Stable Diffusion扩散模型推导公式的基础知识

文章目录

    • 1、独立事件的条件概率
    • 2、贝叶斯公式、先验概率、后验概率、似然、证据
    • 3、马尔可夫链
    • 4、正态分布 / 高斯分布
    • 5、重参数化技巧
    • 6、期望
    • 7、KL散度 、高斯分布的KL散度
    • 8、极大似然估计
    • 9、ELBO :Evidence Lower Bound
    • 10、一元二次方程

1、独立事件的条件概率

A 和 B 是两个独立事件:
⇒ \Rightarrow P ( A ∣ B ) = P ( A ) P(A|B)=P(A) P(AB)=P(A) P ( B ∣ A ) = P ( B ) P(B|A)=P(B) P(BA)=P(B)
⇒ \Rightarrow P ( A , B ∣ C ) = P ( A ∣ C ) P ( B ∣ C ) P(A,B|C)=P(A|C)P(B|C) P(A,BC)=P(AC)P(BC)

2、贝叶斯公式、先验概率、后验概率、似然、证据

贝叶斯公式:
P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B)=\frac{P(B|A)P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

  • 先验概率(prior):P(A)
  • 后验概率(posterior):P(A|B)
  • 似然 (likelihood):P(B|A)
  • 证据(evidence):P(B)

举例:

在这里插入图片描述

在这里插入图片描述
P ( x t − 1 ∣ x t ) = P ( x t ∣ x t − 1 ) P ( x t − 1 ) P ( x t ) P(x_{t-1}|x_t)=\frac{P(x_t|x_{t-1})P(x_{t-1})}{P(x_t)} P(xt1xt)=P(xt)P(xtxt1)P(xt1)

3、马尔可夫链

马尔可夫链:下一状态的概率分布仅取决于当前状态,与过去的状态无关

在这里插入图片描述

在这里插入图片描述

P ( x t ∣ x t − 1 , x t − 2 . . . x 1 x 0 ) = P ( x t ∣ x t − 1 ) P(x_t|x_{t-1},x_{t-2}...x_1x_0)=P(x_t|x_{t-1}) P(xtxt1,xt2...x1x0)=P(xtxt1)

正向扩散过程: q ( x 0 : x T ) = q ( x 0 ) q ( x 1 ∣ x 0 ) q ( x 2 ∣ x 1 ) . . . q ( x T − 1 ∣ x T − 2 ) q ( x T ∣ x T − 1 ) q(x_0:x_T)=q(x_0)q(x_1|x_0)q(x_2|x_1)...q(x_{T-1}|x_{T-2})q(x_T|x_{T-1}) q(x0:xT)=q(x0)q(x1x0)q(x2x1)...q(xT1xT2)q(xTxT1)

逆向扩散过程: p ( x 0 : x T ) = p ( x T ) p ( x T − 1 ∣ x T ) p ( x T − 2 ∣ x T − 1 ) . . . p ( x 1 ∣ x 2 ) p ( x 0 ∣ x 1 ) p(x_0:x_T)=p(x_T)p(x_{T-1}|x_T)p(x_{T-2}|x_{T-1})...p(x_1|x_2)p(x_0|x_1) p(x0:xT)=p(xT)p(xT1xT)p(xT2xT1)...p(x1x2)p(x0x1)

4、正态分布 / 高斯分布

f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2π σ1e2σ2(xμ)2

x ∼ N ( μ , σ 2 ) x\sim \mathcal{N}(\mu,\sigma^2) xN(μ,σ2)

高斯分布的性质:
A、如果 X ∼ N ( μ , σ 2 ) X\sim \mathcal{N}(\mu,\sigma^2) XN(μ,σ2),那么 a X + B ∼ N ( a μ + b , a 2 σ 2 ) aX+B\sim \mathcal{N}(a\mu+b,a^2\sigma^2) aX+BN(aμ+b,a2σ2)
B、两个正态分布相加,其结果也是正态分布:
X ∼ N ( μ 1 , σ 1 2 ) X\sim \mathcal{N}(\mu_1,\sigma_1^2) XN(μ1,σ12) Y ∼ N ( μ 2 , σ 2 2 ) Y\sim \mathcal{N}(\mu_2,\sigma_2^2) YN(μ2,σ22),则 X + Y ∼ N ( μ 1 + μ 2 , σ 1 2 + σ 2 2 ) X+Y\sim\mathcal{N}(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2) X+YN(μ1+μ2,σ12+σ22)

