自然语言处理NLP概述

大家好,自然语言处理(NLP)是计算机科学领域与人工智能领域中的一个重要方向,其研究能实现人与
计算机之间用自然语言进行有效通信的各种理论和方法。本文将从自然语言处理的本质、原理和应用三个方面,对其进行概述。

一、NLP的本质

NLP是一种机器学习技术,使计算机能够解读、处理和理解人类语言,其本质就是人类和机器之间沟通的桥梁。

图片

人类使用自然语言交流,如中文、英文等,狗通过叫声和其他身体语言交流,机器使用数字信息进行交流。

人类与机器之间存在交流障碍,因为人类不直接理解数字信息,而机器不直接理解自然语言。自然语言处理NLP就是人类和机器之间沟通的这座“桥梁”,NLP技术允许机器理解和生成人类使用的自然语言。

NLP的价值在于能够解锁非结构化数据的潜力,将文本转化为可分析的信息以支持企业决策,并推动人机交互向更自然、智能的方向发展。

图片

在数字世界中,大部分数据都是非结构化的,其中文本数据尤为丰富。NLP技术能够将这些庞大且复杂的文本数据转化为可分析、可利用的信息,从而为企业决策、市场研究、用户行为分析等领域提供有力的数据支持。

随着智能设备和互联网的普及,人们越来越多地通过自然语言与机器进行交互。NLP技术能够让机器理解和回应人类的语言,从而实现更加自然和智能的人机交互体验。

自然语言处理涵盖语义分析、信息检索与抽取、文本分类与挖掘、情感分析、问答系统、机器翻译及自动摘要等核心技术。

其核心技术如下:

  • 语义文本相似度分析:分析两段文本之间的意义和本质的相似度。

  • 信息检索 (IR):组织信息并通过查找满足用户信息需求的过程和技术。

  • 信息抽取:从非结构化/半结构化文本中提取指定类型的信息,并将其转换为结构化信息。

  • 文本分类:根据文档内容或主题自动分配预定义的类别标签。

  • 文本挖掘:基于文本信息的知识发现,包括文档聚类、分类和摘要抽取等。

  • 文本情感分析:使用NLP技术识别文本中的情感倾向,如正面、负面或中性。

  • 问答系统 (QA):自动回答用户提出的问题,返回精准的自然语言答案。

  • 机器翻译 (MT):利用计算机实现不同自然语言之间的自动翻译。

  • 自动摘要:自动分析文档并提炼出要点信息,生成短篇摘要。

 二、NLP的原理

NLP核心组成:NLP = NLU + NLG,NLU 负责理解内容,NLG 负责生成内容。 

自然语言理解NLU负责将机器变得像人一样,具备正常人的语言理解能力。 

识别意图:NLU的核心能力之一是识别用户的意图。与过去依赖固定关键词的方法不同,NLU能够从用户的自然语言表达中识别出真正的意图,如“订机票”、“查询航班”等,使得机器交互更加自然和智能。

提取关键信息:除了识别意图,NLU还能从用户的语句中提取出关键信息,如目的地、出发时间等。这使得机器能够更准确地理解用户的需求,并提供更精确的服务。

自然语言生成NLG负责将机器生成的非语言格式的数据转换成人类可以理解的语言格式。 

文本到文本的生成(Text-to-Text Generation):这一过程涉及将已存在的文本内容转换成另一种形式、风格或语言的文本。例如,摘要生成、机器翻译或文本改写等。

数据到文本的生成(Data-to-Text Generation):这种方式关注的是将结构化或非结构化的数据转换成自然语言文本。例如,基于数据库的报告生成、根据统计数据编写新闻稿件,或是将图表信息转换为描述性文字等。

NLP语言模型用于捕捉语言的统计和结构特性。 

  • 词的独热表示(One-Hot Representation)

独热编码将每个词表示为一个向量,其中只有一个维度是1(代表该词),其余维度都是0。这种方法简单但稀疏,且无法捕捉词之间的关系。

  • Bag of Words(词袋模型)

