo_isAllCfgInPendingState to know if all dynamic config was provided)
Hardware Resource Allocation
The Object Detection DPC needs to configure the DPUs hardware resources (HWA, EDMA). Even though the hardware resources currently are only required to be allocated for this one and only DPC in the system, the resource partitioning is shown to be in the ownership of the demo. This is to illustrate the general case of resource allocation across more than one DPCs and/or demo's own processing that is post-DPC processing. This partitioning can be seen in the mmw_res.h file. This file is passed as a compiler command line define
"--define=APP_RESOURCE_FILE="<ti/demo/xwr64xx/mmw/mmw_res.h>" 

in mmw.mak when building the DPC sources as part of building the demo application and is referred in object detection DPC sources where needed as

#include APP_RESOURCE_FILE 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/791002.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大模型学习笔记八:手撕AutoGPT

文章目录 一、功能需求二、演示用例三、核心模块流程图四、代码分析1&#xff09;Agent类目录创建智能体对象2&#xff09;开始主流程3&#xff09;在prompt的main目录输入主prompt和最后prompt4&#xff09;增加实际的工具集tools&#xff08;也就是函数&#xff09;5&#xf…

【协议篇:Http与Https】

1. Http 1.1 Http的定义 超文本传输协议&#xff08;Hypertext Transfer Protocol&#xff0c;HTTP&#xff09;是用于分布式、协作式和超媒体信息系统的应用层协议。它是互联网上最广泛应用的数据通信协议之一&#xff0c;尤其对于万维网&#xff08;WWW&#xff09;服务而言…

docker容器技术篇:Docker API配置与常用操作

docker容器技术篇&#xff1a;Docker API配置与使用 一、API具体是什么&#xff1f; 百科解释应用程序接口&#xff08;API&#xff09;&#xff0c;又称为应用编程接口&#xff0c;就是软件系统不同组成部分衔接的约定&#xff0c;蒙了吧&#xff01;&#xff01;&#xff0…

C语言要点细细梳理(上)

1.类型转换 1.1 隐式类型转换 在两个不同类型数据进行运算时&#xff0c;会把低精度类型的数据转为与高精度类型一致的数据类型然后计算&#xff0c;然后再根据赋值的需要把计算结果转回去 1.2 强制类型转换 可以将某种类型的数据转换为想要的精度&#xff0c;一般int、dou…

Postman和Python Request测试多行Form-data

1、请求参数有多个&#xff0c;F12查看请求体如下&#xff1a; 查看源代码&#xff1a; ------WebKitFormBoundaryHknGXm9VkhRUXZYC Content-Disposition: form-data; name"custId"IICON004 ------WebKitFormBoundaryHknGXm9VkhRUXZYC Content-Disposition: form-da…

java数据结构与算法刷题-----LeetCode417. 太平洋大西洋水流问题

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 文章目录 深度优先遍历 深度优先遍历 解题思路&#xff1a;时间复杂度O( …

【Pt】马灯贴图绘制过程 04-玻璃脏迹

目录 效果 步骤 一、透明玻璃 二、烟熏痕迹 三、粗糙 四、浮尘 效果 步骤 一、透明玻璃 1. 打开纹理集设置&#xff0c;着色器链接选择“新的着色器链接” 在着色器设置中可以看到此时名称为“Main shader &#xff08;Copy&#xff09;” 这里修改名称为“玻璃” 在…

非关系型数据库-----------Redis的主从复制、哨兵模式

目录 一、redis群集有三种模式 1.1主从复制、哨兵、集群的区别 1.1.1主从复制 1.1.2哨兵 1.1.3集群 二、主从复制 2.1主从复制概述 2.2主从复制的作用 ①数据冗余 ②故障恢复 ③负载均衡 ④高可用基石 2.3主从复制流程 2.4搭建redis主从复制 2.4.1环境准备 2.4…

文件夹0字节:数据恢复全攻略与防范之道

在日常使用电脑或移动设备的过程中&#xff0c;我们经常会遇到各种各样的问题&#xff0c;其中文件夹突然变为0字节的情况尤为令人头疼。这种情况通常意味着原本存储着重要文件的文件夹突然变得空空如也&#xff0c;文件大小显示为0字节。面对这样的数据灾难&#xff0c;许多人…

