算法沉淀——动态规划篇(子数组系列问题(上))

算法沉淀——动态规划篇(子数组系列问题(上))

  • 前言
  • 一、最大子数组和
  • 二、环形子数组的最大和
  • 三、乘积最大子数组
  • 四、乘积为正数的最长子数组长度

前言

几乎所有的动态规划问题大致可分为以下5个步骤,后续所有问题分析都将基于此

  • 1.、状态表示:通常状态表示分为基本分为以下两种,其中更是以第一种为甚。

    • 以i为结尾,dp[i] 表示什么,通常为代求问题(具体依题目而定)
    • 以i为开始,dp[i]表示什么,通常为代求问题(具体依题目而定)
  • 2、状态转移方程
    *以上述的dp[i]意义为以i位置为分界, 通过最近一步来分析和划分问题,由此来得到一个有关dp[i]的状态转移方程。

  • 3、dp表创建,初始化

    • 动态规划问题中,如果直接使用状态转移方程通常会伴随着越界访问等风险,所以一般需要初始化。而初始化最重要的两个注意事项便是:保证后续结果正确,不受初始值影响;下标的映射关系
    • 初始化一般分为以下两种:
      • 直接初始化开头的几个值。
      • 一维空间大小+1,下标从1开始;二维增加一行/一列
  • 4、填dp表、填表顺序:根据状态转移方程来确定填表顺序。

  • 5、确定返回值

一、最大子数组和

【题目链接】:53. 最大子数组和
【题目】:

 给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
&emdp;子数组是数组中的一个连续部分。

【示例】:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

【分析】:
 我们可以定义dp[i]表示以i为结尾,最大连续子数组和。此时连续子数组长度分为1和大于1,分别对应如下情况:

  1. 如果dp[i-1]大于0,此时最大连续子数组和为dp[i-1] + nums[i]。长度大于1。
  2. 如果dp[i-1] <= 0,此时最大的连续子数组和就是nums[i]本身。长度为1.

 所以我们可以得到状态转移方程为:dp[i] = max(nums[i - 1], dp[i - 1] + nums[i - 1])

 但显然当i为0时,状态转移方程不适用。这里我们给出的方法时dp表空间额外增加1。同时为了保证在使用状态转移方程,新增空间对后续填表结果不产生印象。我们将dp[0]初始化为0即可。

【代码编写】:

class Solution {
public:int maxSubArray(vector<int>& nums) {int n = nums.size();vector<int> dp(n + 1);int ret = INT_MIN;for(int i = 1; i <= n; i++){dp[i] = max(nums[i - 1], dp[i - 1] + nums[i - 1]);ret = max(ret, dp[i]);}return ret;}
};

二、环形子数组的最大和

【题目链接】:918. 环形子数组的最大和
【题目】:

 给定一个长度为 n 的环形整数数组 nums ,返回 nums 的非空 子数组 的最大可能和 。
 环形数组 意味着数组的末端将会与开头相连呈环状。形式上, nums[i] 的下一个元素是 nums[(i + 1) % n] , nums[i] 的前一个元素是 nums[(i - 1 + n) % n] 。
&emsp子数组 最多只能包含固定缓冲区 nums 中的每个元素一次。形式上,对于子数组 nums[i], nums[i + 1], …, nums[j] ,不存在 i <= k1, k2 <= j 其中 k1 % n == k2 % n 。

【示例】:

输入:nums = [5,-3,5]
输出:10
解释:从子数组 [5,5] 得到最大和 5 + 5 = 10
提示:
n == nums.length
1 <= n <= 3 * 104
-3 * 104 <= nums[i] <= 3 * 104

【分析】:
 显然如果我们"死板"按照题目所说的环形数组进行分析,会感到无从下手。所以我们可以换一种思路:我们对数组被偷元素是否包含首尾,进行分类讨论。从而将环形数组问题转化称求普通子数组的最大和问题!

分类情况:

  1. 首位元素都被选,此时我们将原问题转化成求普通数组中子数组的最小和。最后用整个数组的和减去最小和,间接求出该情况最大值。
    在这里插入图片描述

  2. 首位元素不全都被选。此时原问题转化成普通数组中子数组的最大和。
    在这里插入图片描述

如何求普通数组最大子数组和、最小子数组和:

 这里我们可以定义fi]表示以i位置为结尾的子数组最大和,g[i]表示以i位置为结尾的子数组最小和。

状态转移方程推导:

  1. 以i位置为结尾的子数组最大和分两种情况:如果f[i-1] >0, 此时最大子数组和为f[i-1] + nums[i]。否则最大子数组和为nums[i]本身。所以状态转移方程为:f[i] = max(nums[i], dp[i-1] + nums[i])
  2. 同理,以i位置为结尾的子数组最小和分两种情况:如果f[i-1] <0, 此时最小子数组和为f[i-1] + nums[i]。否则最小子数组和为nums[i]本身。所以状态转移方程为:g[i] = min(g[i-1]+ nums[i], nums[i])

细节处理:
 显然不管是求f[i]还是g[i],当i为0时,状态转移方程失效。这里各位办法是给f、g都额外新增一个空间。最后从左往右依次填表即可。
如果数组中元素全为负数时,此时子数组和最大值一定为负数。但此时我们发现g[i]最终求得的子数组最小和就是整个数组和,此时数组和减子数组最小和的最终结果为0。需要单独处理
在这里插入图片描述

【代码编写】:

class Solution {
public:int maxSubarraySumCircular(vector<int>& nums) {//数组和int sum = 0;for(auto x : nums){sum += x;}int n = nums.size();vector<int> f(n + 1);//普通数组最大连续子数组和auto g = f;//普通数组最小连续子数组和int fmax = INT_MIN, gmin = INT_MAX;//分别统计f中最大值,g中最小值for(int i = 1; i <= n; i++){f[i] = max(nums[i - 1], f[i - 1] + nums[i - 1]);fmax = max(fmax, f[i]);g[i] = min(nums[i - 1], g[i - 1] + nums[i - 1]);gmin = min(gmin, g[i]);}return sum == gmin ? fmax : max(fmax, sum - gmin);//判断数组元素是否全为负数}
};

三、乘积最大子数组

【题目链接】:152. 乘积最大子数组
【题目】:

 给你一个整数数组 nums ,请你找出数组中乘积最大的非空连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。
&emsp测试用例的答案是一个 32-位 整数。

【示例】:

输入: nums = [2,3,-2,4]
输出: 6
解释: 子数组 [2,3] 有最大乘积 6。

【分析】:
 我们可以定义f[i]表示以i为结尾的最大子数组乘积,g[i]表示以i为结尾的最小子数组乘积。
状态转移方程推导

  1. 以i为结尾的子数组长度可能为1,或大于1。对于大于1的情况,如果nums[i]>0,此时最大子数组乘积为g[i-1]*nums[i];如果nums[i]<0,此时最大子数组乘积为g[i-1]*nums[i]。我们仅需直接求得3种情况的最大值即可,即状态转移方程为: f[i] = max(nums[i - 1], max(f[i - 1] * nums[i - 1], g[i - 1] * nums[i - 1]))
    在这里插入图片描述

  2. 同理对于g[i]来说,也存在如下几种情况。最终可得状态转移方程为g[i] = min(nums[i - 1], min(g[i - 1] * nums[i - 1], f[i - 1] * nums[i - 1]));

在这里插入图片描述

细节处理:
 当i=0时,f、g的状态转移方程不适用。我们可以为f、g额外增加1个空间。同时为了防止新增结果对后续填表造成影响,我们将g[0]、f[0]初始化为1。

【代码编写】

public:int maxProduct(vector<int>& nums) {int n = nums.size();vector<int> f(n + 1);//f[i]表示以i为结尾的子数组的最大乘积auto g = f;//g[i]表示以i为结尾的子数组的最小乘积int ret = INT_MIN;f[0] = 1, g[0] = 1;for(int i = 1; i <= n; i++){f[i] = max(nums[i - 1], max(f[i - 1] * nums[i - 1], g[i - 1] * nums[i - 1]));g[i] = min(nums[i - 1], min(g[i - 1] * nums[i - 1], f[i - 1] * nums[i - 1]));ret = max(ret, f[i]);}return ret;}
};

四、乘积为正数的最长子数组长度

【题目链接】:1567. 乘积为正数的最长子数组长度
【题目】:

 给你一个整数数组 nums ,请你求出乘积为正数的最长子数组的长度。一个数组的子数组是由原数组中零个或者更多个连续数字组成的数组。
 请你返回乘积为正数的最长子数组长度。

【示例】:

输入:nums = [-1,-2,-3,0,1]
输出:2
解释:乘积为正数的最长子数组是 [-1,-2] 或者 [-2,-3] 。

【分析】:
 我们定义f[i]表示以i为结尾,乘积为正的子数组最长长度;g[i]表示以i为结尾,乘积为负的子数组最长长度。

状态转移方程推导:
 我们可以从最后一个元素nums[i[入手,此时分为以下几种情况:

  1. 最长子数组长度可能为1,或大于1,具体如下:

在这里插入图片描述
将上述情况仅需合并后,可得:
在这里插入图片描述

  1. 同理,g[i]的情况如下:
    在这里插入图片描述
    合并后,可得:
    在这里插入图片描述

细节处理:
 显然当i为0时,f、g的状态转移方程都失效。所以我们给f、g额外增加一个空间。为了保证新增空间对后续填表结果不造成印象,我们将f[0]、g[0]初始化为0。最后从左往右填表即可。

【代码编写】:

class Solution {
public:int getMaxLen(vector<int>& nums) {int n = nums.size();vector<int> f(n + 1);//f[i]: 以i为结尾的,乘积为正的最长子数组长度auto g = f;//g[i]: 以i为结尾的,乘积为负的最长子数组长度int ret = INT_MIN;for(int i = 1; i <= n; i++){if(nums[i - 1] > 0){f[i] = f[i - 1] + 1;g[i] = g[i - 1] == 0 ? 0 : g[i - 1] + 1;}else if(nums[i - 1] < 0){f[i] = g[i - 1] == 0 ? 0 : g[i - 1] + 1;g[i] = f[i - 1] + 1;}ret = max(ret, f[i]);}return ret;}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/790209.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于SSM+Jsp+Mysql的航空机票预订系统

开发语言&#xff1a;Java框架&#xff1a;ssm技术&#xff1a;JSPJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包…

小红数组操作(结构体模拟链表详细解析)(双向链表)c/c++

题目描述: 小红拿到了一个数组&#xff0c;初始数组为空&#xff0c;她希望你实现以下两种操作&#xff1a; 1. 输入x,y&#xff0c;将x插入在元素y的右边。保证此时数组中没有元素等于x&#xff0c;且数组中存在一个y。特殊的&#xff0c;如果将x插入在数组的最左边&#xff0…

hadoop在linux上启动成功了,但是浏览器访问不了

根据网上的资料进行安装hadoop的伪集群 都安装成功&#xff0c;并且启动也成功了&#xff0c;如下图所示&#xff1a; 2、但是在浏览器上确是怎么也访问不了&#xff0c; 解决思路&#xff0c; 2.1、根据网上的一些文章处理解决是关闭防火墙&#xff0c; 2.1.1、我根据操作步骤…

影视剪辑来这6个网站找视频素材~

影视剪辑&#xff0c;一般都是先找影视资源&#xff0c;保存百度云下载或者直接录屏&#xff0c;再进行二次创作&#xff0c;找影视资源可以到下面这个网站&#xff0c;绝对能找到90%的电视剧、电影。 茶杯狐 一个影视资源搜索网站&#xff0c;页面非常干净&#xff0c;提供了各…

Python基础之pandas:字符串操作与透视表

文章目录 一、字符串操作备注&#xff1a;如果想要全部行都能输出&#xff0c;可输入如下代码 1、字符检索2、字符转换3、字符类型判断4、字符调整5、字符对齐与填充6、字符检索7、字符切割8、字符整理 二、透视表1、pd.pivot_table2、多级透视表 一、字符串操作 备注&#xf…

[力扣]根据前中序构造二叉树--详细解析

根据前中序遍历顺序构建一个二叉树 力扣练习链接 过程 总体框架 设preorder的左边界为pleft,右边界为pright[注意这里是闭区间能取到]同时设inorder的左边界为ileft,有边界为iright[同样也是可以取到的索引区间]我们生成每一个区间的树的头结点,然后向上返回,对于他的父亲结点…

Python搭建编程环境—安装Python3解释器

✅作者简介&#xff1a;CSDN内容合伙人、阿里云专家博主、51CTO专家博主、新星计划第三季python赛道Top1&#x1f3c6; &#x1f4c3;个人主页&#xff1a;hacker707的csdn博客 &#x1f525;系列专栏&#xff1a;零基础学Python &#x1f4ac;个人格言&#xff1a;不断的翻越一…

Day18-【Java SE进阶】多线程

一、线程 1. 什么是线程? 线程(Thread)是一个程序内部的一条执行流程。程序中如果只有一条执行流程&#xff0c;那这个程序就是单线程的程序。 2. 多线程 多线程是指从软硬件上实现的多条执行流程的技术(多条线程由CPU负责调度执行) 3. 如何在程序中创建出多条线程? Ja…

数据文件大小扩容或缩容必备技能

欢迎关注“数据库运维之道”公众号&#xff0c;一起学习数据库技术! 本期将为大家分享“数据文件大小扩容或缩容必备技能” 。 关键词&#xff1a;Resize Datafile、ORA-03297、高水位线 表空间跟数据文件是一对多的关系&#xff0c;数据文件存放到磁盘或ASM磁盘组。当磁盘空间…

