【机器学习】科学库使用第3篇:机器学习概述,学习目标【附代码文档】

机器学习(科学计算库)完整教程(附代码资料)主要内容讲述:机器学习(常用科学计算库的使用)基础定位、目标,机器学习概述定位,目标,学习目标,学习目标,1 人工智能应用场景,2 人工智能小案例。机器学习概述,1.5 机器学习算法分类学习目标,学习目标,1 监督学习,2 无监督学习,3 半监督学习,4 强化学习。机器学习概述,1.7 Azure机器学习模型搭建实验学习目标,学习目标,Azure平台简介,学习目标,1 深度学习 —— 神经网络简介,2 深度学习各层负责内容。Matplotlib,3.2 基础绘图功能 — 以折线图为例学习目标,学习目标,1 完善原始折线图 — 给图形添加辅助功能,2 在一个坐标系中绘制多个图像,3 多个坐标系显示— plt.subplots(面向对象的画图方法),4 折线图的应用场景。Matplotlib,3.3 常见图形绘制学习目标,学习目标,1 常见图形种类及意义,2 散点图绘制,3 柱状图绘制,4 小结。Numpy,4.2 N维数组-ndarray学习目标,学习目标,1 ndarray的属性,2 ndarray的形状,3 ndarray的类型,4 总结。Numpy,4.4 ndarray运算学习目标,学习目标,问题,1 逻辑运算,2 通用判断函数,3 np.where(三元运算符)。Pandas,5.1Pandas介绍学习目标,学习目标,1 Pandas介绍,2 为什么使用Pandas,3 小结,学习目标。Pandas,5.3 基本数据操作学习目标,学习目标,1 索引操作,2 赋值操作,3 排序,4 总结。Pandas,5.6 文件读取与存储学习目标,学习目标,1 CSV,2 HDF5,3 JSON,4 小结。Pandas,5.8 高级处理-数据离散化学习目标,学习目标,1 为什么要离散化,2 什么是数据的离散化,3 股票的涨跌幅离散化,4 小结。Pandas,5.12 案例学习目标,学习目标,1 需求,2 实现,1.独立同分布(i.i.d.),2.简单解释 — 独立、同分布、独立同分布。

全套笔记资料代码移步: 前往gitee仓库查看

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~


全套教程部分目录:


部分文件图片:

机器学习概述

学习目标

  • 了解人工智能发展历程
  • 了解机器学习定义以及应用场景
  • 知道机器学习算法监督学习与无监督学习的区别
  • 知道监督学习中的分类、回归特点
  • 知道机器学习的开发流程

1.7 Azure机器学习模型搭建实验

学习目标

  • 目标

  • 了解Azure机器学习平台,知道机器学习流程


Azure平台简介

image-20190220120303537

Azure Machine Learning(简称“AML”)是微软在其公有云Azure上推出的基于Web使用的一项机器学习服务,机器学习属人工智能的一个分支,它技术借助算法让电脑对大量流动数据集进行识别。这种方式能够通过历史数据来预测未来事件和行为,其实现方式明显优于传统的商业智能形式。

微软的目标是简化使用机器学习的过程,以便于开发人员、业务分析师和数据科学家进行广泛、便捷地应用。

这款服务的目的在于“将机器学习动力与云计算的简单性相结合”。

AML目前在微软的Global Azure云服务平台提供服务,用户可以通过站点:**[ 申请免费试用。

image-20190220120544975

  • Azure机器学习实验
  • 实验目的:了解机器学习从数据到建模并最终评估预测的整个流程。

1.8 深度学习简介

学习目标

  • 目标

  • 了解什么是深度学习


1 深度学习 —— 神经网络简介

深度学习(Deep Learning)(也称为深度结构学习【Deep Structured Learning】、层次学习【Hierarchical Learning】或者是深度机器学习【Deep Machine Learning】)是一类算法集合,是机器学习的一个分支。

image-20190218131208199

深度学习方法近年来,在会话识别、图像识别和对象侦测等领域表现出了惊人的准确性。

但是,“深度学习”这个词语很古老,它在1986年由Dechter在机器学习领域提出,然后在2000年有Aizenberg等人引入到人工神经网络中。而现在,由于Alex Krizhevsky在2012年使用卷积网络结构赢得了ImageNet比赛之后受到大家的瞩目。