VSCode调试C++

1、环境准备 1.1、g的安装与使用 1.1.1、安装 方式一&#xff1a;Xcode安装 苹果的开发集成工具是Xcode.app&#xff0c;其中包含一堆命令行工具。 在 App store 可以看到其大小有好几个G&#xff0c;有点大。 方式二&#xff1a;Command Line Tools 安装 Command Line Too…

03 Python进阶:MySQL - mysql-connector

mysql-connector安装 要在 Python 中使用 MySQL 数据库&#xff0c;你需要安装 MySQL 官方提供的 MySQL Connector/Python。下面是安装 MySQL Connector/Python 的步骤&#xff1a; 首先&#xff0c;确保你已经安装了 Python&#xff0c;如果没有安装&#xff0c;可以在 Python…

从零到一:基于 K3s 快速搭建本地化 kubeflow AI 机器学习平台

背景 Kubeflow 是一种开源的 Kubernetes 原生框架&#xff0c;可用于开发、管理和运行机器学习工作负载&#xff0c;支持诸如 PyTorch、TensorFlow 等众多优秀的机器学习框架&#xff0c;本文介绍如何在 Mac 上搭建本地化的 kubeflow 机器学习平台。 注意&#xff1a;本文以 …

js表达式

js 数据&#xff1a; 字面量 1 123 变量 a 表达式 12 2*2 a&&b 表达式都会有一个返回结果。表达式仍然是数据&#xff0c;所有可以写字面量&#xff0c;变量的地方都可以写表达式 在JavaScript中&#xff0c;表达式中的运算符具有不同的优先级&#xff0c;这决定…

【.NET全栈】ZedGraph图表库的介绍和应用

文章目录 一、ZedGraph介绍ZedGraph的特点ZedGraph的缺点使用注意事项 二、ZedGraph官网三、ZedGraph的应用四、ZedGraph的高端应用五、、总结 一、ZedGraph介绍 ZedGraph 是一个用于绘制图表和图形的开源.NET图表库。它提供了丰富的功能和灵活性&#xff0c;可以用于创建各种…

国外媒体推广软文宣发:促进海外宣发新风尚,迈向国际舞台

大舍传媒http://www.dashemeijie.com 序言 伴随全球经济一体化发展趋向&#xff0c;越来越多的中国企业希望在国际舞台上表现自己的总体水平。而国外媒体软文发稿作为一种全新的海外宣传方式&#xff0c;正逐渐成为促进海外宣发新风尚的主要常用工具。接下来我们就探讨国外媒…

uniapp自定义卡片轮播图

效果图 1、封装组件 <template><view><!-- 自定义卡片轮播 --><swiper class"swiperBox" :previous-margin"swiper.margin" :next-marginswiper.margin :circular"true"change"swiperChange"><swiper-ite…

Vue项目中 安装及使用Sass(scss)

普通方法 一、安装使用scss 1. 安装 scss npm install scss --save2. 安装 node-sass 和 sass-loader sass-loader&#xff1a;把 sass编译成css node-sass&#xff1a;nodejs环境中将sass转css 提示&#xff1a;限制 node-sass&#xff0c;sass-loader 版本号&#xff0c;…

华为服务器RAID配置教程 服务器硬盘故障处理帮助 浪潮RAID配置教程 磁盘阵列配置通用教程

前言&#xff08;本文档持续更新&#xff09; 本文主要记录服务器配置RAID&#xff08;磁盘阵列&#xff09;过程中存在的细节问题及官方文档无法解决的问题的解决方案 配置环境 华为 RH2288 v3服务器配置RAID组 如何快速配置 1.找到服务器品牌的阵列卡型号&#xff0c;找不到…

了解 Solidity 语言:构建智能合约的首选编程语言

了解 Solidity 语言&#xff1a;构建智能合约的首选编程语言 Solidity 是一种用于编写智能合约的高级编程语言&#xff0c;广泛应用于以太坊和其他以太坊虚拟机&#xff08;EVM&#xff09;兼容的区块链平台。它是以太坊智能合约的首选语言之一&#xff0c;具有丰富的功能和灵活…

hexo博客7:构建简单的多层安全防御体系

【hexo博客7】构建简单的多层安全防御体系 写在最前面理解全面安全策略的重要性防御常见的网络攻击1. SQL注入攻击2. 文件上传漏洞3. 跨站脚本攻击&#xff08;XSS&#xff09;4. 跨站请求伪造&#xff08;CSRF&#xff09;5. 目录遍历/本地文件包含&#xff08;LFI/RFI&#x…