词袋模型忽略文本的语法和词序,将文本视为词的集合。它通常用于文本分类,其中每个文档被表示为一个词频向量。

  • Bi-gram 和 N-gram(双词模型和多词模型)

Bi-gram模型考虑连续的两个词对的统计关系,而N-gram则考虑连续的N个词。这些模型用于捕捉词序信息,但受限于窗口大小。

  • 词的分布式表示(Distributed Representation)

分布式表示,如word embeddings,将词编码为固定大小的向量,其中每个维度都捕获了词的某个方面的含义。这些向量是在大量文本上训练的,能够捕捉词之间的语义和语法关系。

  • 共现矩阵(Co-occurrence Matrix)

共现矩阵记录词与词在文本中的共现频率。这种表示可以捕捉词之间的统计关系,但通常很稀疏且维度高。

  • 神经网络语言模型(Neural Network Language Model, NNLM)

NNLM使用神经网络来预测给定上下文的下一个词。它通过学习词的分布式表示来捕捉语言的结构和语义信息。

  • word2vec

word2vec是一种特定的神经网络架构,用于学习词的分布式表示。它有两种主要方法:Skip-gram和Continuous Bag of Words(CBOW)。word2vec能够高效地处理大规模数据集,并生成高质量的词向量。

三、NLP的应用

1.情感分析

情感分析是利用自然语言处理和文本挖掘技术,自动识别和提取文本中的情感倾向和信息。其能够快速地了解用户的舆情情况,对于企业和政府等组织来说具有重要的决策参考价值,应用于社交媒体监测、产品评论分析、市场调研等场景。

情感分析的实战流程:

(1) 数据收集与准备:

收集相关文本数据,这些数据可以是社交媒体评论、产品评价、新闻文章等。

对数据进行清洗和预处理,包括去除无关字符、标点符号、停用词,以及进行文本标准化(如转换为小写)和分词等操作。

(2) 词向量模型构建:

选择合适的词向量模型,如Word2Vec、GloVe或FastText等。使用收集到的文本数据训练词向量模型,或者下载预训练好的词向量模型,将文本中的每个词转换为对应的词向量。

(3) 特征提取:

基于词向量提取文本特征,可以使用简单的词袋模型(Bag of Words)或更复杂的TF-IDF、n-grams等方法,也可以考虑使用深度学习模型自动提取特征,如卷积神经网络(CNN)或循环神经网络(RNN)。

(4) 模型选择与训练:

选择适合情感分析任务的机器学习或深度学习模型,如逻辑回归、支持向量机(SVM)、朴素贝叶斯、长短时记忆网络(LSTM)等。使用提取的特征和对应的情感标签训练模型,对模型进行调优,包括调整超参数、使用正则化、集成学习等方法提高模型性能。

(5) 模型评估与验证:

将数据集分为训练集、验证集和测试集,用于模型的训练、验证和测试,使用准确率、精确率、召回率、F1分数等指标评估模型的性能,绘制混淆矩阵、ROC曲线等可视化工具帮助理解模型表现。

2.问答机器人

问答机器人是利用自然语言处理技术,通过智能交互来提供服务的机器人系统。其能提供7*24小时的在线服务,解答用户问题,处理任务,提高工作效率和用户满意度,应用于客户服务、电子商务、教育培训等场景。

(1) 数据收集与处理:

从各种来源(如文档、网页、社交媒体)收集相关的问题和答案数据,对数据进行预处理,包括清洗、分词、词性标注等,以便于后续的自然语言处理。

(2) 自然语言理解:

利用自然语言处理技术,如实体识别、意图识别、情感分析等,来理解用户的输入问题,将用户的自然语言输入转化为机器可以理解的内部表示形式。

(3) 构建知识库:

将处理后的问答对存储在知识库中,形成一个结构化的知识集合,可以使用数据库、知识图谱或索引等技术来组织和管理知识。

(4) 问答匹配与检索:

设计算法来匹配用户的问题与知识库中的问答对,实现高效的检索机制,以快速找到与用户问题最相关的答案。

(5) 自然语言生成:

将检索到的答案转化为自然语言形式,以便于用户理解,可以使用自然语言生成技术,如模板生成、序列到序列模型等,来生成流畅、自然的回答。

图片

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/790374.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[HackMyVM]靶场Boxing

难度:Medium kali:192.168.56.104 靶机:192.168.56.143 端口扫描 ┌──(root㉿kali2)-[~/Desktop] └─# nmap 192.168.56.143 Starting Nmap 7.94SVN ( https://nmap.org ) at 2024-04-03 19:25 CST Nmap scan report for staging-env.boxing.hmv (192.168.56.143) Host …

v-text 和v-html

接下来&#xff0c;我讲介绍一下v-text和v-html的使用方式以及它们之间的区别。 使用方法 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-widt…

计算机网络_工具

从你的电脑到指定ip网站&#xff0c;用时3ms ttl TTL Time To Live 数据包存活时间 指一个数据包在经过一个路由器时&#xff0c;可传递的最长距离&#xff08;跃点数&#xff09;。每当数据包经过一个路由器时&#xff0c;其存活次数就会被减一 256 - 249 7&…

软件设计师28--SQL语言

软件设计师28--SQL语言 考点1&#xff1a;普通查询SQL语言SQL语言 - 查询例题&#xff1a; 考点2&#xff1a;分组查询SQL语言 - 查询例题&#xff1a; 考点3&#xff1a;权限控制SQL语言例题&#xff1a; 考点1&#xff1a;普通查询 SQL语言 SQL语言 - 查询 例题&#xff1a;…

远程登录服务器(ubuntu20.04)在自己账号下的虚拟环境(python3.6)安装Jupyter并连接pycharm使用

参考&#xff1a;Jupyter notebook/lab安装及远程访问 1、安装jupyter pip install notebook遇到的问题&#xff1a; &#xff08;1&#xff09;运行这个指令之前尝试了好多方法都安不上 此前还尝试了更新pip之类的&#xff0c;大家安不上也可以先更新pip试试。 &#xff0…

职场聚餐:搭建沟通桥梁,促进团队凝聚力

在职场中&#xff0c;聚餐作为一种非正式的社交活动&#xff0c;不仅能够增进同事间的了解&#xff0c;还有助于提升团队凝聚力。本文将探讨职场聚餐的重要性以及如何组织一场成功的职场聚餐。 一、职场聚餐的重要性 1. 搭建沟通桥梁&#xff1a;职场聚餐为员工提供了一个轻松愉…

电商好评语整理与优化:让繁琐工作变得轻松高效

在电子商务领域&#xff0c;客户的好评是店铺信誉和产品质量的重要体现。然而&#xff0c;整理和优化这些好评语却是一项既繁琐又需要细致耐心的工作。本文将探讨如何高效地进行电商好评语的筛选、分类和优化&#xff0c;让这一工作变得更加轻松和高效。 一、明确整理目的 在开…

webapi 允许跨域

1.在Nuget安装webapi.cors 添加完会有这个包 然后在项目App_Start 目录下的WebApiConfig.cs里面添加 // Web API 配置和服务// 添加跨域设置config.EnableCors(new EnableCorsAttribute("*", "*", "*"));

[C++ ]21:哈希+海量数据处理

[C ]21:哈希海量数据处理 一.哈希&#xff1a;1.位图&#xff1a;1.题目一&#xff1a;方法一&#xff1a;方法二&#xff1a; 2.题目二&#xff1a;方法一&#xff1a;补充&#xff1a; 3.题目三&#xff1a;方法一&#xff1a;双位图 4.题目四&#xff1a; 二.布隆过滤器&…

k8s的pod访问service的方式

背景 在k8s中容器访问某个service服务时有两种方式&#xff0c;一种是把每个要访问的service的ip注入到客户端pod的环境变量中&#xff0c;另一种是客户端pod先通过DNS服务器查找对应service的ip地址&#xff0c;然后在通过这个service ip地址访问对应的service服务 pod客户端…