卷积网络之父:Yann LeCun

image-20190218131327040

  • 深度学习演示

  • [链接:

image-20190312224420601

2 深度学习各层负责内容

神经网络各层负责内容:

1层:负责识别颜色及简单纹理

image-20190218132153757

2层:一些神经元可以识别更加细化的纹理,布纹,刻纹,叶纹等

image-20190218132305039

3层:一些神经元负责感受黑夜里的黄色烛光,高光,萤火,鸡蛋黄色等。

image-20190218132332337

4层:一些神经元识别萌狗的脸,宠物形貌,圆柱体事物,七星瓢虫等的存在。

image-20190218132403457

5层:一些神经元负责识别花,黑眼圈动物,鸟,键盘,原型屋顶等。

image-20190218132428140

4 小结

  • 深度学习的发展源头--神经网络【了解】
  • 多层神经网络,在最初几层是识别简单内容,后面几层是识别一些复杂内容。【了解】

机器学习基础环境安装与使用

学习目标

  • 完成机器学习基础阶段的环境安装

  • 学会使用jupyter notebook平台完成代码编写运行

2.1 库的安装

学习目标

  • 目标

  • 搭建好机器学习基础阶段的环境


整个机器学习基础阶段会用到Matplotlib、Numpy、Pandas等库,为了统一版本号在环境中使用,将所有的库及其版本放到了文件requirements.txt当中,然后统一安装

新建一个用于人工智能环境的虚拟环境

mkvirtualenv ai
matplotlib==2.2.2
numpy==1.14.2
pandas==0.20.3
tables==3.4.2
jupyter==1.0.0

注意:

  • 每个包安装的过程中,尽量指定稳定版本进行安装

使用pip命令安装

pip3 install -r requirements.txt

小结

  • 机器学习(科学计算库)阶段环境的搭建和基本库的安装

  • 注意:最好安装指定的稳定版本

2.2 Jupyter Notebook使用

学习目标

  • 目标

  • 学会使用Jupyter Notebook


1 Jupyter Notebook介绍

Jupyter项目是一个非盈利的开源项目,源于2014年的ipython项目,因为它逐渐发展为支持跨所有编程语言的交互式数据科学和科学计算

  • Jupyter Notebook,原名IPython Notbook,是IPython的加强网页版,一个开源Web应用程序
  • 名字源自Julia、Python 和 R(数据科学的三种开源语言)
  • 是一款程序员和科学工作者的编程/文档/笔记/展示软件
  • .ipynb文件格式是用于计算型叙述的JSON文档格式的正式规范

jupyternotebook

2 为什么使用Jupyter Notebook?

  • 传统软件开发:工程/目标明确

  • 需求分析,设计架构,开发模块,测试

  • 数据挖掘:艺术/目标不明确

  • 目的是具体的洞察目标,而不是机械的完成任务

  • 通过执行代码来理解问题
  • 迭代式地改进代码来改进解决方法

实时运行的代码、叙事性的文本和可视化被整合在一起,方便使用代码和数据来讲述故事

对比Jupyter Notebook和Pycharm

  • 画图

  • 数据展示

  • 总结:Jupyter Notebook 相比 Pycharm 在画图和数据展示方面更有优势。

3 Jupyter Notebook的使用-helloworld

3.1 界面启动、创建文件

  • 3.1.1 界面启动

环境搭建好后,本机输入jupyter notebook命令,会自动弹出浏览器窗口打开Jupyter Notebook

# 进入虚拟环境workon ai# 输入命令jupyter notebook

本地notebook的默认URL为:[

想让notebook打开指定目录,只要进入此目录后执行命令即可

notebook1

  • 3.1.2 新建notebook文档
  • notebook的文档格式是.ipynb

  • 3.1.3 内容界面操作-helloworld

标题栏:点击标题(如Untitled)修改文档名

编辑栏:

controlnotebook

3.2 cell操作

  • 什么是cell?

