使用阿里云试用Elasticsearch学习:1.1 基础入门——入门实践

阿里云试用一个月:https://help.aliyun.com/search/?k=elastic&scene=all&page=1
官网试用十五天:https://www.elastic.co/cn/cloud/cloud-trial-overview
Elasticsearch中文文档:https://www.elastic.co/guide/cn/elasticsearch/guide/current/_document_oriented.html

控制台修改配置

自动创建索引打开
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/aedabe609e224916b3b393be3596af61.png在这里插入图片描述
访问白名单打开
在这里插入图片描述

创建一个雇员目录

为了让大家对 Elasticsearch 能实现什么及其上手难易程度有一个基本印象,让我们从一个简单的教程开始并介绍索引、搜索及聚合等基础概念。我们将一并介绍一些新的技术术语,即使无法立即全部理解它们也无妨,因为在本书后续内容中,我们将继续深入介绍这里提到的所有概念。

创建一个雇员目录
我们受雇于 Megacorp 公司,作为 HR 部门新的 “热爱无人机” (“We love our drones!”)激励项目的一部分,我们的任务是为此创建一个员工目录。该目录应当能培养员工认同感及支持实时、高效、动态协作,因此有一些业务需求:

  • 支持包含多值标签、数值、以及全文本的数据
  • 检索任一员工的完整信息
  • 允许结构化搜索,比如查询 30 岁以上的员工
  • 允许简单的全文搜索以及较复杂的短语搜索
  • 支持在匹配文档内容中高亮显示搜索片段
  • 支持基于数据创建和管理分析仪表盘

索引员工文档

第一个业务需求是存储员工数据。 这将会以 员工文档 的形式存储:一个文档代表一个员工。存储数据到 Elasticsearch 的行为叫做 索引 ,但在索引一个文档之前,需要确定将文档存储在哪里。
一个 Elasticsearch 集群可以 包含多个 索引 ,相应的每个索引可以包含多个 类型 。 这些不同的类型存储着多个 文档 ,每个文档又有 多个 属性 。

对于员工目录,我们将做如下操作:

  • 每个员工索引一个文档,文档包含该员工的所有信息。
  • 每个文档都将是 employee 类型 。
  • 该类型位于 索引 megacorp 内。
  • 该索引保存在我们的 Elasticsearch 集群中。
# 这种指定employee类型的已经不支持了
PUT /megacorp/employee/1
{"first_name" : "John","last_name" :  "Smith","age" :        25,"about" :      "I love to go rock climbing","interests": [ "sports", "music" ]
}

从Elasticsearch 7.x版本开始,推荐不再使用自定义类型,比如employee。在较新的Elasticsearch版本中,索引中只有文档,不再有针对文档类型的区分。因此,在创建索引时,不需要指定文档类型,直接指定文档ID即可。

PUT /megacorp/_doc/1
{"first_name" : "John","last_name" :  "Smith","age" :        25,"about" :      "I love to go rock climbing","interests": [ "sports", "music" ]
}

注意,路径 /megacorp/_doc/1 包含了三部分的信息:

  • megacorp —— 索引名称
  • _doc —— 默认类型名称
  • 1 —— 特定雇员的ID
  • 请求体 —— JSON 文档 —— 包含了这位员工的所有详细信息,他的名字叫 John Smith ,今年 25 岁,喜欢攀岩。

很简单!无需进行执行管理任务,如创建一个索引或指定每个属性的数据类型之类的,可以直接只索引一个文档。Elasticsearch 默认地完成其他一切,因此所有必需的管理任务都在后台使用默认设置完成。
进行下一步前,让我们增加更多的员工信息到目录中:

PUT /megacorp/_doc/2
{"first_name" :  "Jane","last_name" :   "Smith","age" :         32,"about" :       "I like to collect rock albums","interests":  [ "music" ]
}
PUT /megacorp/_doc/3
{"first_name" :  "Douglas","last_name" :   "Fir","age" :         35,"about":        "I like to build cabinets","interests":  [ "forestry" ]
}

检索文档

目前我们已经在 Elasticsearch 中存储了一些数据, 接下来就能专注于实现应用的业务需求了。第一个需求是可以检索到单个雇员的数据。
这在 Elasticsearch 中很简单。简单地执行 一个 HTTP GET 请求并指定文档的地址——索引库、类型和ID。 使用这三个信息可以返回原始的 JSON 文档:

GET /megacorp/_doc/1

返回结果包含了文档的一些元数据,以及 _source 属性,内容是 John Smith 雇员的原始 JSON 文档:

{"_index": "megacorp","_id": "1","_version": 1,"_seq_no": 2,"_primary_term": 1,"found": true,"_source": {"first_name": "John","last_name": "Smith","age": 25,"about": "I love to go rock climbing","interests": ["sports","music"]}
}
  • _index: 显示了该文档所属的索引名称,这里是megacorp。
  • _id: 显示了文档的ID,这里是1。
  • _version: 显示了文档的版本号,每次文档更新都会增加这个版本号。
  • _seq_no: 显示了文档在索引中的序列号,用于处理并发操作。
  • _primary_term: 显示了文档在索引中的主要分片的代数,用于处理并发操作。
  • found: 显示了文档是否被找到,这里是true表示找到了。
  • _source: 包含了实际的文档数据,包括first_name、last_name、age、about和interests等字段,这些字段就是您插入的文档数据。

将 HTTP 命令由 PUT 改为 GET 可以用来检索文档,同样的,可以使用 DELETE 命令来删除文档,以及使用 HEAD 指令来检查文档是否存在。如果想更新已存在的文档,只需再次 PUT

轻量搜索

一个 GET 是相当简单的,可以直接得到指定的文档。 现在尝试点儿稍微高级的功能,比如一个简单的搜索!
第一个尝试的几乎是最简单的搜索了。我们使用下列请求来搜索所有雇员:

GET megacorp/_search

可以看到,我们仍然使用索引库 megacorp ,但与指定一个文档 ID 不同,这次使用 _search 。返回结果包括了所有三个文档,放在数组 hits 中。一个搜索默认返回十条结果。

{"took": 1,"timed_out": false,"_shards": {"total": 1,"successful": 1,"skipped": 0,"failed": 0},"hits": {"total": {"value": 3,"relation": "eq"},"max_score": 1,"hits": [{"_index": "megacorp","_id": "1","_score": 1,"_source": {"first_name": "John","last_name": "Smith","age": 25,"about": "I love to go rock climbing","interests": ["sports","music"]}},......]}
}
  • took: 表示查询所花费的时间,这里是1毫秒。
  • timed_out: 指示查询是否超时,这里是false表示未超时。
  • _shards: 提供有关查询执行期间涉及的分片数量和状态的信息。
    • total: 总分片数。
    • successful: 成功执行查询的分片数。
    • skipped: 跳过的分片数。
    • failed: 失败的分片数。
  • hits: 包含了与查询匹配的文档的信息。
    • total: 符合查询条件的总文档数,value是具体的数量,relation表示关系,这里是"eq"(等于)表示确切匹配。
    • max_score: 匹配文档中最高的得分,通常为1。
    • hits: 匹配的文档数组,每个文档包含了以下信息:
      • _index: 文档所属的索引名称。
      • _id: 文档的ID。
      • _score: 文档的匹配得分。
      • _source: 实际的文档数据,包含了您插入的文档内容。

接下来,尝试下搜索姓氏为 Smith 的雇员。为此,我们将使用一个 高亮 搜索,很容易通过命令行完成。这个方法一般涉及到一个 查询字符串 (query-string) 搜索,因为我们通过一个URL参数来传递查询信息给搜索接口:

GET megacorp/_search?q=last_name:Smith

使用查询表达式搜索

Query-string 搜索通过命令非常方便地进行临时性的即席搜索 ,但它有自身的局限性(参见 轻量 搜索 )。Elasticsearch 提供一个丰富灵活的查询语言叫做 查询表达式 , 它支持构建更加复杂和健壮的查询。
领域特定语言 (DSL), 使用 JSON 构造了一个请求。我们可以像这样重写之前的查询所有名为 Smith 的搜索 :

GET megacorp/_search
{"query" : {"match" : {"last_name" : "Smith"}}
}

返回结果与之前的查询一样,但还是可以看到有一些变化。其中之一是,不再使用 query-string 参数,而是一个请求体替代。这个请求使用 JSON 构造,并使用了一个 match 查询(属于查询类型之一,后面将继续介绍)。

更复杂的搜索

现在尝试下更复杂的搜索。 同样搜索姓氏为 Smith 的员工,但这次我们只需要年龄大于 30 的。查询需要稍作调整,使用过滤器 filter ,它支持高效地执行一个结构化查询。

