对抗生成网络总结

对一些基本的对抗生成网络的总结。部分内容整理自Teeyohuang’s blog

文章目录

  • GAN (NeurIPS, 2014)
  • CGAN
  • DCGAN
  • StackGAN
  • Pix2Pix (CVPR, 2017)
  • CycleGAN (ICCV, 2017)
  • SRGAN (CVPR, 2017)
  • StyleGAN (CVPR, 2019)

GAN (NeurIPS, 2014)

Generative adversarial nets

m i n G m a x D V ( D , G ) = E x ∼ P d a t a ( x ) [ l o g D ( x ) ] + E z ∼ P z ( x ) [ l o g ( 1 − D ( G ( x ) ) ) ] min_Gmax_DV(D,G) = E_{x\sim~P_{data}(x)}[logD(x)] + E_{z\sim~P_{z}(x)}[log(1-D(G(x)))] minGmaxDV(D,G)=Ex Pdata(x)[logD(x)]+Ez Pz(x)[log(1D(G(x)))].

在实际训练的过程中,可以通过maximize logD(G(x))来训练G。

CGAN

Conditional generative adversarial nets

Pytorch版本代码

原始GAN的生成器G学到了数据的分布,生成出来的图片其实是随机的,也就是说这个G的生成过程处于一种没有指导的状态,虽然生成的图片,比如mnist数据集来说,生成的的确是数字,但是却没有具体的说是什么数字。 cGAN相当于在原始GAN的基础上加上一个条件:condition,以此来指导G的生成过程。
m i n G m a x D V ( D , G ) = E x ∼ P d a t a ( x ) [ l o g D ( x ∣ y ) ] + E z ∼ P z ( z ) [ l o g ( 1 − D ( G ( z ∣ y ) ) ) ] min_Gmax_DV(D,G) = E_{x\sim~P_{data}(x)}[logD(x|y)] + E_{z\sim~P_{z}(z)}[log(1-D(G(z|y)))] minGmaxDV(D,G)=Ex Pdata(x)[logD(xy)]+Ez Pz(z)[log(1D(G(zy)))]

y作为条件,和数据x以及噪声z同时分别进入D和G中。

DCGAN

unsupervised representation learning with deep convolutional generative adversarial networks

Pytorch版本代码

该网络主要使用卷积层,之前的网络用的是全连接层。

StackGAN

**StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks**

基于对CGAN的改进,CGAN无法生成清晰大图,StackGAN希望通过一个描述C,产生一张256x256的图像。通过两个generator实现,第一个generator产生64x64的小图,然后把结果放入第二个generator中生成256x256的大图。

详细内容

Pix2Pix (CVPR, 2017)

Image-to-image translation with conditional adversarial networks

本篇论文的核心思想并不复杂,是借鉴了conditional-GAN的思想。但pix2pix的generator的输入端只有条件y作为输入而没有噪声z。最终训练完成后可以从一张图A变换到另一张图B。

We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.

在这里插入图片描述

CycleGAN (ICCV, 2017)

Unpaired image-to-image translation using cycle-consistent adversarial networks

CycleGAN详细解读

创新点:源于和目标域之间,无需建立训练数据一对一映射(对比pix2pix),就可实现风格迁移。

在CycleGAN中,不仅需要生成器产生的图片y’和数据集Y中的图片画风一样,还需要y’和输入图片x的内容一样。

  • Loss function: Loss GAN + Loss cycle
    • Loss cycle: 将y‘放入生成器F中,产生的新图片x’与原始x尽可能相似。即F(G(x))=x。
    • Loss GAN

SRGAN (CVPR, 2017)

**Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network**

首次使用生成对抗网络(GAN)应用于图像超分辨率(SR)

SRGAN论文阅读笔记

StyleGAN (CVPR, 2019)

A style-based generator architecture for generative adversarial networks

StyleGAN 用风格(style)来影响人脸的姿态、身份特征等,用噪声 ( noise ) 来影响头发丝、皱纹、肤色等细节部分。

StyleGAN论文超详细解读

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/79024.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Tokenview X-ray功能:深入探索EVM系列浏览器的全新视角

Tokenview作为一家领先的多链区块浏览器,为了进一步优化区块链用户的使用体验,我们推出了X-ray(余额透视)功能。该功能将帮助您深入了解EVM系列浏览器上每个地址的交易过程,以一种直观、简洁的方式呈现地址的进出账情况…

002 Linux 权限

前言 本文将会向您介绍关于linux权限方面的内容,包括文件类型,如何切换用户、基本权限、粘滞位等等 Linux具体的用户 超级用户:可以再linux系统下做任何事情,不受限制 普通用户:在linux下做有限的事情。 超级用户的…

SSM - Springboot - MyBatis-Plus 全栈体系(八)

第二章 SpringFramework 四、SpringIoC 实践和应用 4. 基于 配置类 方式管理 Bean 4.4 实验三:高级特性:Bean 注解细节 4.4.1 Bean 生成 BeanName 问题 Bean 注解源码: public interface Bean {//前两个注解可以指定Bean的标识AliasFor…

思科的简易配置

vlan 划分配置 1. 拓扑连接 2. 终端设备配置,vlan(v2, v3)配置,模式设置 然后设置交换机 fa 0/5 口为 trunk 模式,使得不同交换机同一 vlan 下 PC 可以互连 3.测试配置结果 用 ip 地址为 192.168.1.1 的主机(PC0)向同一 vlan(v2)下的 192.…

如何统计iOS产品不同渠道的下载量?