  • cell:一对In Out会话被视作一个代码单元,称为cell

  • cell行号前的 * ,表示代码正在运行

Jupyter支持两种模式:

  • 编辑模式(Enter)

  • 命令模式下回车Enter鼠标双击cell进入编辑模式

  • 可以操作cell内文本或代码,剪切/复制/粘贴移动等操作

  • 命令模式(Esc)

  • Esc退出编辑,进入命令模式

  • 可以操作cell单元本身进行剪切/复制/粘贴/移动等操作
3.2.1 鼠标操作

工具栏cell

3.2.2 快捷键操作
  • 两种模式通用快捷键

  • Shift+Enter,执行本单元代码,并跳转到下一单元

  • Ctrl+Enter,执行本单元代码,留在本单元

  • 命令模式:按ESC进入

  • Y,cell切换到Code模式

  • M,cell切换到Markdown模式

  • A,在当前cell的上面添加cell

  • B,在当前cell的下面添加cell

  • 其他(了解)

  • 双击D:删除当前cell

  • Z,回退

  • L,为当前cell加上行号 <!--

  • Ctrl+Shift+P,对话框输入命令直接运行

  • 快速跳转到首个cell,Crtl+Home

  • 快速跳转到最后一个cell,Crtl+End -->

  • 编辑模式:按Enter进入

  • 补全代码:变量、方法后跟Tab键

  • 为一行或多行代码添加/取消注释:Ctrl+/(Mac:CMD+/)

  • 其他(了解):

  • 多光标操作:Ctrl键点击鼠标(Mac:CMD+点击鼠标)

  • 回退:Ctrl+Z(Mac:CMD+Z)
  • 重做:Ctrl+Y(Mac:CMD+Y)

3.3 markdown演示

掌握标题和缩进即可

一级标题

二级标题

三级标题

四级标题
五级标题
  • 缩进

  • 二级缩进

    • 三级缩进

4 Jupyter Notebook中自动补全代码等相关功能拓展【了解】

效果展示:

image-20190312225838970

4.1 安装jupyter_contrib_nbextensions库

安装该库的命令如下:

python -m pip install jupyter_contrib_nbextensions

然后执行:

jupyter contrib nbextension install --user --skip-running-check

在原来的基础上勾选: “Table of Contents” 以及 “Hinterland”

部分功能:

image-20190313100409052

5 小结

  • 是什么

  • 是一个ipython的web加强版

  • 为什么要使用jupyter

  • 用于数据探索过程

  • 怎么用

  • 1.通过jupyter notebook 就可以使用

  • 2.保存文件是.ipynb
  • 3.每个内容,都对应的是一个cell

  • 快捷键

  • Shift+Enter,执行本单元代码,并跳转到下一单元

  • Ctrl+Enter,执行本单元代码,留在本单元

Matplotlib

学习目标

  • 应用Matplotlib的基本功能实现图形显示
  • 应用Matplotlib实现多图显示
  • 应用Matplotlib实现不同画图种类

3.1 Matplotlib之HelloWorld

学习目标

  • 目标

  • 了解什么是matplotlib

  • 为什么要学习matplotlib
  • matplotlib简单图形的绘制

1 什么是Matplotlib

matplotlib

  • 是专门用于开发2D图表(包括3D图表)

  • 以渐进、交互式方式实现数据可视化

2 为什么要学习Matplotlib

可视化是在整个数据挖掘的关键辅助工具,可以清晰的理解数据,从而调整我们的分析方法。

  • 能将数据进行可视化,更直观的呈现
  • 使数据更加客观、更具说服力

例如下面两个图为数字展示和图形展示:

star

3 实现一个简单的Matplotlib画图 — 以折线图为例

3.1 matplotlib.pyplot模块

matplotlib.pytplot包含了一系列类似于matlab的画图函数。

import matplotlib.pyplot as plt

3.2 图形绘制流程:

  • 1.创建画布 -- plt.figure()

  • ```python plt.figure(figsize=(), dpi=) figsize:指定图的长宽 dpi:图像的清晰度 返回fig对象

* 2.绘制图像 -- plt.plot(x, y)* ```python
以折线图为例
  • 3.显示图像 -- plt.show()

3.3 折线图绘制与显示

举例:展现上海一周的天气,比如从星期一到星期日的天气温度如下

import matplotlib.pyplot as plt# 1.创建画布plt.figure(figsize=(10, 10), dpi=100)# 2.绘制折线图plt.plot([1, 2, 3, 4, 5, 6 ,7], [17,17,18,15,11,11,13])# 3.显示图像plt.show()

折线图

4 认识Matplotlib图像结构(了解)

img

5 小结

  • 什么是matplotlib【了解】

  • 是专门用于开发2D(3D)图表的包

  • 绘制图像流程【掌握】

  • 1.创建画布 -- plt.figure(figsize=(20,8))