5、重参数化技巧

对于高斯分布: X ∼ N ( μ , σ 2 ) X\sim \mathcal{N}(\mu,\sigma^2) XN(μ,σ2),采样这个操作本身是不可导的,也就无法通过BP来对参数进行优化。但是我们可以通过重参数化技巧,将简单分布的采样结果变换到特定分布中,如此一来则可以对参数进行求导,
具体操作:
A、引入服从标准正态分布的随机变量: z ∼ N ( 0 , 1 ) z\sim\mathcal{N}(0,1) zN(0,1)
B、令 x = μ + σ z x=\mu+\sigma z x=μ+σz,这样就满足 X ∼ N ( μ , σ 2 ) X\sim\mathcal{N}(\mu,\sigma^2) XN(μ,σ2)

6、期望

期望是指随机变量取值的平均值,用来刻画随机变量的集中位置,

(1)离散型随机变量
离散型随机变量X的取值为 x 1 , x 2 , x 3 , . . . . . . . , x n x_1,x_2,x_3,.......,x_n x1,x2,x3,.......,xn,对应的概率为 p 1 , p 2 , p 3 , . . . . . . , p n p_1,p_2,p_3,......,p_n p1,p2,p3,......,pn
则X的期望为: E ( X ) = ∑ i = 1 n x i p i E(X)=\sum_{i=1}^{n}x_ip_i E(X)=i=1nxipi
------------------------------------------------------------------------------------------------

若离散变量 Y Y Y符合函数 Y = g ( X ) Y= g(X) Y=g(X) g ( X ) g(X) g(X)是连续函数,且 ∑ i = 1 n g ( x i ) p i \sum_{i=1}^n g(x_i)p_i i=1ng(xi)pi绝对收敛,
则离散变量 Y Y Y的期望为: E ( X ) = ∑ i = 1 n g ( x i ) p i E(X)=\sum_{i=1}^n g(x_i)p_i E(X)=i=1ng(xi)pi

(2)连续型随机变量
连续型随机变量 X X X的概率密度函数为 f ( x ) f(x) f(x)
X X X的期望为: E ( X ) = ∫ − ∞ ∞ x f ( x ) d x E(X)=\int_{-\infty}^\infty xf(x){\rm d}x E(X)=xf(x)dx
若随机变量 Y Y Y符合函数 Y = g ( x ) Y = g(x) Y=g(x),且 ∫ − ∞ ∞ g ( x ) f ( x ) d x \int_{-\infty}^\infty g(x)f(x){\rm d}x g(x)f(x)dx绝对收敛,
则随机变量 Y Y Y的期望为: E ( Y ) = ∫ − ∞ ∞ g ( x ) f ( x ) d x E(Y)=\int_{-\infty}^\infty g(x)f(x){\rm d}x E(Y)=g(x)f(x)dx

注意: 对于连续型随机变量,期望就是积分,满足条件的积分也可以写成期望的形式。这在之后的 公式推导过程中,我们会使用到期望与积分写法的转换,

7、KL散度 、高斯分布的KL散度

KL散度的作用: 用于衡量2个概率分布(分布 p p p和分布 q q q)之间的差异,
D K L ( p ∣ ∣ q ) = H ( p , q ) − H ( p ) = ∫ x p ( x ) l o g p ( x ) q ( x ) d x = E x ∼ p ( x ) [ l o g p ( x ) q ( x ) ] D_{KL}(p||q)=H(p,q)-H(p)=\int_x p(x)log\frac{p(x)}{q(x)}dx=E_{x\sim p(x)}[log\frac{p(x)}{q(x)}] DKL(p∣∣q)=H(p,q)H(p)=xp(x)logq(x)p(x)dx=Exp(x)[logq(x)p(x)]