一、前言 在开发过程中,Android可能会打出来很多的包,用于标识不同的商店下载量。原来觉得苹果只有一个商店:AppStore,如何做出不同来源的统计呢?本篇文章就是告诉大家如何做不同渠道来源统计。 二、正文 先看一下苹…

算法——快乐数

202. 快乐数 - 力扣(LeetCode) 由图可知,其实这也是一个判断循环的过程,要用到快慢指针,且相遇后,若在全为1的循环里,那么就是快乐数,若相遇后不为1,说明这不是快乐数。 …

备份数据重删

重复数据删除: 在计算中,重复数据删除是一种消除重复数据重复副本的技术。此技术用于提高存储利用率,还可以应用于网络数据传输以减少必须发送的字节数。在重复数据删除过程中,将在分析过程中识别并存储唯一的数据块或字节模式。…

HAlcon例子

气泡思想 * This example shows the use of the operator dyn_threshold for * the segmentation of the raised dots of braille chharacters. * The operator dyn_threshold is especially usefull if the * background is inhomogeneously illuminated. In this example, *…

vue3的生命周期

1.vue3生命周期官方流程图 2.vue3中的选项式生命周期 vue3中的选项式生命周期钩子基本与vue2中的大体相同,它们都是定义在 vue实例的对象参数中的函数,它们在vue中实例的生命周期的不同阶段被调用。生命周期函数钩子会在我们的实例挂载,更新…

竞赛 基于机器视觉的火车票识别系统

文章目录 0 前言1 课题意义课题难点: 2 实现方法2.1 图像预处理2.2 字符分割2.3 字符识别部分实现代码 3 实现效果最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 基于机器视觉的火车票识别系统 该项目较为新颖,适合作为竞赛…

23下半年学习计划

大二上学期计划 现在已经是大二了,java只学了些皮毛,要学的知识还有很多,新的学期要找准方向,把要学的知识罗列,按部就班地完成计划,合理安排时间,按时完成学习任务。 学习node.js&#xff0c…

运维学习之部署Grafana

sudo nohup wget https://dl.grafana.com/oss/release/grafana-10.1.1.linux-amd64.tar.gz &后台下载压缩包,然后按一下回车键。 ps -aux | grep 15358发现有两条记录,就是还在下载中。 ps -aux | grep 15358发现有一条记录,并且tail …

一百七十八、ClickHouse——海豚调度执行ClickHouse的.sql文件

一、目的 由于数仓的ADS层是在ClickHouse中,即把Hive中DWS层的结果数据同步到ClickHouse中,因此需要在ClickHouse中建表,于是需要海豚调度执行ClickHouse的.sql文件 二、实施步骤 (一)第一步,海豚建立Cl…

Python in Visual Studio Code 2023年9月更新

作者:Courtney Webster - Program Manager, Python Extension in Visual Studio Code 排版:Alan Wang 我们很高兴地宣布 Visual Studio Code 的 Python 和 Jupyter 扩展将于 2023 年 9 月发布! 此版本包括以下内容: • 将 Python …

使用 Nginx 实现企业微信域名配置中的校验文件跳转

背景 在企业微信中配置业务域名时,通常需要在该域名的根路径下放置一个校验文件,以验证域名的所有权。然而,如果该域名是第三方的,你可能无法直接在根路径下放置文件。在这种情况下,你可以使用 Nginx 来实现校验文件的…

2023 Google 开发者大会|Mobile开发专题追踪

文章目录 前言大会介绍涉及内容MobileWebAICloud Mobile开发专题多终端应用的开发适配大屏视频流可穿戴设备电视新的设计中心 构建高质量的应用高级相机和媒体功能用户的安全和隐私更精细的视觉体验 小结 前言 哈喽大家好,我是阿Q。近期,【2023 Google …

python: excel假期时间提取统计

# encoding: utf-8 # 版权所有 2023 涂聚文有限公司 # 许可信息查看: # 描述: # Author : geovindu,Geovin Du 涂聚文. # IDE : PyCharm 2023.1 python 311 # Datetime : 2023/9/3 7:04 # User : geovindu # Product : PyCharm # Proje…

Redis 数据一致性方案的分析与研究

点击下方关注我,然后右上角点击...“设为星标”,就能第一时间收到更新推送啦~~~ 一般的业务场景都是读多写少的,当客户端的请求太多,对数据库的压力越来越大,引入缓存来降低数据库的压力是必然选择,目前业内…

常用数据库的 API - 开篇

API API 这个词在大多数人看来可能和 CNS 差不多,前者天天听说就是用不上,后者天天读就是发不了。 不过,通过今天的一个简短介绍,今后 API 这个东西你就用上了,因为在文章最后我将会展示一个最最基础且高频的 API 使…

【CSS3】

文章目录 1.简介2.边框3.圆角4.背景5.渐变CSS3 径向渐变6.文本效果7.字体8.2D转换9.3D转换10.过渡11.动画12.多列13.用户界面14.按钮 ​ 1.简介 模块 CSS3 被拆分为"模块"。旧规范已拆分成小块,还增加了新的。 一些最重要 CSS3 模块如下: 选…