  • 2.绘制图像 -- plt.plot(x, y)
  • 3.显示图像 -- plt.show()

未完待续, 同学们请等待下一期

全套笔记资料代码移步: 前往gitee仓库查看

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/789747.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机网络|谢希仁版|数据链路层

数据链路层 数据链路层研究的是什么&#xff1f;数据链路层的几个共同问题数据链路与链路帧通信规程 三个基本问题封装成帧透明传输差错检测可靠传输 点对点协议PPPPPP协议应满足的需求PPP协议的组成PPP协议帧的格式各字段的意义字节填充零比特填充PPP协议的工作状态 使用广播信…

三电源切换电路。

一个三电源切换电路 电路描述 1、Q1、Q2为NMOS&#xff0c;Q3、Q4和Q5为PMOS管&#xff0c;D1为二极管。 2、BAT1和BAT2为电池&#xff0c;BAT2的容量比BAT1大&#xff0c;VIN_5V为外部电源&#xff0c;VOUT为输出&#xff0c;给系统供电。 3、VOUT会从优先级高的电源取电&a…

黑盒测试—等价分类法

等价分类法是把程序的输入域划分成若干部分&#xff08;子集&#xff09;&#xff0c;然后从每个部分中选取少数代表性数据作为测试用例。每一类的代表性数据在测试中的作用等价于这一类中的其他值。测试时把有效类与无效类相互组合&#xff0c;得到测试结果。 例题如下&#x…

【面试HOT200】数组篇

系列综述&#xff1a; &#x1f49e;目的&#xff1a;本系列是个人整理为了秋招面试coding部分的&#xff0c;整理期间苛求每个算法题目&#xff0c;平衡可读性与代码性能&#xff08;leetcode运行复杂度均打败80%以上&#xff09;。 &#x1f970;来源&#xff1a;材料主要源于…

视觉检测系统,外观细节无可挑剔

在传统行业中&#xff0c;利用人工检测来检测产品外观缺陷依然是主流&#xff0c;但由于竞争的加剧&#xff0c;对企业生产效率的要求也越来越高。传统的检测产品外观缺陷问题的方法就是透过人工目检&#xff0c;或者工人采用游标卡尺等工具检测&#xff0c;此种方式检测速度慢…

振弦式应变计:简单操作,方便实用的应变监测工具

在现代工程领域中&#xff0c;对于结构物的应变监测是一项至关重要的任务。振弦式应变计作为一种高精度、高稳定性的应变监测工具&#xff0c;因其简单操作、方便实用的特点&#xff0c;受到了广大工程师和技术人员的青睐。 振弦式应变计的工作原理基于振弦的振动特性。它通过将…

HCIA笔记

console 登录设备的特点&#xff1a; 1、带外&#xff0c;不依赖网络本身的连通性。 2、独占&#xff0c;console口不能被多人同时使用&#xff0c;具备唯一性。 3、本地&#xff0c;console口长度有限&#xff0c;一般只能在机房或者设备现场来使用。 4、只能实现命令行的管理…

ngAlain下使用nz-select与文件上传框出现灵异bug

bug描述 初始化页面&#xff0c;文件上传框无法出现&#xff1a; 但点击一次选择框以后&#xff0c;就会出现&#xff1a; 真的很神奇。。。 下面逐步排查看看是什么原因。 设想一&#xff1a; 选择框与文件框不可同时存在&#xff0c;删掉选择框看看&#xff1a; 还…

隐语SecretFlow实训营-第8讲:快速上手隐语SCQL的开发实践

SCQL使用/集成实践 目前SCQL只开放API供用户使用/集成 使用SCDBClient上手体验可以基于SCQL API开发封装白屏产品&#xff0c;或集成到业务链路中 使用流程&#xff1a; 部署系统 环境配置&#xff1a; 机器配置&#xff1a;CPU/MEM最低8C16G机构之间的网络互通 镜像&…

全面了解海外网络专线

SD-WAN海外网络专线技术 在选择海外网络专线服务时&#xff0c;企业需要考虑多个因素&#xff0c;包括服务商的可靠性、价格、技术支持和合规性。本文将探讨跨境网络专线的价格因素、合法跨境上网的方式&#xff0c;以及SD-WAN跨境上网专线的优势。 跨境网络专线的价格与办理…