其中:
H ( p , q ) H(p, q) H(p,q)表示分布 p p p和分布 q q q的交叉熵, H ( p ) H(p) H(p)表示分布 p p p的熵,

KL散度的重要性质:

  • D K L ( p ∣ ∣ q ) ≥ 0 D_{KL}(p||q)\ge0 DKL(p∣∣q)0
  • 当分布 p p p与分布 q q q完全一样时, D K L ( p ∣ ∣ q ) = 0 D_{KL}(p||q)=0 DKL(p∣∣q)=0
  • 对于相同的分布 p p p和分布 q q q,这里所说的相同的分布是 D K L ( p ∣ ∣ q ) D_{KL}(p||q) DKL(p∣∣q) D K L ( q ∣ ∣ p ) D_{KL}(q||p) DKL(q∣∣p)中的2个 p p p和2个 q q q是一样的, D K L ( p ∣ ∣ q ) D_{KL}(p||q) DKL(p∣∣q) D K L ( q ∣ ∣ p ) D_{KL}(q||p) DKL(q∣∣p)计算所得到的值不一样,
    对于 D K L ( p ∣ ∣ q ) D_{KL}(p||q) DKL(p∣∣q),我们一般认为 p ( x ) p(x) p(x)是真实分布, q ( x ) q(x) q(x)是预测分布, D K L ( p ∣ ∣ q ) D_{KL}(p||q) DKL(p∣∣q)
    求预测分布 q ( x ) q(x) q(x)与真实分布 p ( x ) p(x) p(x)之间的差距,

高斯分布的KL散度:
p ( x ) = N ( μ 1 , σ 1 ) = 1 2 π σ 1 e − ( x − μ 1 ) 2 2 σ 1 2 p(x)=\mathcal{N}(\mu_1,\sigma_1)=\frac{1}{\sqrt{2\pi}\sigma_1}e^-\frac{(x-\mu_1)^2}{2\sigma_1^2} p(x)=N(μ1,σ1)=2π σ11e2σ12(xμ1)2
q ( x ) = N ( μ 2 , σ 2 ) = 1 2 π σ 2 e − ( x − μ 2 ) 2 2 σ 1 2 q(x)=\mathcal{N}(\mu_2,\sigma_2)=\frac{1}{\sqrt{2\pi}\sigma_2}e^-\frac{(x-\mu_2)^2}{2\sigma_1^2} q(x)=N(μ2,σ2)=2π σ21e2σ12(xμ2)2
K L ( N ( x ∣ μ 1 , ∑ 1 ) ∣ ∣ N ( x ∣ μ 2 , ∑ 2 ) ) = 1 2 [ l o g ∑ 2 ∑ 1 − K + t r ( ∑ 2 − 1 ∑ 1 ) + ( μ 1 − μ 2 ) T ∑ 2 − 1 ( μ 1 − μ 2 ) ] {\rm KL}(\mathcal{N}({\rm x}|\mu_1,\sum_1)||\mathcal{N}({\rm x}|\mu_2,\sum_2))=\frac{1}{2}\big[ log\frac{\sum_2}{\sum_1}-K+tr(\sum_2^{-1}\sum_1)+(\mu_1-\mu_2)^T\sum_2^{-1}(\mu_1-\mu_2)\big] KL(N(xμ1,1)∣∣N(xμ2,2))=21[log12K+tr(211)+(μ1μ2)T21(μ1μ2)]
D K L ( p , q ) = l o g σ 2 σ 1 − 1 2 + σ 1 2 + ( μ 1 − μ 2 ) 2 2 σ 2 2 D_{KL}(p,q)=log\frac{\sigma_2}{\sigma_1}-\frac{1}{2}+\frac{\sigma_1^2+(\mu_1-\mu_2)^2}{2\sigma_2^2} DKL(p,q)=logσ1σ221+2σ22σ12+(μ1μ2)2