GET megacorp/_search
{"query" : {"bool": {"must": {"match" : {"last_name" : "smith"}},"filter": {"range" : {"age" : { "gt" : 30 } }}}}
}

must 这部分与我们之前使用的 match 查询 一样。
filter 这部分是一个 range 过滤器 , 它能找到年龄大于 30 的文档,其中 gt 表示_大于_(great than)。

目前无需太多担心语法问题,后续会更详细地介绍。只需明确我们添加了一个 过滤器 用于执行一个范围查询,并复用之前的 match 查询。现在结果只返回了一名员工,叫 Jane Smith,32 岁。

全文搜索

截止目前的搜索相对都很简单:单个姓名,通过年龄过滤。现在尝试下稍微高级点儿的全文搜索——一项 传统数据库确实很难搞定的任务。
搜索下所有喜欢攀岩(rock climbing)的员工:

GET megacorp/_search
{"query" : {"match" : {"about" : "rock climbing"}}
}

显然我们依旧使用之前的 match 查询在about 属性上搜索 “rock climbing” 。得到两个匹配的文档:

"hits": [{"_index": "megacorp","_id": "1","_score": 1.4167401,"_source": {"first_name": "John","last_name": "Smith","age": 25,"about": "I love to go rock climbing","interests": ["sports","music"]}},{"_index": "megacorp","_id": "2","_score": 0.4589591,"_source": {"first_name": "Jane","last_name": "Smith","age": 32,"about": "I like to collect rock albums","interests": ["music"]}}]

_score 为相关性得分
Elasticsearch 默认按照相关性得分排序,即每个文档跟查询的匹配程度。第一个最高得分的结果很明显:John Smith 的 about 属性清楚地写着 “rock climbing” 。

但为什么 Jane Smith 也作为结果返回了呢?原因是她的 about 属性里提到了 “rock” 。因为只有 “rock” 而没有 “climbing” ,所以她的相关性得分低于 John 的。

这是一个很好的案例,阐明了 Elasticsearch 如何 在 全文属性上搜索并返回相关性最强的结果。Elasticsearch中的 相关性 概念非常重要,也是完全区别于传统关系型数据库的一个概念,数据库中的一条记录要么匹配要么不匹配。

短语搜索

找出一个属性中的独立单词是没有问题的,但有时候想要精确匹配一系列单词或者_短语_ 。 比如, 我们想执行这样一个查询,仅匹配同时包含 “rock” 和 “climbing” ,并且 二者以短语 “rock climbing” 的形式紧挨着的雇员记录。

为此对 match 查询稍作调整,使用一个叫做 match_phrase 的查询:

"_source": {"first_name": "John","last_name": "Smith","age": 25,"about": "I love to go rock climbing","interests": ["sports","music"]}

高亮搜索

许多应用都倾向于在每个搜索结果中 高亮 部分文本片段,以便让用户知道为何该文档符合查询条件。在 Elasticsearch 中检索出高亮片段也很容易。
再次执行前面的查询,并增加一个新的 highlight 参数:

GET megacorp/_search
{"query" : {"match_phrase" : {"about" : "rock climbing"}},"highlight": {"fields" : {"about" : {}}}
}

当执行该查询时,返回结果与之前一样,与此同时结果中还多了一个叫做 highlight 的部分。这个部分包含了 about 属性匹配的文本片段,并以 HTML 标签 <em></em> 封装:

"hits": [{"_index": "megacorp","_id": "1","_score": 1.4167401,"_source": {"first_name": "John","last_name": "Smith","age": 25,"about": "I love to go rock climbing","interests": ["sports","music"]},"highlight": {"about": ["I love to go <em>rock</em> <em>climbing</em>"]}}]

分析

终于到了最后一个业务需求:支持管理者对员工目录做分析。 Elasticsearch 有一个功能叫聚合(aggregations),允许我们基于数据生成一些精细的分析结果。聚合与 SQL 中的 GROUP BY 类似但更强大。

举个例子,挖掘出员工中最受欢迎的兴趣爱好:

如果您的目标是对 interests 字段进行聚合操作(aggregation),那么您需要确保该字段是可以被聚合的类型。在 Elasticsearch 中,文本类型的字段默认是无法被聚合的,因为聚合操作通常需要使用字段数据(fielddata)来计算聚合结果,而文本类型的字段默认是禁用字段数据的。

对于您的情况,interests 是一个包含多个兴趣爱好的列表,您想要对这些兴趣爱好进行聚合操作。为了实现这一目的,您可以将 interests 字段定义为 keyword 类型的多值字段,并启用字段数据。这样可以允许 Elasticsearch 对该字段进行聚合操作。