STM32学习笔记(11_2)- W25Q64简介和工作原理

无人问津也好&#xff0c;技不如人也罢&#xff0c;都应静下心来&#xff0c;去做该做的事。 最近在学STM32&#xff0c;所以也开贴记录一下主要内容&#xff0c;省的过目即忘。视频教程为江科大&#xff08;改名江协科技&#xff09;&#xff0c;网站jiangxiekeji.com 本期学…

Golang Gin框架

1、这篇文章我们简要讨论一些Gin框架 主要是给大家一个基本概念 1、Gin主要是分为路由和中间件部分。 Gin底层使用的是net/http的逻辑&#xff0c;net/http主要是说&#xff0c;当来一个网络请求时&#xff0c;go func开启另一个协程去处理后续(类似epoll)。 然后主协程持续…

蓝桥杯物联网竞赛_STM32L071_15_ADC/脉冲模块

ADC模块用的是RP1不用多说了&#xff0c;主要是脉冲模块&#xff0c;这个模块没考过 这个脉冲模块放出脉冲&#xff0c;主要能用TIM捕获到这个脉冲的高电平持续时间即可 CubMx配置&#xff1a; 脉冲模块的引脚与PB0相连&#xff0c;所以用PB0读取上升沿记的数和下降沿记的数&am…

炫我科技:云渲染领域的佼佼者

随着数字化时代的来临&#xff0c;云渲染技术正逐渐成为影视、游戏、动画等创意产业的重要支柱。在这一领域中&#xff0c;炫我科技凭借其卓越的技术实力、优质的服务以及不断创新的精神&#xff0c;已然成为了云渲染行业的佼佼者。 炫我科技自成立之初&#xff0c;便以打造高…

tkinter实现通用对账文件解析软件

软件需求 和银行等金融机构合作过程中&#xff0c;经常会有还款计划、放款文件等定时推送的文件&#xff0c;以常见的分隔符进行分隔开&#xff0c;为了在系统出现问题时&#xff0c;快速查找异常数据&#xff0c;写了一个小工具解析这些文件并写入到excel中。 软件功能 将常…

Vue ElementPlus Input 输入框

Input 输入框 通过鼠标或键盘输入字符 input 为受控组件&#xff0c;它总会显示 Vue 绑定值。 通常情况下&#xff0c;应当处理 input 事件&#xff0c;并更新组件的绑定值&#xff08;或使用v-model&#xff09;。否则&#xff0c;输入框内显示的值将不会改变&#xff0c;不支…

异构加速GPU服务器设计方案:904-全国产化异构加速GPU服务器

全国产化异构加速GPU服务器 一、产品介绍 X7340H0是中科可控基于HYGON系列处理器开发的一款全新高端2U双路GPU服务器。X7340H0采用优异的可扩展架构设计&#xff0c;支持高密度扩展GPU加速卡&#xff0c;为深度学习推理场景提供更加安全可靠、高性价比的解决方案。 性能卓越 ●…

经典文献阅读之--LOG-LIO(高效局部几何信息估计的激光雷达惯性里程计)

0. 简介 局部几何信息即法线和点分布在基于激光雷达的同时定位与地图构建&#xff08;SLAM&#xff09;中是至关重要&#xff0c;因为它为数据关联提供了约束&#xff0c;进一步确定了优化方向&#xff0c;最终影响姿态的准确性。然而即使在使用KD树或体素图的辅助下&#xff…

【CANN训练营笔记】AscendCL图片分类应用(C++实现)

样例介绍 基于PyTorch框架的ResNet50模型&#xff0c;对*.jpg图片分类&#xff0c;输出各图片所属分类的编号、名称。 环境介绍 华为云AI1s CPU&#xff1a;Intel Xeon Gold 6278C CPU 2.60GHz 内存&#xff1a;8G NPU&#xff1a;Ascend 310 环境准备 下载驱动 wget ht…

在 Windows 中安装部署并启动连接 MongoDB 7.x(命令行方式启动、配置文件方式启动、将启动命令安装为系统服务实现开机自启)

MongoDB 的下载 下载地址&#xff1a;https://www.mongodb.com/try/download/community 这里需要对 MongoDB 的版本号说明一下&#xff1a; MongoDB 版本号的命名规则是 x.y.z&#xff0c;当其中的 y 是奇数时表示当前的版本为开发版&#xff0c;当其中的 y 是偶数时表示当前的…