如何使用Java语言发票查验接口实现发票真伪查验、票据ocr

随着时代潮流的发展&#xff0c;企业也在寻找更加便捷、高效的办公模式&#xff0c;尤其是针对财务工作人员而言&#xff0c;繁琐的发票录入、查验工作占据了财务人员的大部分时间。对此&#xff0c;翔云提供了发票识别接口、发票查验接口&#xff0c;那么企业应当如何将这些接…

数据结构算法题(力扣)——链表

以下题目建议大家先自己动手练习&#xff0c;再看题解代码。这里只提供一种做法&#xff0c;可能不是最优解。 1. 移除链表元素&#xff08;OJ链接&#xff09; 题目描述&#xff1a;给一个链表的头节点 head 和一个整数 val &#xff0c;删除链表中所有满足值等于 val 的节点…

【 书生·浦语大模型实战营】学习笔记(一):全链路开源体系介绍

&#x1f389;AI学习星球推荐&#xff1a; GoAI的学习社区 知识星球是一个致力于提供《机器学习 | 深度学习 | CV | NLP | 大模型 | 多模态 | AIGC 》各个最新AI方向综述、论文等成体系的学习资料&#xff0c;配有全面而有深度的专栏内容&#xff0c;包括不限于 前沿论文解读、…

linux 回收站机制(笔记)

Linux下回收站机制https://mp.weixin.qq.com/s/H5Y8VRcaOhFZFXzR8yQ7yg 功能 &#xff1a;设立回收站&#xff0c;并且可定时清空回收站。 一、建议将alias rm 改成别的。 比如alias rmm &#xff0c;同时修改rm -rf ~/.trash/* 改成 rmm -rf ~/.trash/* 不然影响rm 的正常使…

js 基础知识 forEach 和 map 的区别,及 map 不加 return 返回什么

问题一&#xff1a;forEach 和 map 之间的区别&#xff1a; 1、forEach 不返回新数组&#xff0c;map 返回新数组&#xff0c;其中包含回调函数的返回值。 2、用途&#xff1a;如果只想要遍历数组并对每个元素执行某些操作而不产生新数组&#xff0c;那么应该使用 forEach&am…

从零开始学RSA加密解密过程

因为文字太过晦涩难懂&#xff0c;下面以图示的方法来理解RSA加密解密的过程 以上过程中因为HACK无法得到p,q信息&#xff0c;也就是无法计算出d , 导致了无法解密 c 得到 m (n,e) 公钥 (d,n) 私钥 (p,q,n,e) 生成的加密必要信息 必要的公式 c ≡ me mod n ----------->…

基于栈结构的非递归二叉树结点关键字输出算法

基于栈结构的非递归二叉树结点关键字输出算法 一、引言二、二叉树基本概念三、非递归遍历算法基础四、算法设计五、算法实现六、C代码示例七、算法分析八、优化与讨论 一、引言 在计算机科学中&#xff0c;二叉树是一种重要的数据结构&#xff0c;它广泛应用于各种算法和数据结…

Hive函数笔试题(简单)

第1题 有如下的用户访问数据 userId visitDate visitCount u01 2017/1/21 5 u02 2017/1/23 6 u03 2017/1/22 8 u04 2017/1/20 3 u01 2017/1/23 6 u01 2017/2/21 8 u02 2017/1/23 6 u01 2017/2/22 4 要求使用SQL统计出每个用户的累积访问次数&…

【方案篇】事件监听函数的内存泄漏,帮你搞定!

本文是 理论篇 &#xff0c;还有下篇 代码篇。 前言 工作中&#xff0c;我们会对window, DOM节点&#xff0c;WebSoket, 或者单纯的事件中心等注册事件监听函数。 // window window.addEventListener("message", this.onMessage); // WebSoket socket.addEventLis…

大数据学习第十一天(复习linux指令3)

1、su和exit su命令就是用于账户切换的系统命令 基本语法&#xff1a;su[-] [用户名] 1&#xff09;-表示是否在切换用户后加载变量&#xff0c;建议带上 2&#xff09;参数&#xff1a;用户名&#xff0c;表示切换用户 3&#xff09;切换用户后&#xff0c;可以通过exit命令退…