GET megacorp/_search
{"aggs": {"all_interests": {"terms": { "field": "interests.keyword" }}}
}

暂时忽略掉语法,直接看看结果:

......
"aggregations": {"all_interests": {"doc_count_error_upper_bound": 0,"sum_other_doc_count": 0,"buckets": [{"key": "music","doc_count": 2},{"key": "forestry","doc_count": 1},{"key": "sports","doc_count": 1}]}}

可以看到,两位员工对音乐感兴趣,一位对林业感兴趣,一位对运动感兴趣。这些聚合的结果数据并非预先统计,而是根据匹配当前查询的文档即时生成的。如果想知道叫 Smith 的员工中最受欢迎的兴趣爱好,可以直接构造一个组合查询:

GET megacorp/_search
{"query": {"match": {"last_name": "smith"}},"aggs": {"all_interests": {"terms": {"field": "interests.keyword"}}}
}

all_interests 聚合已经变为只包含匹配查询的文档:

{......"hits":{......},"aggregations": {"all_interests": {"doc_count_error_upper_bound": 0,"sum_other_doc_count": 0,"buckets": [{"key": "music","doc_count": 2},{"key": "sports","doc_count": 1}]}}
}

聚合还支持分级汇总 。比如,查询特定兴趣爱好员工的平均年龄:

GET megacorp/_search
{"aggs" : {"all_interests" : {"terms" : { "field" : "interests.keyword" },"aggs" : {"avg_age" : {"avg" : { "field" : "age" }}}}}
}

得到的聚合结果有点儿复杂,但理解起来还是很简单的:

{......"aggregations": {"all_interests": {"doc_count_error_upper_bound": 0,"sum_other_doc_count": 0,"buckets": [{"key": "music","doc_count": 2,"avg_age": {"value": 28.5}},{"key": "forestry","doc_count": 1,"avg_age": {"value": 35}},{"key": "sports","doc_count": 1,"avg_age": {"value": 25}}]}}
}

输出基本是第一次聚合的加强版。依然有一个兴趣及数量的列表,只不过每个兴趣都有了一个附加的 avg_age 属性,代表有这个兴趣爱好的所有员工的平均年龄。
即使现在不太理解这些语法也没有关系,依然很容易了解到复杂聚合及分组通过 Elasticsearch 特性实现得很完美,能够提取的数据类型也没有任何限制。

教程结语

欣喜的是,这是一个关于 Elasticsearch 基础描述的教程,且仅仅是浅尝辄止,更多诸如 suggestions、geolocation、percolation、fuzzy 与 partial matching 等特性均被省略,以便保持教程的简洁。但它确实突显了开始构建高级搜索功能多么容易。不需要配置——只需要添加数据并开始搜索!

很可能语法会让你在某些地方有所困惑,并且对各个方面如何微调也有一些问题。没关系!本书后续内容将针对每个问题详细解释,让你全方位地理解 Elasticsearch 的工作原理。

分布式特性

在本章开头,我们提到过 Elasticsearch 可以横向扩展至数百(甚至数千)的服务器节点,同时可以处理PB级数据。我们的教程给出了一些使用 Elasticsearch 的示例,但并不涉及任何内部机制。Elasticsearch 天生就是分布式的,并且在设计时屏蔽了分布式的复杂性。

Elasticsearch 在分布式方面几乎是透明的。教程中并不要求了解分布式系统、分片、集群发现或其他的各种分布式概念。可以使用笔记本上的单节点轻松地运行教程里的程序,但如果你想要在 100 个节点的集群上运行程序,一切依然顺畅。

Elasticsearch 尽可能地屏蔽了分布式系统的复杂性。这里列举了一些在后台自动执行的操作:

  • 分配文档到不同的容器 或 分片 中,文档可以储存在一个或多个节点中
  • 按集群节点来均衡分配这些分片,从而对索引和搜索过程进行负载均衡
  • 复制每个分片以支持数据冗余,从而防止硬件故障导致的数据丢失
  • 将集群中任一节点的请求路由到存有相关数据的节点
  • 集群扩容时无缝整合新节点,重新分配分片以便从离群节点恢复

后续步骤

现在大家对于通过 Elasticsearch 能够实现什么样的功能、以及上手的难易程度应该已经有了初步概念。Elasticsearch 力图通过最少的知识和配置做到开箱即用。学习 Elasticsearch 的最好方式是投入实践:尽情开始索引和搜索吧!