计算机视觉——图像金字塔理解与代码示例

图像金字塔 有时为了在图像中检测一个物体&#xff08;例如人脸、汽车或其他类似的物体&#xff09;&#xff0c;需要调整图像的大小或对图像进行子采样&#xff0c;并进行进一步的分析。在这种情况下&#xff0c;会保持一组具有不同分辨率的同一图像。称这种集合为图像金字塔…

人大金仓数据库介绍与使用指南

人大金仓数据库是一款强大的关系型数据库管理系统&#xff0c;具有简单易用、高性能和稳定可靠的特点。本文将介绍人大金仓数据库的安装方法、常用的SQL语法以及相关工具的使用。 一、安装方法&#xff1a; 1、下载人大金仓数据库安装程序&#xff1b; 2、运行安装程序&#…

自动驾驶之心规划控制笔记

Search-based Path Planning Methods Path Finding Problem 一般来说指标有距离,耗费时间,能量,或者多目标。 左图是拓扑地图,蓝色的点就是顶点,绿色的线是连接关系。最后得到的是一个从哪里走的一个最优,并非精细解。 右图是栅格地图,这个搜索出来的是在相对分辨率比…

SSL证书有哪些种类?有免费的吗?

SSL证书主要有以下几种类型&#xff1a; 1. 域名验证型SSL证书 (DV SSL)&#xff1a; - 仅对申请者的域名所有权进行验证&#xff0c;无需人工验证申请单位的真实身份。 - 审核快速&#xff0c;通常适用于个人网站、小型组织或各类加密应用。 2. 组织验证型SSL证书 (OV…

C++的并发世界(五)——线程状态切换

0.线程状态 初始化&#xff1a;该线程正在被创建&#xff1b; 就绪&#xff1a;该线程在列表中就绪&#xff0c;等待CPU调度&#xff1b; 运行&#xff1a;该线程正在运行&#xff1b; 阻塞&#xff1a;该线程被阻塞挂机&#xff0c;Blocked状态包括&#xff1a;pend&#xff…

顶级Layer-3 通证正在飙升,布局龙头Degen Chain(含bitget教程)

近期以太坊生态内&#xff0c;Base 一枝独秀&#xff0c;其 TVL 突破 25 亿美元&#xff0c;创历史新高。并且生态内的社交文化和 DeFi 板块的龙头都很惹眼。 Farcaster 协议上的 meme 币 DEGEN 目前价格为 0.018 美元&#xff0c;7 日涨幅达 376%。 DEGEN 兴起于 Farcaster 的…

知识产权与标准化

根据希赛相关视频课程汇总整理而成&#xff0c;是个人软考的复习笔记&#xff0c;仅供参考 知识产权概述 知识产权类型&#xff1a; ①著作权&#xff08;版权、文学产权&#xff09; ② 工业产权&#xff08;产业产权&#xff09; 知识产权的特点&#xff1a; 无形性、独占性…

PS从入门到精通视频各类教程整理全集,包含素材、作业等(7)复发

PS从入门到精通视频各类教程整理全集&#xff0c;包含素材、作业等 最新PS以及插件合集&#xff0c;可在我以往文章中找到 由于阿里云盘有分享次受限制和文件大小限制&#xff0c;今天先分享到这里&#xff0c;后续持续更新 PS敬伟01——90集等文件 https://www.alipan.com/s…

【学习笔记】java项目—苍穹外卖day07

文章目录 苍穹外卖-day07课程内容1. 缓存菜品1.1 问题说明1.2 实现思路1.3 代码开发1.4 功能测试1.5 代码提交 2. 缓存套餐2.1 Spring Cache2.1.1 介绍2.1.2 常用注解2.1.3 入门案例 2.2 实现思路2.3 代码开发2.4 功能测试2.5 代码提交 3. 添加购物车3.1 需求分析和设计3.1.1 产…

Leetcode刷题-数组(二分法、双指针法、窗口滑动)

数组 1、二分法 704. 二分查找 - 力扣&#xff08;LeetCode&#xff09; 需要注意区间的问题。首先在最外面的循环判断条件是left<right。那就说明我们区间规定的范围就是【left,right】 属于是左闭右闭&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&…

基于java实现的沙县小吃点餐系统

开发语言&#xff1a;Java 框架&#xff1a;ssm 技术&#xff1a;JSP JDK版本&#xff1a;JDK1.8 服务器&#xff1a;tomcat7 数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09; 数据库工具&#xff1a;Navicat11 开发软件&#xff1a;eclipse/myeclip…