推导过程: https://blog.csdn.net/hegsns/article/details/104857277

8、极大似然估计

概括描述:已知抽取的样本,求概率分布的参数

在这里插入图片描述

-----------------------------------------------------------------------------------------------------------------------------
在这里插入图片描述

9、ELBO :Evidence Lower Bound

在这里插入图片描述

10、一元二次方程

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/790345.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java编程使用CGLIB动态代理介绍与实战演示

文章目录 前言技术积累核心概念主要功能适用场景与JDK动态代理的对比 实战演示定义待代理的目标类实现MethodInterceptor接口使用代理对象 测试结果写在最后 前言 在Java编程中,CGLIB (Code Generation Library) 是一个强大的高性能代码生成库,它通过生…

2024年第三期丨全国高校大数据与人工智能师资研修班邀请函

2024年第三期 杭州线下班 数据采集与机器学习实战(Python) 线上班 八大专题 大模型技术与应用实战 数据采集与处理实战(Python&八爪鱼) 大数据分析与机器学习实战(Python) 商务数据分析实战&…

jQuery(一)

文章目录 1. 基本介绍2.原理示意图3.快速入门1.下载jQuery2.创建文件夹,放入jQuery3.引入jQuery4.代码实例 4.jQuery对象与DOM对象转换1.基本介绍2.dom对象转换JQuery对象3.JQuery对象转换dom对象4.jQuery对象获取数据获取value使用val()获取…

完全没想到docker启动败在了这里!

转载说明:如果您喜欢这篇文章并打算转载它,请私信作者取得授权。感谢您喜爱本文,请文明转载,谢谢。 故事背景 前几天帮同事部署一个环境,用他写的安装脚本部署,其中一台服务器就需要安装docker&#xff0c…

基于深度学习的铁轨缺陷检测系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)

摘要:本文深入研究了基于YOLOv8/v7/v6/v5的铁轨缺陷检测系统。核心技术上,文章采用了最先进的YOLOv8,并整合了YOLOv7、YOLOv6、YOLOv5算法,进行了性能指标的对比分析。文中详细阐述了国内外铁轨缺陷检测的研究现状、数据集处理方法…

MHA高可用-解决MySQL主从复制的单点问题

目录 一、MHA的介绍 1.什么是 MHA 2.MHA 的组成 2.1 MHA Node(数据节点) 2.2 MHA Manager(管理节点) 3.MHA 的特点 4. MHA工作原理总结如下: 二、搭建 MySQL MHA 实验环境 …

[蓝桥杯练习题]出差

一道DJ题,重要的是隔离时间,把隔离时间加在边权上即可 现实生活的题大多都是无向图建图,需要边的两端点各自上邻接表和相同权重 #include<bits/stdc.h> using namespace std; #define ll long long const int N1005; const int M10005; struct edge{int to;ll w;edge(int…

MySQL数据库 数据库基本操作(一):数据库的认识与基本操作

1. 数据库的基本认识 1.1 什么是数据库 专家们设计出更加利于管理数据的软件——数据库&#xff0c;它能更有效的管理数据。数据库可以提供远程服务&#xff0c;即通过远程连接来使用数据库&#xff0c;因此也称为数据库服务器。 1.2 数据库的分类 数据库可以大体分为:关系…

单片机家电产品--过零检测

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 单片机家电产品–过零检测 前言 记录学习单片机家电产品内容 已转载记录为主 一、知识点 1 什么是过零检测 1 过零检测指的是在交流系统中&#xff0c;在一个交流周期中…

Redis 的主从复制、哨兵

目录 一. Redis 主从复制 1. 介绍 2. 作用 3. 流程 4. 搭建 Redis 主从复制 安装redis 修改 master 的Redis配置文件 修改 slave 的Redis配置文件 验证主从效果 二. Redis 哨兵模式 1. 介绍 2. 原理 3. 哨兵模式的作用 4. 工作流程 4.1 故障转移机制 4.2 主节…

装饰工程管理系统|基于Springboot的装饰工程管理系统设计与实现(源码+数据库+文档)