然而,对于 Elasticsearch 知道得越多,就越有生产效率。告诉 Elasticsearch 越多的领域知识,就越容易进行结果调优。

本书的后续内容将帮助你从新手成长为专家,每个章节不仅阐述必要的基础知识,而且包含专家建议。如果刚刚上手,这些建议可能无法立竿见影;但 Elasticsearch 有着合理的默认设置,在无需干预的情况下通常都能工作得很好。当你开始追求毫秒级的性能提升时,随时可以重温这些章节。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/790513.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

强大缓存清理工具 NetShred X for Mac激活版

NetShred X for Mac是一款专为Mac用户设计的强大缓存清理工具&#xff0c;旨在帮助用户轻松管理和优化系统性能。这款软件拥有直观易用的界面&#xff0c;即使是初次使用的用户也能快速上手。 软件下载&#xff1a;NetShred X for Mac激活版下载 NetShred X能够深入扫描Mac系统…

Django路由分发的三种方式以及命名空间namespce——附带源码解析

目录 1. 前言 2. include常规路由分发 3. include源码解析 4. 路由分发的第二种写法 5. 路由分发的第三种写法 6. 小结 7. 有关namespace 8. 最后 1. 前言 本篇文章主要是讲解路由分发的三种方式。当然&#xff0c;你可能在想&#xff0c;一般做路由分发只需要一个incl…

尚硅谷2024最新Git企业实战教程 | Git与GitLab的企业实战

这篇博客是尚硅谷2024最新Git企业实战教程&#xff0c;全方位学习git与gitlab的完整笔记。 这不仅仅是一套Git的入门教程&#xff0c;更是全方位的极狐GitLab企业任务流开发实战&#xff01;作为一应俱全的一站式DevOps平台&#xff0c;极狐GitLab的高阶功能全面覆盖&#xff0…

2024-04-03 NO.4 Quest3 手势追踪抓取物体

文章目录 1 手势抓取方式1.1 Hand Grab1.2 Touch Hand Grab1.3 Distance Hand Grab 2 HandGrabExamples 示例场景2.1 Interactor 对象2.2 Interactable 对象2.2.1 父子结构2.2.2 “Hand Grab lnteractable” 脚本2.2.3 “Move Towards Target Provider” 脚本2.2.4 其他 Moveme…

5.5G,只比6G少0.5G

5.5G成为通信行业2024年开年的一大焦点。提到5.5G&#xff0c;多出来的0.5G又是啥&#xff1f;为什么不直接迈向6G时代&#xff1f;今天我们一探究竟&#xff01; “0.5G”&#xff0c;现在与未来的桥梁 2021年&#xff0c;国际标准组织3GPP为通信技术的进一步发展定义了新的里…

AI绘图:Stable Diffusion WEB UI 详细操作介绍:进阶-面部修复和调参

结合两篇文章完成了本地部署和基础操作,现在我们来介绍下进阶内容:面部修复,高清修复和调参区。 一:脸部修复 面部修复的适用在画真人、三次元的场景,特别是在画全身的时候 一般在画全身,由于脸部占比的空间比较小,那么绘制出来的效果就会比较差 1.面部修复 SD 支持…

利用sqoop实现sql表数据导入到Hadoop

1.在开发这创建好sql表后&#xff0c;开始执行下面步骤 2.sqoop的安装路径&#xff0c;我这里放在以下位置 3. 进入到option2脚本中&#xff0c;下面是脚本里的内容 下面四点要根据情况随时更改&#xff1a; 1>jdbc:mysql://node00:3306/数据库名 2>sid,sname->前…

BGP-(as-path-filter)

BGP-as-path-filter&#xff0c;缺省 as-path-filter&#xff0c;正则表达式&#xff0c;as-path过滤器&#xff0c;对于BGP的as-path属性实际上可以看成是一个包含空格的字符串。 特点&#xff1a;1、通过对BGP路由的as-path属性进行匹配达到对BGP路由的过滤。 2、在route-…

鸿蒙分布式音乐播放-如何完成播放、暂停、上一曲、下一曲功能

介绍 本示例使用fileIo获取指定音频文件&#xff0c;并通过AudioPlayer完成了音乐的播放完成了基本的音乐播放、暂停、上一曲、下一曲功能&#xff1b;并使用DeviceManager完成了分布式设备列表的显示和分布式能力完成了音乐播放状态的跨设备分享。 本示例用到了与用户进行交…

【VUE+ElementUI】el-table表格固定列el-table__fixed导致滚动条无法拖动

【VUEElementUI】el-table表格固定列el-table__fixed导致滚动条无法拖动 背景 当设置了几个固定列之后&#xff0c;表格无数据时&#xff0c;点击左侧滚动条却被遮挡&#xff0c;原因是el-table__fixed过高导致的 解决 在index.scss中直接加入以下代码即可 /* 设置默认高…

音频转换工具 Bigasoft FLAC Converter for Mac

Bigasoft FLAC Converter for Mac是一款专为Mac用户设计的音频转换工具&#xff0c;它能够将FLAC音频文件高效、高质量地转换为其他常见的音频格式&#xff0c;如MP3、AAC等。这款软件具有直观易用的界面&#xff0c;使用户能够轻松上手&#xff0c;无需复杂的操作步骤即可完成…

Redis底层数据结构-Dict

1. Dict基本结构 Redis的键与值的映射关系是通过Dict来实现的。 Dict是由三部分组成&#xff0c;分别是哈希表&#xff08;DictHashTable&#xff09;&#xff0c;哈希节点&#xff08;DictEntry&#xff09;&#xff0c;字典&#xff08;Dict&#xff09; 哈希表结构如下图所…

阿里云服务器购买租用价格多少钱一年?61元、99元、165元、199元

阿里云服务器租用价格表2024年最新&#xff0c;云服务器ECS经济型e实例2核2G、3M固定带宽99元一年&#xff0c;轻量应用服务器2核2G3M带宽轻量服务器一年61元&#xff0c;ECS u1服务器2核4G5M固定带宽199元一年&#xff0c;2核4G4M带宽轻量服务器一年165元12个月&#xff0c;2核…

Delphi 是一种内存安全的语言吗?

上个月&#xff0c;美国政府发布了 "回到基石 "报告&#xff1a; 通往安全和可衡量软件之路 "的报告。该报告是美国网络安全战略的一部分&#xff0c;重点关注多个领域&#xff0c;包括内存安全漏洞和质量指标。 许多在线杂志都对这份报告进行了评论&#xff0…

C语言内存函数,让内存管理更高效!

1. memcpy使⽤和模拟实现 2. memmove使⽤和模拟实现 3. memset函数的使⽤ 4. memcmp函数的使⽤ 正文开始&#xff1a; 1. memcpy 使⽤和模拟实现 void * memcpy ( void * destination, const void * source, size_t num ); • 函数memcpy从source的位置开始向后复…

区间概率预测python|QR-CNN-BiLSTM+KDE分位数-卷积-双向长短期记忆神经网络-时间序列区间概率预测+核密度估计

区间预测python|QR-CNN-BiLSTMKDE分位数-卷积-双向长短期记忆神经网络-核密度估计-回归时间序列区间预测 模型输出展示&#xff1a; (图中是只设置了20次迭代的预测结果&#xff0c;宽度较宽&#xff0c;可自行修改迭代参数&#xff0c;获取更窄的预测区间&#xff09; 注&am…

类似微信的以文搜图功能实现

通过PaddleOCR识别图片中的文字&#xff0c;将识别结果报存到es中&#xff0c;利用es查询语句返回结果图片。 技术逻辑 PaddleOCR部署、es部署创建mapping将PaddleOCR识别结果保存至es通过查询&#xff0c;返回结果 前期准备 PaddleOCR、es部署请参考https://blog.csdn.net…

stm32之基本定时器的使用

在上文我们使用到了HAL库的自带的延时函数&#xff0c;HAL_Delay&#xff08;&#xff09;&#xff1b;我们来看一下函数的原型 __weak void HAL_Delay(uint32_t Delay) {uint32_t tickstart HAL_GetTick();uint32_t wait Delay;/* Add a freq to guarantee minimum wait */…

【SQL】1587. 银行账户概要 II

题目描述 leetcode题目&#xff1a;1587. 银行账户概要 II Code 写法一 select name, sum(amount) as balance from Users U left join Transactions T on U.account T.account group by U.account having sum(amount) > 10000写法二 select Users.name, balance from…

Unity自定义icon

Unity自定义icon 1. 新建文件夹 OfficeFabricIconSet2. 新建Iconset3. 新建子文件夹Textures并添加icon图片4. 向iconset添加Quad Icons5. 最终效果 教程来源处&#xff1a; https://365xr.blog/build-your-own-button-icon-set-for-microsoft-hololens-2-apps-with-mrtk-using…