装饰工程管理系统-项目立项子系统目录 目录 基于Springboot的装饰工程管理系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、管理员功能实现 &#xff08;2&#xff09;合同报价管理 &#xff08;3&#xff09;装饰材料总计划管理 &#xff08;4&#xff0…

深信服超融合虚拟机的导入方法

以从vmware虚拟机导出的虚拟机为例。 1 进入虚拟机页面点【新增】&#xff0c;选择【导入虚拟机】 2 以文件类型为ovf、mf、vmdk为例导入 选择文件类型&#xff0c;选择那三个导出的虚拟机的文件&#xff0c;选择分组&#xff0c;存储位置和运行位置默认&#xff0c;操作系统…

Windows 中的硬链接、软连接、快捷方式和普通文件

在 Windows 中&#xff0c;文件可以有四种类型&#xff1a; 硬链接软连接快捷方式普通文件 当我们正常创建一个文件时&#xff0c;这个文件就是普通文件 echo hello > a.txt (Get-Item "a.txt").LinkType -eq $null # 输出 True然后我们可以为其添加一个软连接…

双榜有名!美创入围第一新声x天眼查「年度中国高科技高成长企业」系列榜单

为了更好地了解中国高科技高成长企业的现状和发展趋势&#xff0c;2023年底&#xff0c;【第一新声】特联合【天眼查】启动“数字未来”系列之2023年度中国高科技高成长企业系列榜单评选征集工作&#xff0c;发现和挖掘被资本市场关注&#xff0c;同时受客户认可的高科技、高成…

百卓Smart管理平台 importexport.php SQL注入漏洞复现(CVE-2024-27718)

0x01 产品简介 百卓Smart管理平台是北京百卓网络技术有限公司(以下简称百卓网络)的一款安全网关产品,是一家致力于构建下一代安全互联网的高科技企业。 0x02 漏洞概述 百卓Smart管理平台 importexport.php 接口处存在SQL注入漏洞,攻击者除了可以利用 SQL 注入漏洞获取数据…

后台返回数据需要自己匹配图标,图标命名与后台返回的变量保持一致

testItemId为后台返回匹配图标的变量名 sportsTargetsData:{suggestSportTargetId: "2",unlocks: [{ testItemId: vo2max_high_knee, sportTargetName: 心肺能力, indexName: 心肺能力, sportTargetId: 1 },{ testItemId: grip_strength, sportTargetName: 基础力量…

互联网轻量级框架整合之Spring框架II

持久层框架 Hibernate 假设有个数据表&#xff0c;它有3个字段分别是id、rolename、note, 首先用IDEA构建一个maven项目Archetype选择org.apache.maven.archetypes:maven-archetype-quickstart即可&#xff0c;配置如下pom <project xmlns"http://maven.apache.org/…

软考 系统架构设计师系列知识点之云原生架构设计理论与实践(13)

接前一篇文章&#xff1a;软考 系统架构设计师系列知识点之云原生架构设计理论与实践&#xff08;12&#xff09; 所属章节&#xff1a; 第14章. 云原生架构设计理论与实践 第3节 云原生架构相关技术 14.3.2 云原生微服务 1. 微服务发展背景 过去开发一个后端应用最为直接的方…

深入解析:如何使用Xcode上传苹果IPA安装包至App Store?

目录 引言 摘要 第二步&#xff1a;打开appuploader工具 第二步&#xff1a;打开appuploader工具&#xff0c;第二步&#xff1a;打开appuploader工具 第五步&#xff1a;交付应用程序&#xff0c;在iTunes Connect中查看应用程序 总结 引言 在将应用程序上架到苹果应用商…

洛谷B3735题解

题目描述 圣诞树共有 n 层&#xff0c;从上向下数第 1 层有 1 个星星、第 2 层有 2 个星星、以此类推&#xff0c;排列成下图所示的形状。 星星和星星之间用绳子连接。第 1,2,⋯,n−1 层的每个星星都向下一层最近的两个星星连一段绳子&#xff0c;最后一层的相邻星星之间连一段…